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PHASE AND DISPERSION THEORY

OF THE DIFFERENTIAL EQUATION y" = ¢(r)y

IN CONNECTION WITH THE GENERALIZED
FLOQUET THEORY

SVATOSLAV STANEK, Olomouc
(Received June 17, 1977)

I. INTRODUCTION

The classical Floquet theory of the equations

(@ y' =q@)y, qeCx, R = (-0, o)

describes the properties of solutions of (q) when the function g (i.e. the carrier of (q))
is periodic, usually with period = :q(t + n) = q(t) for te R. Then u(t + n) is
a solution of (q) for every solution u of (q), too. According to the Floquet theory
a quadratic algebraic equation can be uniquely associated to (q), whose roots — the
so-called characteristic multipliers of (qQ) — are of importance in investigating the
properties of solutions of (q). Provided that (q) is both-sided oscillatory, the characte-
ristic multipliers of (q) can be calculated by means of the (first) phase and of the basic
central dispersion (of the Ist kind) of (q). Cf. [2]—[5], [8].

O. Boriivka established in [1] all functions X, the so-called dispersions (of the

1st kind) of (q) possessing the property, by which w_uEX(t)]”

JIX'0)
for every solution u of the both-sided oscillatcry equation (q) again.

M. Laitoch generalized in [6] on the above basis the Floquet theory even to
equations (q) whose carrier ¢ is in general no periodic function. To such (q) and X, it
is possible uniquely associate an algebraic quadratic equation whose roots determine
the behaviour of solutions of (q). (See [6]).

The main point of the present article is to calculate the above roots using the phase
and dispersion theory for the 2nd order linear differential equations, getting thus as
special cases the results of [2] —[5] and [8]. Next we investigate qualitative properties

is a solution of (q) on R
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of the roots mentioned, making use of the dispersion X and of the central dispersions
of (g).

2. BASIC CONCEPTS AND RELATIONS

In what follows we shall investigate equations (q) being both-sided oscillatory on R
only (i.e. every nonnull solution of (q) has an infinite number of zeros on the left and
on the right of every 7, € R). The trivial solution will be excluded.

In keeping with [1] we say that a function « : R —> R, a € Cy is a (first) phase of (q)
if there exist independent solutions u, v of (q):

tg a(t)=%((t£))— on R — {teR; u(f) = 0}.

Every phase o of (q) satisfies:

aeCq, o(t)#0 forteR, aR)=R.
—512_3‘_(2 , €os 1g)~ are independent solutions of (q)
NPIOTRRNELOY
and k, _§!{1_‘(_9{(—’)1_‘7’f;_lfgl (k,, k, = constants) is its general solution.
NEL0]

The set of phases of the equation y” = —y will be denoted by €. It holds: &(r + =) =
= ¢(t) + n.sign ¢ for every ¢ € €.

Let ¢, € R and u be a solution of (q), u(#,) = 0. Let us denote by ¢(#,) the first zero
of u lying on the right of t,. Then the function ¢ is defined on R and is called the
basic central dispersion (of the Ist kind) of (q). The basic central dispersion ¢ of (q)
has the following properties:

If o« is a phase of (q), then

peCa, o(t)>t, @@ >0 forteR
@,(?) is the composite function ¢ ... ¢(¢) and ¢ _ () stands for the inverse function to
—

n
@(1); @o(t) = t for t € R. The functions ¢, (n = +1, +2,...) are called the central
dispersions (of the 1Ist kind) of (q).

Let a be a phase and ¢ be the basic central dispersion of (q). Then o[ @,(t)] = a(t) +
+ nn . sign o’ for ¢ € R, n being an integer.

The funtion X € C3, X’ # O representing a solution of the nonlinear differential
equation

(@) Jﬁﬂ(iwf+xfmm=«o
Vx|
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is called the dispersion (of the 1st kind) of (q). Especially the basic central dispersion ¢
of (q9) and ¢, (n =0, +1, +2, ...) are dispersions of (q). If the function ¢ + = is
a dispersion of (q), then it is a solution of (qq) whence we have: q(t + n) = q(¢) and
conversely also: if g(t + n) = q(¢) for t € R, then ¢ + = is a dispersion of (q).

Let o be a phase of (q). Then X is a dispersion of (q) precisely if X = a™'ea, ¢ € €.
Consequently o™ '€a : = {a"'ex; £ € €} are all solutions of (qq).

