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ON ZEROS OF SOLUTIONS
OF THE DIFFERENTIAL EQUATION

y +fty)g(»)=0

MIROSLAV BARTUSEK, Brno
(Received August 24, 1978)

1. Consider the differential equation
¢)) ‘ V' + f(t, ) g0) =0

wherefe C'(D), D = {(1,y) : te[a, ),y e R}, f(t,y) = —f(t, —y)inD,f(t, ) y >
>0fory # 0, ge Cy(—o00, ), g(v) > 0 for ve R.

A non-trivial solution y of (1) is called oscillatory if there exists a sequence
of numbers {,}7 such that a < # < t,,q, 1) =0, p(t) # 0 on (%, tisy)s
k=1,2,3,..,lim¢t = o holds.

k—>0
In all the paper we shall omit the trivial solution y = 0 from our considerations.
Let y be an oscillatory solution of (1) and {#}7 the sequence of all its zeros. Then
there exists exactly one sequence of numbers {7,}{ called the sequence of extremants
of y, such that t, < 17, < 4+, ¥'(tx) = 0 holds and

(2 f(ta J’(t)) y,(t) > 0 on (tlu Tk)’
) £ YO Y@ <0 on (e, tesr)

(see [1], [2]).

Put 4=t —t;, ;=T —t;, Vi=te, — T i=12,3,..., Dy =
={t,y):(t, e, y20}, Dy={(t,y):(t,y)eD,y > 0}. Thus 4, =26; + y;.
Our aim lies in finding conditions under which the sequence {4;}{ is monotone.
This problem was studied e.g. in [3], [4]. The necessary results of [3] are stated in the
following :

‘ d
Theorem 1. Let y be an oscillatory solution of (1) and let —-1f(t))| <0
0
9 >
(6t [f&y)] 2 0)-
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() If gv) = g(—v) forve R, then 6, <y, 6, Z Wk =1,2,3, ... and
Iyl 2 1yC1 Ayl 2 1xC))D),

where t e [exs tes 1], te [tk+1a Wi ), 1Y COL = 1YCO I

(i) ]f.a?_ f(t,y») 20in D, ;}—)— f(t, y) is non-increasing with respect to y in D, ,
y

-;; G, y) is non-increasing (non-decreasing) with respect to t in D, then
WS her 2 6&e), k=123, ..
If, in addition, g(v) = g(—v), ve R, then
4, £ 4,4, Uy = Asy), k=1,2,3,..
Bihari [4] deals with the differential equation
€)] Y+ h@® () gy) =0

where he C'[a, ), fe C'(R), ge Co(R), f()) y >0 for y#0, h>0, g> 0,
S = —f(—y). He proved that {4,}7 is non-increasing under the more restrictive
assumptions (as in Theorem 1) on the functions g and h and under the different
assumptions on the function f.

2. Now, we prove the monotonicity of {4,}T under less restrictive assumptions

on % considered as the function of y.

Theorem 2. Let y be an oscillatory solution of (1) and suppose that g{ <0inD,,
of
foy
and
1
7

Then yy < 8341,k =1,2,3, ...
If, in addition, g(v) = g(—v), vER, then A, £ Ay+1, k =1,2,3, ...

1s non-increasing with respect to y in D,

of . . . . .
—‘% is non-increasing with respect to ¢ in D,.

Proof. Denote by !#(y') *#(¥')) the inverse function to y'(r), te€ [y, tis1]
(1€ [te41> Te+1))- These functions exist because y'(f) = 0<> y(f) = 0<> 1 = f,,, on
[, t,,“]. Suppose that y'(f) > 0 holds on (7, T+ 1)- If ¥'(£) < 0, the statement can
be proved similarly. Then y(r) < 0, f < 0, y"(t) > 0 on [, f4,), ¥(t) > 0, f > 0,
Y'(®) < 0on (tys1s Tas f] (use (2)). By use of fbeing odd with respect to y the following
estimation holds for ' e J = [0, ¥'(t4,)]

A}
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d {Iy’(‘t)l _ Iy"(’t)l}=
dy' U g g(y")

- .97 {1 £Ct yC0)| = £Ct, y(P0)} =
dy

_ 0 1 1 1 .V' 0 1 1 _
T OO0+ e 1)
O ) - —2— 2 ) <

yn(Z‘) at y"(zt) ay =

_;y_ 1¢61CD)0) % 10t C9)
YD) - y'C1)
a 1 1 a 2 2

B y: E‘f( t’ly( t)') 'a"j','f( try( t))

+
g0y 76 1y(01) (3, y'Cr)

As | y(*1) | £ y(*1) holds according to Theorem 1, we can see that —Ea—'— Go) <@
y

IIA

y' -

1781 ’ (2 ’
on J and G()'(tx+,)) = 0 where G()') = PA t(’y )| - |y ( t(:v )| . From this
g(y") g(y")

G(') =0,y €Jand
@) yinzyenl, yed
Consider two functions z,(y") = ty+, — (¥), 2200") = 2()') — ty+1,¥ € J. Accord-
ing to (4)
d 1 1
————I— [Zl - 22] == » - ”
dy yin ¥y
Thus z, — z, is non-decreasing and with respect to z,(y:) = 2,(y') = 0 for y' =
= )'(tx+,) we can conclude that z; < z, and the first part of the statement y, < &,,,

is proved. The rest follows from this and from Theorem 1

=0, V' €[0, y'(t+y)).

Ay = P+ 0 S Op41 + M S Vir1 + Okv1 = 4y

The theorem is proved.
The following theorem can be proved similarly to Theorem 2.

Theorem 3. Let y be an oscillatory solution of (1) and suppose that _git =0in Dy,

of . L .
— —f‘ is non-increasing with respect to y in D,

S oy
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and

1 of . . . .
— —— is non-decreasing with respect to t in D3z-

T 3y g 4

Theny, = 6,1,k =1,2, ...

If, in addition, g(v) = g(—v), ve R, then 4, = Ax+1, k= 1,23, ..

Corollary. Let y be an oscillatory solution of (3) and let H'(t) =0 (H(t) 2 0) for
t € [a, o0).

(i) If g(v) = g(—v), vER, then §, < 7, G Z W), k=1,2, ...

@) I £0) >0, ye R and L)
Ok 2 8¢41), k=1,2,3,... If, in addition, g(v) = g(—v), vE R, then A, < A1y

U2 ) k=1,2,3, ...

is non-increasing for y > 0, then y, < 44y
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