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PERIODIC SOLUTION OF CERTAIN SECOND 
ORDER DIFFERENTIAL EQUATION 

B. MEHRI, Tehran 

(Received February 7, 1978) 

I N T R O D U C T I O N 

Consider the equation 

* + E/i(*) * + /o(*)] /(*') + *(*) - 19(f). (1) 

We assume that/0(*)>/i(*)>/(*')> g(*) and/KO a r e continuous and that they are such 
that the initial value problem for (1) has a unique solution. Furthermorep(t) a periodic 
function of t with the least period co9 \p(t) | ^ 1, and /z is a nonnegative constant. 
In the first part of this note it will be shown that if the functions involved in the 
equation (1) satisfy some local conditions given as below, then there will exist at 
least one periodic solution of period ca. In the second part, we shall consider i3xt 
equation (1) with /i = 0 and prove the existence of at least one stable limit cycle. 
The method which is used here is similar to [1] and [2]. The result obtained is i t 
fact a generalization of the result obtained in [2]. Furthermore we prove the existence 
of periodic solutions for the inonautonomous case (/i # 0) which is not included 
in [2]. It is interesting to note the class of differential equations of the form (1) inclu­
des generalization of such well known differential equations as Lienard and Rayleih 
equations H * 

§ 1: In the sequel we use the following notations; 

G(x)=Jg(s)ds, F^-^expCj/^ds), f 

0 0 

F(x) ^iF^s) f0(s), L,(x) = }A((s)d5, 
0 0 

ф) = FQc) - Ш, RJІx) = ГAЛ,'ГÜ Ф), Ф) - ф,) ; 
F\(x). 
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,/,(» « *%'*** fx(s) + fo(x):xeial,a2] (i - 1,2), 

H.W - - / ( F ) + * ^ [ r i ( g ^ ' 2
r ; ( g 2 ) , o], 

H-OO - /(,) - * ye[o, ^ " ^ ] • 
Here ag and Aj(x) (i = 1,2) are respectively, real numbers and piece-wise continuous 
functions occuring in the conditions of the following theorem. 

Theorem 1. Assume that there are numbers a4 and a2, at < 0 < a2> and functions 
X£x) ^ 0 (i = 1, 2) such that 

i) xg(x) > 0 
ii) R2(x) £ g(x) - ii < 0, Rt(x) £ g(x) + fi; 

xe[a l f0), xe(0,a2] 
iii) rt(x) > rt(ax); xe(a%90], r2(x) < r2(<x2); xe[0,a 2 ) 
iv) sign Vt(x). sign Ht(y) £ 0 (i = 1,2). 
Then (1) has at least one periodic solution of period co. 

Proof. Equation (1) is equivalent to the following system 

x- ~y 

r =/>(') - [fi(*)y +/o(*)]/(y) - *(*)• (2) 
In order to prove the existence of at least one periodic solution, we shall construct 
certain region in the phase plane appropriate to the application of Brouwer's fixed 
point theorem. 
The outer boundary r1 of the region will consist of four simple arcs joining the points 

м. «2 

ri(ai) - r.(a2) 
м2 

«1 

o 
fi(«2) ' 

м2 

V 

м3 
« i 

r2(«2) - r2(a«.) 
м4 

«2 

o 
ŕi(«i) ' 

м4 

w 

iđer tћe following aгcs (see Fig. 1) 

MүMг : -vВД + Ы*) - ri(«i). faśxй я2) 

MгM3 :x =>ait (ľžO) 

M3M4 : yFt(x) + r2(x) - r2(o2), («, g x š «2) 
jß/̂ :*-- « Í » 0 vѓO) 
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Calculation shows that the phase trajectories of (2) intersect the closed curve 
JTi : MXM2M^MAMX [which surrounds the origin by virtue of (ii)], crossing it from 
the outside inward. In fact, the total derivative with respect to the time of the function 

1S 

*i(*. y) - yFitx) + r.(x) = c (c < 0) 

-^-5.(x, y) = Fi(*)-^f + 0/i(*) • F.(x) + F.(x)/0(x) - A.(x))-^ -

- F.(x) O ~f(y)l ífo(x) + _v/,(*)] + F.(x) {jtff) - g(x)} - Wx)y. 

Since 
y. F.(x) + r.(x) = r.(a.) 

4 " Ji(*' -v) - F i W • Hi(y> ".(*) + F i W • Í^J<0 - *(*)> - *i(«) • r i (gF.7x) r i (x) 

which implies 

1 _d_ 
F,(x) ' d. s.(x, y) = //.(>>) . t..(x) + R.(x) - {g(x) - /ip(0} 

which by conditions (i) and (iii) is nonnegative. But since increasing C corresponds 
to the passage from exterior curves of the given family to interior curves, this means 

that the phase trajectories cross the arc MtM2 of rt inward. Moreover, the fact the 

trajectories of the differential system pass inside rt across the arc M2M$ follows 
directly from the first equation (2), since x' > 0 in the upper half-plane in this case. 

The behavior of the trajectories on M3M4 and MAMt is investigated similarly. 
Finally, if Q denotes the region of the xy-plane enclosed by Tt, then with every point 
P(xo* yo) 6 G we can associate the solution of (2) which satisfies the initial conditions 
x(0) « JC0 , y(0) w* y0. In conjunction with this solution, let p'(x%, yt) be point defined 
by xx =- x(co)9 yt =- y(co)9 with co the least period / of p(t). The transformation T 
mapping p e Q in to p' is defined and continuous in Q. In addition, it satisfies 
T(Q) cz Q. Hence by Brouwer's fixed-point theorem, there is at least one point 
(x9y)€Q such that for the corresponding solution [x*(t\ y*(t)2, we can write 
x*(co) » x*(0) « x9 y*(co) =- y*(0) « y. Furthermore, this solution must for t > m 
trace the same path as for 0 ;g t £ co9 since the oi-periodicity in t of p(t) implies 
that (1) is invariant under the translation / - > / + £». The solution [x*(t)9 y*(t)2 is 
therefore, co periodic, which concludes the proof. 