Every dispersion X of (q) maps R on R and possesses the following important
HX0]
VIX'()]
tion of this equation again. In case X = ¢, it is even valid the formula

property: Let u be an arbitrary solution of (q), then the function —= is a solu-

1) —“[f‘f—ig_—)]— =(=1)"u(r), teR.
Vo1

All the above results has been proved in [1].

3. PREPARATORY LEMMAS

Let X(¢) £ t be a dispersion of (q), ¢ be the basic central dispersion of (q) and u, v
uX] | XO]

its independent solutions. Then —=—="=_

VIXw| VX))

are independent solutions

of (q) and
”E[X(t)] ayu(t) + a0(1),
VIX'(@®)
@
U[X(t)!a au(t) + a,,u(1), teR,
VIX(©]

where a;; (i, j = 1, 2) are real numbers and det a;; = a,,a,, — a,,a,, # 0. Let y be

a solution of (q) with —2t2/4 yIX(®]
VIX'()i
number. Then 7 is a root of the equation

= 7. y(t) for t € R, where 7 is a (generally complex)

3) 0® — (ayy + az3) @ + (a11a2, — @1,0a5,) = 0.

The coefficients of (3) do not depend on the choice of the independent solutions u, v
of (q). We call equation (3) the characteristic equation of (q) relative to the
dispersion X and its roots as the characteristic multipliers of (q) relative
to the dispersion X. In Lemma 4 we shall prove: a,;a,, — a,,a;; = sign X'.
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If o_4, 0, are characteristic multipliers of (q) relative to X, then it follows from [6]
that there exist independent solutions u, v of (q) satisfying either

C) M)‘]'=Q——1“ 1), “l,)[_ﬂt:)“’l’=91"’(t)’ 0-1-.0, = %1,
VIX'(@] VIX'(@)]

or

) _\/‘il[_;—%]__' e i%%—l = u) + o), oy =g = L.

Let n be an integer. Say that x€ Risa number of type nof (q) relative to the
dispersion X if X(x) = ¢,(x).

Lemma 1. Let o be a phase of (@), X = a™ 'ex, where € € €. Then x is a number of
type n of (q) relative to the dispersion X exactly if e(x;) = x, + nn .signa’ for
X 1= a(x).

Proof. (=) Let X(x) = ¢,(x). Then a™'ex(x) = @,(x) = a™'[a(x) + nn . sign ].
Herefrom we obtain &(x;) = x; + nn.signa’ for x; := a(x).

(<) Let x; := a(x) and &(x,) = x; + nn.signo'. Then ea(x) = a(x) + nn.signa’,
o tea(x) = a”'[a(x) + nn.signa’]. From this X(x) = @,(x).

Corollary 1. Let sign X' = 1 and let x be a number of type n of (q) relative to the
dispersion X. Then ¢ (x) is also number of type n of (q) relative to the dispersion X,
for every integer i.

Proof. Let x be a determined number of type n of (q) relative to dispersion X,
and so X(x) = @,(x). Let « be a phase of () and let X = o™ 'ex, e € €. Thensign &’ =1
and we have from Lemma 1 ex(x) = a(x) + n=n . sign «’. It holds for every integer i
that eag;(x) = e[a(x) + in.sign «’] = ea(x) + in.signa’ = a(x) + in.sign o’ +
+ nn.signa’ = a@;(x) + nn.sign «’. From Lemma 1 and from exg(x) = ag(x) +
+ nn . sign o’ we observe that ¢;(x) is a number of type n of (q) relative to the dispers-
ion X, for every integer i. '

Lemma 2. Let sign X' = 1. Then all number of (q) relative to the dispersion X
(so far such exist) are of the same type.

Proof. Suppose that x and y are numbers of types n and m, respectively, of (q)
relative to the dispersion X. This implies that X(x) = ¢,(x), X(») = ¢,(»). Let X =
X =a 'ex, ¢€€. Then signe’ =1 and we get from Lemma 1: e(x;) = x; +
+ nn.signa’, &y,) =y, + mn.signa’, where x;:=oa(x), y,:=oa(y). From
&t + n) =¢(t) + mand e(x,) = x; + nn.signa’ weobtain ¢ + (n.signa’ — 1) <
<eglt)<t+ (n.signa’ + 1)z for te€ R. In the special case of + = y, we have:
Y1+ (n.signa’ —D)n <e(yy) =y, + mn.signa’ <y, + (n.signa’ + 1)z and
from this n.signa’ — 1 <m.signa’ < n.signa’ + 1, which occurs exactly for
n=m
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Corollary 2. Let sign X' = 1 and let x be a number of type n of (Q) relative to the
dispersion X. Then

(pn—l(t) <X(t)<(,0,|+1(t) for t e R.

