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ON ZEROS OF SOLUTЮNS 
OF THE DIFFERENTIAL EQUATЮN 

y" +f(t,y)g(У) = o 

MIROSLAV BARTUŠEK, Brno 

(Received August 24, 1978) 

1. Consider the differential equation 

(1) y*+/(',y)g(y') = 0 

wherefe C\D)9 D = {(/, y):te [a9 oo), y e R}9f(t9 y) = -/(*, - y) in D,f(t9 y)y> 
> 0 for y # 0, g e C0(- oo, oo), g(v) > 0 for v e R. 

A non-trivial solution y of (1) is called oscillatory if there exists a sequence 
of numbers {tk}f such that a ̂  tk < tk+i9 y(tk) = 0, y(t) ^ 0 on (th9 tk+i)9 

k = 1, 2, 3, ..., lim tk = oo holds. 
* - * o o 

In all the paper we shall omit the trivial solution y = 0 from our considerations. 
Let y be an oscillatory solution of (1) and {tk}f the sequence of all its zeros. Then 

there exists exactly one sequence of numbers {TJJ0 called the sequence of extremants 
of y9 such that tk < xk < tk+l, y'(T*) = 0 holds and 

f(t,y(t))y'(t)>0 on(tk9Tk)9 
( ) f(t,y(0)y'(0<0 on(Tk,tk+1) 

(see [1], [2]). 
Put Ai = t,+t - ti9 St = Xi - ti9 yt = ti+l - xi9 i = 1, 2, 3, ..., Dt = 

= {(t,y):(t,y),e^,j = 0}, D2~{(t9y);(t9y)eD9y>0}. Thus J f - *, + y,. 
Our aim lies in finding conditions under which the sequence {Ai}f is monotone. 
This problem was studied e.g. in [3], [4]. The necessary results of [3] are stated in the 
following 

Theorem 1, Let y be an oscillatory solution of (1) and let -jr~-\f(t9y)\ SO 

( 4 - I A ^ ) I Ž O ) . 
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(i) Ifg(v) * g(-v)for veR, then 8k S yk (<** ^ ?*) & ~ 1, 2, 3,... and 

\y(lt)\^\y(2t)\ (\yet)\^\y(2t)\), 

where lt e [T*, * f c + 1] , 2t e [/fc+1, Tfc+1], | y'(H) | - | /(2f) |. 

(ii) jf ~^.f(t,y) J> 0 /it D, -*— f(t,y) is nonnncreasing with respect to y in Dx, 
oy vy 

~z—f(t,y) is non-increasing (non-decreasing) with respect to t in Dt, then 

?* = <5*+i (r* = <5fe+i), fc= 1,2,3,... 

//*, in addition, g(v) ~ g(-v), ve R, then 

Ak<Ak+1 (Ak^Ak+s), k= 1,2,3,... 

Bihari [4] deals with the differential equation 

(3) f + h(t)f(y)g(y')~0 

where he Cx{a, oo), fe Cl(R), geC0(R), f(y)y>0 for y * 0, A > 0, g > 0, 
f(y) ss —/(—>>). He proved that {-4fc}? is non-increasing under the more restrictive 
assumptions (as in Theorem 1) on the functions g and A and under the different 
assumptions on the function / . 

2. Now, we prove the monotonicity of {Ak}f under less restrictive assumptions 

on ~̂ L considered as the function of v. 
dy ' 

Theorem 2. Let y be an oscillatory solution of (1) and suppose that —- ^ 0 in Dx, 

1 3f . • • . , . ^ 
_ . ^ |S non-increasing with respect to y in D2 

and 

i /}/* 
— ~-~ is non-increasing with respect to t in D2. 

I%e«yfc = <5fc+1, k = 1,2,3, ... 
If in addition, g(v) = g(—v), t; e J\, then Ak <; _dft+i, k = 1, 2, 3, ... 

Proof. Denote by lt(y')(2t(y')) the inverse function to y'(t), te{tk, ffc+1] 
(/ € [rfc+1, Tfc+1]). These functions exist because y"(t) = 0 <» y(t) = 0<=> f = fk+1 on 
[Tfc, Tfc+1]. Suppose that y'(t) > 0 holds on (xfc, Tfc+1). If y'(t) < 0, the statement can 
be proved similarly. Then y(t) < 0, / < 0, y\t) > 0 on [Tfc, tfc+1), y(t) > 0, / > 0, 
y"(t) < 0 on (tfc+1, Tfc+1] (use (2)). By use of/being odd with respect to y the following 
estimation holds for yeJ- [°>y'('*+i)] 
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fi/Co i i/ 'Coi |_ 
' I g(y') g(y') i 

^---гílЛЧ^I-ДЧ^O)}-
d>-

- T Ӣ J - S - I Л ^ ^ I - ^ І Л Ч ^ S 

Š У 
-ӯ/CM^OI) ^гД2'-X20) 

YVO Yтo 

-Ł_A 
g(Y) 

-^-/CUtfOI) -gftft.yfO) 

/(Ч|y(łOI) f(2t,y'(2t)) 

As | X1 ') I = y(2t) holds according to Theorem 1, we can see that —— G(Y) g 9 
By' 

on / and G(/(tk+r)) - 0 where G(y') = I A *00) I _ 1/'( <(/)) I F f o m t h i & 

gOO g(Y) 
o(/) = 0, / e / a n d 

(4) YT0 <z | Y ( 2 0 1 , Ye/-

Consider two functions z, (/) = tt+1 - 1t(y'),z2(y') -= 2/(Y) - /n+i,/6 7. Accord­
ing to (4) 

dy 
7 Þ i " 2 2 І = 

YTO Y(20 
ŽO, Yє[0,/(íł+1)). 

Thus zA — z2 is non-decreasing and with respect to zt(y') = z2(y') = 0 for y = 
= y'(tk+j) we can conclude that ̂  ^ z2 and the first part of the statement yk «£ <Jk+1 

is proved. The rest follows from this and from Theorem 1 

Ak = yk + $k £ <5*+i + yk ̂  y*+i + <5*+i = J*+ 1 . 

The theorem is proved. 
The following theorem can be proved similarly to Theorem 2. 

Theorem 3. Let y be an oscillatory solution of (I) and suppose that --r-- 2> 0 in Dt p 

1 3/ . . 
_ __^ |5 non-increasing with respect to y in D2 f oy 
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and 

1 df . . . 
— -=— is non-decreasing with respect to t in D%-
f cy 

Thenyk ^5k+uk~ 1,2, ... 
If in addition, g(v) = g(—v), v e R, then Ak =" Au+i, k — 1, 2, 3, ... 

Corollary. Let y be an oscillatory solution of (3) and let h\t) g 0 (h'(t) =• 0) for 
t e [a, oo). 

(i) Ifg(v) = g(-v), v e i*, *he« dk = Tfc (5, g )>*), fc = 1, 2, ... 

(ii) Jff'(y) > 0, yeR and ^QL (s non-increasing for y > 0, then yk ^ 8k+i 

(7k ^ <5*+i), k = 1,2,3, ... If, in addition, g(v) * g(-»), ^eK, *hew zik ^ Ak+i 

(Ak^Jk+1)9k= 1,2,3,... 

R E F E R E N C E S 
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