(At): Gfcpsider the Vander-Polefs equation 

JEW 1 x" + (1 - xz)x' + -ş-X •* e cos U 
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Here we assume fi(x) = 0, f0(x) = 1 - x2, f(x') = x', then we have Ht(y) = 

- ffiiy) - 0, F(x) - x - y x 3 , let kt(x) = k2(c) = A and «, = - 1 , oc2 = 1 , 

'i(*) - r2(x) » y (x - x3), then * t(x) = y|~x - x3 + AypLj and R2(x) = 

= ~ J x — x3 ^— , it follows that for appropriate values of e, say 0 < B < 

< ~ ^ p - , we have for all xef 0, — , —x + B < — ix - x3 + > j , and for 

all x e ( - - ^ L , 0 , y ( x - x3 - —K^-J S y * - e that is the conditions of 

Theorem 1 are satisfied. Hence equation (3) possesses at least one periodic solution 
of period 2%. 

(A2): Consider the equation 

x" + x' + X3 = B cos /. (4) 

Assumingf0(x) = 0,fA(x) = l,f(x') = x', we have H,(y) = H20) = 0, F0(x) = 1, 

F(x) = x, let ^(x) = A2(x) = — and ar = - —, a2 = y we have rt(x) = r2(x) = 

as —x and Rt(x) = — I x + — J, R2(x) = —I x — y ) , it follows- that for ap-

propriate values of e say 0 < s < —~, we have — f x —— ) < x2 — B for all 

r i _\ . * i / i \_ 
XG • I — —, 01 and x3 + B < — ix + — J for all x eI 0, —) i.e. the conditions 

of Theorem 1 are satisfied. Hence equation (4) possesses at least one periodic solution 
of period 2n. , 

(A3): Consider the equation 

[ 4x3 1 1 

———x' + x4 - 1 x' + —X = B cos t. (5) 
* +1 J 9 

Assuming At(x) = A2(x) = 1, and at = —2, a2 -= 2, with a Simple calculation, we 

obtain F^x) = x4 + 1, F(x) = — x9 - x, r%(x) = r2(x) = y x9 - 2x, i?£(x) = 
l ( x 9 + 29) - 2(x + 2) l ( x 9 + 29) - 2(x - 2 ) 

and R2(x) = , if follows that (*4 + l)2 (*4 + l)2 , ,, . 
29 ^ ^ 

for appropriate values of e say 0 < B < — 4, the conditions of Theorem 1 are 
satisfied. Hence equation (5) possesses at least one periodic solution of period 2#. 
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(A4): Consider the equation 

x" + (x2 + l)(i - x'2) + x = ecosr. (6) 

Assuming Xt(x) = k2(x) = y , and aA = - 1 , a2 = 1, / = 0 f0(x) = 1 + x2. The 

Ft(x) -= l, F(x) = x + - Ix 3 , we obtain #•-.(*) = r2(x) = ~(x3 + x), /^(y) « ~y3» 

#2(y) = y3, ri(x) = r2(x) = (*2 + 1), Rt(x) = j(x3 + x + 2) and *2(x) = 

2 
= -j (x* + * - 2). Obviously sign (t\(x)). Sign (Ht(y)) > 0 for 7 < 0 and 

sign (v2(x)). sign (H2(y)) > 0 for y > 0 also for appropriate values of e, say 0 < 
22 

< e < _ ? the conditions of Theorem 1 are satisfied. 

§ 2. In this section we assume f,i = 0, and then we have the following theorem. 

Theorem 2. If, in addition to (i)—(iv), we assume that 

(v) yf(y) > 0 
(vi) /o(0) < 0, 

then (1) has at least one stable isolated periodic solution in the strip [pcl, a2]. 
Proof. We define 

* j ) = y .v2 + G(x). 

Then in view of condition (i), v(x, y) is locally positive definite at (0,0). Hence the 
curves v(x, y) = C, with C > 0 sufficiently small are closed, enclose the origin, and 
are completely contained in the neighborhood U of the origin where /0(0) < 0. 
Moreover, the curve v(x, y) = C2 encloses the curve v(x, y) = Ct if and only if 
C2 > Ct. Differentiating (7) and using (2), (jx = 0), we obtain 

^ = - yfw D/i (*) + /o(*)3- O) 

It follows from Condition (VI) that for points in the neighborhood U of the origin 

with boundary F2, we have — > 0. Hence trajectories of (2) cut F2 from the outside. 

Thus, by virtue of Poincare* —Bendixon theorem, the annular region bounded by rt 

and F2 contains at least one stable limit cycle of (2), and the theorem follows. 

(A5): Consider the equation 

x"+(lx2-±\x' + x = 0, (8) 
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taking f0(x) « 0, ft(x) = 3x2 - ~ and f(x') == *', we obtain F0(x) = 1, F(x) « 

s x 3 - i , let Xt(x) as A2(x) =a _ and a t = — 2, a 2 = 2 we obtain Rt(x) =-

«s —(x 3 — x 4- 6) and JR2(x) = ~ ( ^ 3 — JC — 6), that is the conditions of theorem 2 

are satisfied hence equation (7) possesses at least one stable limit cycle. 
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