Proof. Let x be a number of type n of (q) relative to the dispersion X, i.e. X(x) =
= @,(x). Suppose now the assertion is not true. Then it follows from the continuity
of the function X that (q) relative to the dispersion X possesses also a number of
type n — 1 or n + 1, contrary to Lemma 2.

Lemma 3. Let sign X' = —1. Then there exists only one x € R: X(x) = x (this
implies that there exists only one number of type 0 of (q) relative to the dispersion X).
Proof. Equation X(¢) = ¢ has only one solution on R for X(R) = Rand sign X’ =

= —1.

Lemma 4. Let x € R and u, v be solutions of (q) satisfying the initial conditions:
u(x) =1, u'(x) =0, v(x) =0, v(x) = 1. Then

0* — (M + sign X' . \/mv'[X(x)] _ _%_ X"(x) o[ X(x)] )Q s
VIX'()| AW e
© +sign X' =0

is the characteristic equation of (q) relative to the dispersion X.

Proof. Let u, v be solutions of (q) satisfying the initial conditions of Lemma 4.
Then (2) holds where a;; (i, j = 1, 2) are real numbers, det a;; # 0. Putting x in place
of ¢ in (2) we get

u[X(x)] _ y[X=)]
e Azl = —F———— ==
VIX'®)| VX))

_ X@uX®] 1 X' u[X®]
VIXe1 2 X@VIX@]
= sign X' . V| X'(0) | v [X®)] - -;— X @ uXx)]

X'V X'
_ XMUX@] _ 1 X6 o[X®] _

VPO (O NPT
= sign X' . V| X'(0) | v[X(x)] ~ -;- X' XA]
X@VIX'9)|

From this

ay18;; — ay,0,; = sign X'[u(X(x)) . v'(X(%)) — w'(X(x)) . o(X(x))] = sign X",
for u’ — u'v = 1. We get equation (6) by inserting the above results instead of ay;
@G,j = 1, 2) into (3).
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Remark 1. In special case in which X(f) = ¢ + n Lemma 4 is given say in [4],
[5]. [7).

Corollary 3. Let the assumptions of Lemma 4 where x is a number of type n (so far
it exists) of (q) relative to the dispersion X, be satisfied. Then

@) 0% — (——L{{Q«)]—, + sign X' . \/th(x)_l v’[X(x)]) 0 +signX'=0
VIX'®]
is the characteristic equation of (q) relative to the dispersion X.
Proof. Let X(x) = @,(x). Then v[X(x)] = v[@.(x)] = O enabling us to write
equation (6) in the form of (7).

Corollary 4. If the characteristic equation (6) of (q) relative to the dispersion X
has complex roots, then they are equal to e, 0 < a < 1 and sign X’ = 1.

Proof. Let the roots of (6) be complex and equal to « + i, # 0. Then
(@ + if) — (@ — if) = «* + B* = sign X’. From this we get sign X' = 1, a® + f% =
=1 and consequently e**™, where 0 < a < 1, are characteristic multipliers of
(q) relative to the dispersion X.

4. MAIN RESULTS

Let X(t) # t be a dispersion of (q) and ¢ be the basic central dispersion of (q).

Theorem 1. e**™, 0 < a < 1 are the characteristic multipliers of (q) relative to the
dispersion X if and only if there exists a phase o of (qQ) and an integer n:

o[ X(t)] = a(t) + (@ + 2n)n, teR.

Proof. (=) Let e** be the characteristic multipliers of (q) relative to the disper-
sion X. Then there exist independent solutions u, v of (q):

uX®]

JIX @1
o[X(1)]

JIX' )]

Let a € C3, tga(t) =%((-:))— for teR — {teR; v(t) = O}. Then « is a phase of (q)
and we have from (8) tg o[ X(¥)] = tg[a(t) + a] and o[X(t)] = a(t) + (@ + k) =,
where k is an integer. We now prove that k is an even integer. First of all there exists

ceR: u(t) = ——— sin at), o(f) =

NIPTY Vie@|

= cos arn . u(t) + sin an . v(t),

®

= —sin an . u(f) + cos arn . v(?).

cos a(t). Furthermore
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u[X@] c

e sin [ X ()] =
X0l V12[X0]. X0
=% sin [x(t) + (@ + k) n] = (= D* ———C - sin [a(/) + an]
VIx@]) | NELO]
and we get from (8)
l[—X—(t)] =cosan. —:c_ -sin «(t) + sin arn . — 5 cos a(t) =
JIX ] NP ||

- ﬁ?ii sin [o() + an].
NIELOY

Thus (—=1)* = 1 and k is an even integer (k = 2n).

(<) Let 0 < a < 1, nan integer. Let there exist a phase o of (q): «[ X(t)] = a(t) +

+ (@ + 2n) n for te R. Then u, v, u(t): = sinot) v(t): = cos oz(t) teR are

Vig®] NET)
independent solutions of (q) for which the equality of (8) holds. From (2), (3) and
(8) now follows that 9> — 2cosan.g + | = 0 is the characteristic equation of (q)
relative to the dispersion X. e are its roots and consequently also the characteristic

multipliers of (q) relative to the dispersion X.
Remark 2. Theorem 1 was proved for the dispersion X(t) = ¢ + = in [3] and [8].

Corollary 5. Equation (q) relative to the dispersion X possesses numbers (of type n)
precisely if the characteristic multipliers of (q) relative to the dispersion X are real.

Proof. Let (q) relative to the dispersion X possess real characteristic multipliers
_u[X(®)]
JIX@]
for e R. Let u(x) = 0. Then u[X(x)] = 0, hence there exists a number n: X(x) =
= ¢,(x) and x is a number of type n of (q) relative to the dispersion X. Let the
characteristic multipliers of (q) relative to the dispersion X be complex and equal
to e**™ 0 < a < 1. Then there exists an integer m and a phase « of (q): [ X(¢)] =
= o(t) + (@ + 2m) n. Let x be a number of type n of (q) relative to the dispersion X:
X(x) = ¢,(x). Then a[X(x)] = «[@,(x)] = «(x) + nn.signa’ which contradicts
a[X(x)] = a(x) + (@ + 2m) =

and 7 be one of them. Then there exists a solution u of (q): =1.u)

Theorem 2. Let sign X’ = —1, X(x) = x. Then

1
=t .o _JTx
0-1 \/ ' (31 (%)
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holds for the characteristic multipliers o_,, 0, of (q) relative to the dispersion X.

Proof. Let sign X' = —1, X(x) = x and u, vy, be solutions of (q), u(x) = 1,
w(x) =0, v(x) =0, v'(x) = L. Then o[X(x)] = v(x) =0, v[X(x)] = v'(x) =1,
u[ X(x)] = u(x) = 1 and according to Lemma 4

9) 2 ( s — ) —-1=0
0 e Jix (x),e

is the characteristic equation of (q) relative to the dispersion X. ———— and
_ V=X
—+v —X'(x) are the roots of equation (9).
Theorem 3. Let sign X' = 1 and x be a number of type n od (q) relative to the
dispersion X. Then

- _ln\/_?_ﬁ(L), 1..\/X(x)
0 (=1 X' =(-1 /()

holds for the (real) characteristic multipliers g_,, o, of (Q) relatve to the

dispersion X.
Proof. Let x be a number of type n of (q) relative to dispersion X: X(x) = @u(x)

and u, v be solutions of (q), #(x) = 1, #'(x) = 0, v(x) = 0, v'(x) = 1. By differentiat-
ing the latter equality

L) _ Cpypuy, M9 e, rer,

(10
Ve @a(t)
we get
(1n A rXOIR% o1 — v[en(1)] ( f‘r> =(=D%'(), teR.
ot

From (10) and (11) we have for ¢ = x

u[X(x)] = (—INM

V[X(x)] = (=1)"—=
\/ oux)

for v[@,(x)] = 0. Therefore according to Corollary 3

z__ln(/zg@Jr\/z@) fi—o0
W xm TV ogm /°

is the characteristic equation of (q) relative to the dispersion X. (—1) \/

?x%)_ and
X'(x)
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/Xx

(=n ~—,((—)) are its roots and thus also the characteristic multipliers of (q) relative
o'(x
to the dispersion X.
Remark 3. Theorem 3 generalizes the results of [2] —[5] proved for X(1) = ¢ + .

Corollary 6. Let o be a phase of (Q) and x be a number of type 0 of (q) relative to the
dispersion X, X = o 'ex, e € € Then

1

7
VIE'(xo) |

, e =signe VI  (xo=aXx)

are the characteristic multipliers of (q) relative to the dispersion X.

Proof. Let X = a™'¢a, ¢ € € and let x be a number of type 0 of (q) relative to the
dispersion X: X(x) = x. Then sign X’ = sign ¢’. From Theorems 2 and 3 then follows
that

1 L, ;
01 = — . oy =signe .V X'
VIX'(x)]
are the characteristic multipliers of (q) relative to the dispersion X. From X' =
=a Yex.&'a.a’ and ex(x) = a(x) follows: X'(x) = e'a(x) = &'(x,), where xo: =
= o(x).

Lemma 5. Equation (q) has two equal (real) characteristic multipliers relative to the
dispersion X and there exist independent solutions u, v of (q) for which (4) holds iff
there exists an integer n such that X(t) = ¢,(t) for t e R.

Proof. (=) If this holds for an integer n X(¢) = ¢,(t) for € R, then it follows from
Theorem 3 and (1) that (q) possesses independent solutions u, v for which (4) holds.

(<) If equation (q) relative to the dispersion X has two equal characteristic multi-
pliers, then there exists (according to Corollary 5) a number x and an integer n:
X(x) = ¢,(x) and by Theorem 3 (—1)" is a double characteristic multiplier of (q)
relative to the dispersion X. By our assumption, there exist independent solutions , v
of (q) for which (4) holds. From this we find that for every solution y of (q) %_%% =

(¢
yX®O] _ yle. 0]

= . Let o be a phase of (q),
VX' Ve

= (—1)" y(¢), respecting (1), we get

sign &’ = 1. Then for every k, k € R:
sin (@[ X()] + k) _ sin (o[ @, ()] + k)
VX0 . [X0]  Vout). o [e.0]

Consequently X'(t). «'[X(1)] = ¢,2) . @[, 1)), o[X()] = o«[@,(t)] + s7, Where s
is an integer. Since X(x) = ¢,(x), it holds s = 0 and X(t) = ¢,(t) for € R. ‘

teR.
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Lemma 6. Ler 9_, = o,(= ¢ = +1) hold for the characteristic multipliers o_,,
2, of (q) relative to the dispersion X and let u,, v, or u,, v, be pairs of independent
solutions of (q) for which

=== ugt),
. JX'(1)
LLxXO] uft) +e.v(n), i=1.2
VX0

Then sign (u,v] — u\v,) = sign (4,05 — u50,).

Proof. Let ¢_, = g,(=¢ = +1) hold for the characteristic multipliers ¢_,, o,
of (q) relative to the dispersion X. Then it follows from Lemma 4: sign X’ = 1.
Let (12) hold for the pairs u,, v, or u,, v, of independent solutions of (q). Let b;;
@i,j = 1,2), det b;; # 0 be such numbers that

Uy(t) = byuy(t) + byyv,(2),
02(t) = byyu(t) + byav,(2).

Then
EZ_[i(_(_t_)l = by, ul[i(t—)] + by, vJ:_X_ﬁ(t_)] = by 0u,(t) + b12(“1(‘) + ovy(1)) =
VX'(1) VX'(1) VX'(1)
= (bys + 0by1) uy(t) + eby,0,(0),
v[X(0] _ b u [X(0)] +b,, f’_l_[i(’ll = byous(t) + baa(uy(t) + ovy(1) =

VEo VX VX®
= (b2 + 0byy) uy() + 0b2,v4(?)
and
by uy(t) + 0by,0,(t) = (byy + 0byy) uy(t) + eby2v, (1),
byuy(t) + byovi(t) + @by uy(t) + byavy (1)) = (b2 + eb2y) us(t) + 0b;,04(0).

Therefore b,, = 0, b;; = b,, # 0. Furthermore u,v, — u3v; = by u; (b, u; + by,v7) —
- b“u'l(bnul + bzzvl) = bllbzz(ulvll - u’lvl). Thus Sign (uzl},z - ulzvz) =
= sign (u,v] — ujv,).

Lemma 7. Equation (q) has independent solutions u, v for which (5) holds exacty
if there exist an integer n and x € R such that X(x) = @,(x), X(t) # ¢,(t) for te R,
sign X’ =1 and ©.(X(t) — ¢,(t)) = 0 for te R, where T = (—1)"sign (w’ — u'v).

Proof. (=) Let (q) have independent solutions u, v for which (5) holds. Then
0_; = 0, = o(= *1) for the characteristic multipliers ¢_, ¢, of (q) relative to the
dispersion X, sign X’ = 1 (Lemma 4), there exist an integer n and xe R: X(x) =
= @,(x) (Corollary 5) and X(¢) # ¢,(t) for ¢t € R (Lemma 5). Let ¢, be a number for
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which X(t,) # @a(to). Let u,, v, be solutions of (q) satisfying the initial conditions
uy(to) = 1, ui(te) =0, vy(te) =0, v'(ty) = 1. Putting

ustt) := AL 4 (e - \—--—"‘[.Xﬁ"_)]) 1),
i VXt VX (1) "
v,(¢) 1= v,(2), teR,

then u,, v, are independent solutions of (q). Since ¢_, = g, = o(= +1), it follows
from Lemma 4 and its proof:

ul[&] = ul[X(tO)] ul(t) + (\/Xl(fo)u;[x(to)] _ i X”(tO) ul[X(tO)])vl(t)’
VX0 VXt 2 X () VX (1)
v, [X(1)] _ v, [ X(10)] () + <\/“X—’(—to—) v [X(t)] — 1 X"(to) v4[X(1o)] )vl(t)

JX'0 VXt X'(to) VX (t0)
and
LT | g o x(10)]) — 5 X
JX'(t) X'(to) vV X"(t0)
from which

“2'3_(1)] - v,[X(t)] “1[X—(£)_] + (g _ ul[X(tO)]) v, [X(1)] -
VX' VX)X VX'(tg) / VX' ()

_ u[X(t0)] [ul[X(to)] ( 1 X"(to) u,[X(t0)]

= uy () +( VX (to) ul [ X(t0)] — LoV ) t:|+

X1 L VX't Xl = VTG
+(Q _ “1[X(to)}>

VX' (to)
X[ Ul[Xl(tO)] (t) + (\/X (tO) 01[X(to)] 1 X (to) UI[X(tO)] ) ( ):| —
VX'(to) X'(t)V X' (to)
- ”\/[;(‘((’t))] us(® + (ou[X O [X ] = LX) s [Xt0)]) 3(0) +
(V)
+o(20 - W )9 = ¢ LL. ) = 1,04 20,0) - o L 1 ) -
VX'(to) NGTTN TS
-0 [~———”‘[Xf‘°)] w(® + (e - “‘[X(“’)])v (r)] = ous(0),
VX (to) VX' (to)

v,[X(1)] — v, [X(1)] — v;[X(t0)]

- BREL uy(t) +
JX@ VX0 Vx|
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+ (\/X’(to) X)) ’; ((‘”)"J[;‘z;] )vl(o -
0 0

= ulX)] , +( _ ul[_xao)]) oi(t) =

\/5(_—(;05 \/X (to)

= ulXCT oy (e - M)vm + 00s() = us() + evs(0)
JX'(t) VX'(t0)

Thus, it holds (5) where we write #, and v, in place of ¥ and v. Further we have

us(t) v5(1) — u3(®) vy(1) = [%’(“(t))] uy(t) + ( - i‘—})’%’%l) m(:)] 0y(0) —
0. 0.

[vl[X(to)] () + ( ~ 3‘—[&‘_’2])%(0] vy(t) =
\/X (to) \/X'(to)

= 2EXCOL () i) - i vy(0) = 2EC
VX'(to) VX'(t5)

By Lemma 5 sign (uv’ — u'v) = sign (uv), — u3v,) = sign v,[X(t,)]. So, we have
proved that v,[ X(#,)] is always of the same signs for every ¢, € R for which X(z,) #
# @4(to) and for the solution v, of (q) satisfying the initial conditions v,(¢,) = 0,
vi(ty) = 1. By Corollary 2 ¢,_,(t) < X(t) < ¢,+,(?) for t € R. Therefore . (X(t) —
— @,(t)) = 0 for te R, where 7: = (—1)"sign (uv’ — u'v).

(<=) Let there exist an integer n and x € R, such that X(x) = @,(1), X(¢) # @)
for teR, sign X’ =1 and let ©.(X(¢) — ¢,(t)) = 0, where 7 = +1. The function
X(@t) — @,(t) has at the point ¢+ = x a local extreme, thus X'(x) = ¢,(x). Therefore
by Theorem 3 ¢_, = ¢, = (—1)" are the characteristic multipliers of (q) relative
to the dispersion X and from Lemma 5 follows the existence of independent solutions
u, v of (q) for which (5) holds. We proceed in the same manner as we did in proving
(=) to prove t = (—1)"sign (uv’ — u'v).

From Lemma 7 we obtain

Corollary 7. Equation (q) possesses independent solutions u, v for which (5) holds
iff for any integer n X(t) £ @,(t) for te R, sign X’ =1 and

mint.(X() — @,(1)) =0  (t = £1).

Theorem 4. It holds:
a) Equation (q) possesses complex characteristic multipliers relative to the disper-

sion X precisely if for any integer n @,_,(t) < X(t) < @,(t) for teR.
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b) Equation (q) possesses two different real characteristic multipliers relative to the
dispersion X exactly if either sign X' = —1, or sign X’ = 1 and if there exists an
integer n such that the function X(t) — @(t) changes its sign on R.

¢) Equation (q) possesses two equal (real) characteristic multipliers relative to the
dispersion X and there exist independent solutions u, v of (q) for which (5) holds exactly
if there exists an integer n such that X(t) # ¢,(t) for t € R, sign X’ = 1 and min 7 x
x (X(t) — @u(1)) =0, where 1 = +1. teR

d) Equation (q) possesses two equal (real) characteristic multipliers relative to the
dispersion X and there exist independent solutions u, v of (q) for which (4) holds exactly
if there exists an integer n such that X(t) = ¢,(t) for te R.

Proof. a) According to Theorem 1 equation (q) relative to the dispersion X
possesses complex characteristic multipliers iff there exists a phase a of (q), an
integer m and a number a, 0 < a < 1: a[ X(?)] = a(t) + (a + 2m) =. It holds further
[ Pam. signa()] = a(t) + 2mn, a[ @2+ 1)signa(t)] = 2(t) + (2m + 1) n. Therefore
U Pom. signaft)] < A[XO] < [ @2my 1ysigna )] If sign o = 1, then @) <
< X(t) < @ym+r(t). If signa’ = —1, then ¢_,,_1(t) < X(t) < ¢_,.(t). Suppose
now that there exists an integer n such that ¢,_(t) < X(t) < ¢,(t) for t € R. Then (q)
relative to the dispersion X has no determined number and by Corollary 5 the
characteristic multipliers of (q) relative to the dispersion X are complex.

b) It follows from Theorems 2 and 3, from Lemma 3, from Corollary 2 and from
the fact that (q) relative to the dispersion X, sign X’ = 1 possesses two different real
characteristic multipliers exactly if X'(x) # @4(x) in numbers x (of type n) of (q)
relative to the dispersion X.

¢) It follows from Corollary 7.

d) It has been proved in Lemma 5.

Corollary 8. Let o be a phase of (q) and X = o™ 'ea(e € €) be a dispersion of (q).
Then:

a) Equation (q) possesses complex characteristic multipliers relative to the disper-
sion X iff there exists an integer n such that (n — 1) n <signa' . (e(t) — t) <n=m
forte R

b) Equation (Q) possesses two equal (real) characteristic multipliers relative to the
dispersion X and there exist independent solutions u, v of (q) for which (5) holds iff
there exists an integer n such that e(t) #t + nn.signa’, signe’ = 1 and min tx
x(e(t) —t — nn.signa’) =0, where t = +1. teR

c) Equation (q) possesses two equal (real) characteristic multipliers relative to the
dispersion X and there exist independent solutions u, v of (q) for which (4) holds iff
there exists an integer n such that &(t) =t + nn .sign o’ for teR.

d) Equation (q) possesses two different real characteristic multipliers relative to the
dispersion X iff either sign&’ = —1 or sign ¢’ = 1 and if there exists an integer n such
that the function &(t) — t — nn . sign o’ changes its sign on R.
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Proof. Let a be a phase of (q) and X = a™'ex (¢ € €). Then o(¢) = a~*(a(t) +
+ 7. sign &) is the basic central dispersion of (q) and @,(t) = a~'(a(t) + nn.sign a’).
We have next sign ¢’ = sign X’ and X(x) = ¢,(x) iff e(x;) = x; + nn.sign a’, where
x; = a(x). Corollary 8 immediately follows from Theorem 4.
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