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INTRODUCTION 

Let S # 0 be a set. Then a mapping ~: exp S -* exp S with properties 

I.ASS=>AGI, 

II. A, B g S, A g B => A g 5, 

is usually called a closure operator. A set A. g S such that _1 -= ,4 is a closed set. 
A system Q g exp S is a closure system if to every set A g S one closed set A e (2 
co-ordinates. A set S with a closure system fi is called a closure space (S, Q). We shall 
denote by s = {J }, for s e S. 

Let (S,.) be a grupoid. Then a closure operator ~: exp S ~* exp S with properties 

III. ,4 g S=>S.ATu J . S g J , 

IV. ,4, £ g S=> .4 . 5 u I . B g At. B, 

is called art idea/ operator. A set AI g S such that ji == A is an idea/. A system 
Q g exp S is an /dea/ system for an ideal operator ~ on S, if to every set A g S 
one ideal AsQ co-ordinates. A set S with an ideal system Q is called an ideal space 
(S,.,Q). 

This conception of ideals is taken over [1]. Associativity and commuta^vity of 
operation . on S, that are usually supposed, are not necessary in this paper. The 
ideals defined above are a generalization of many systems of ideals in algebraic 
structures, for example ideals in rings, semigroups, distributive lattices, normal 
subgroups in groups, convex subgroups in lattice-ordered groups. 

Of course, it depends on a suitable choise of operation. on corresponding algebraic 
structures. 

The following problem is investigated in the paper: Let Q be a closure, system 
on a non-empty set S. What conditions has an operation . on S to fulfil so that £1 
is an ideal system on a grupoid (S,.)? 
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Results of the paper are concerned with that problem and special cases of ideals 
fulfilling condition a.b = ar\B(a.b = a.B9 resp.), for a9be S9 so called ideals 
of intersection (product, resp.) type. 

In § 1. there are some conditions equivalent to III. and IV. from definition of ideal 
system. § 2. contains results about ideals of intersection and product types. Most 
results are concerned with ideals of intersection type—for instance uniqueness of 
operation ., distributivity of Q. 

§ 1. IDEAL SYSTEMS 

Proposition 1.1. Let (S9.) be a grupoid and ~: exp S -> exp S be a closure operator 
on S. Then the following assertions are equivalent: 

1.A&S=>S.ÁKJÁ.S&I9 

2. a,beS=> a.b Qi ánb. 

3. A9BglS=>A.B&ÁnB9 

A.A,B^S^>A.B\JA.B^AC\B9 

5. A9Bg:S=>A.B&lr\B. 

Proposition 1.2. Let (5,.) be a grupoid and ~: exp S -» exp S be a closure operator 
on S. Then the following assertions are equivalent: 

l.A,BşS=>A.BvÄ. BяA.B, 

2.A,B£ S=>Ä.BшA в, 
Ъ.A,B<zS=>A.B = Ä B = A.B, 

4.A,BşS=>Ä.B = A .B. 

Further, if we đenote 

5. a%b9 ceS=>a.B&a.b9 a . (5 u c) g a . 5 u a. c> then 1. implies 5. In the 
closure system Q defined by a closure operator ~ is a closure system of finite character, 
then also 5. implies 1. 

Remark. A closure system of finite character is in the sense of [2], i.e., A g S => 
=> A = U {N: N s A9 card N < K0}. 

Proof of 1.2. Implications 1. => 2. => 3. => 4. => 1. are clear. The implication 
l.s->5. follows from [1], Th. 1., AoC: A . B g ITBOA . (B V C) s A . B V 
V A . C, where A V B = A u B. That equivalence can be proved by the method of 
Aubert's proof without associativity and commutativity of the operation .. 
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If Q is a closure system of finite character, then for \/t = {N g B: card N < H0} 
we deduce from 5.: 

A . S = A . U {N: Ne ^} = U {a. U {nliV?..., ***} : N -

* {*iw» . . . ,n k N } ,Ne^ ,a6^} g U{a.({n1N}u ... u {»kN}):N* 

= {niN, ...,nkN},Neil/,aeA} g U {a. (niN u ... ufikN):N~* 

= { % , . . . , % U 6 ^ , a 6 i } g U { f f . » w u . . . u « . ^ } : # * 

= { % . , . , % } , i V 6 ^ a 6 ^ g U{aT7i1Nu ... utfT/i**} :iV = 

= {nlN,...,nkN},Ne\//,aeA} = U {a. niN,..., a . nkN} : N m 

= {nlN, ...,nkN},Nei//,aeA} = U {a. {n1N,..., **#}} : N = 

= {n1N,...,nkS},Ne^,aeA} = U { Z N : N6^} g iTfi . 

Corollary 1.3. If Q is a closure system of finite character defined by a closure 
operator ~ on a grupoid (S,.), then Q is an ideal system defined by an ideal operator ~ 
iff it holds: 

a, b, ceS=>a.B&a.bg>ar\B, a. (B u c) & 3, B v a . c. 

Proposition 1.4. Let (S, Q) be a closure space and . be an operation on S with the 
property A. S u S. A c A9for A S S. Then it holds: 

l.IfOeS is a zero, then OeUQ. 
2. U Q = {s} iff there exists an element se S such that § = {s}. 

Further, an element se S with the property $ = {s} is unique and it is a zero in (S,.). 
Proof. 1. 0 = a. 0 e A, for every A g S and a e A. 2. U Q = {s} => J g UO => 

=>s = Ufl = {s} and on the other hand i = { 5 } = > ^ J S I - = {s}$ for every ge 
€ S => g. s = s (and s.g -* s9 similarly), for every g e S => s is a zero In S => J =-
= s. a € s. Z £ A[, for every 4̂ £ S and fle.4=>56UC=>Ufl = l = {5}. 

§ 2. HDEALS OF INTERSECTION AND PRODUCT TYPE 

Definition 2.1. Let (S,., Q) be an ideal space. If for every a, be Sit holds 
# 

(I) a. b = a r\ B, 
(P) a.b = a.6, respectively, 

then ideals from fi are called ideals of intersection type (I-ideals), ideals of product 
type (P-ideals), respectively. 

If an ideal from Q is an ideal of intersection type and product type, then it is 
called an IP-ideal. 
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Proposition 2.2. Let (S, ,fQ) be an ideal space. Then the following assertions are 
equivalent: 

1. Ideals from Q are IP-ideals. 

2. seS*>ses.$. 

3. seS*>$ = $.$. 

4 J c S - > I = I J . 
5. A,BgS=*>A.B = AnB. 

Proposition 2.3. Let (S9., O) be an ideal space. Then it holds: 

1. If every ideal from Q is an IP-ideal, then S. A = A, for A £ S. 

2. If A = S. A u -4, for .Acs, then every ideal from Q is a P-ideal. 

Proof. 

\.xeA*>xex = xr\x — x.x&S.A=>A^S.A. 

2.A[ = S.A[u .A=>a.5 = ( S . a u {a}) . ( S . J u {&}) =_S. a.S.bv 

va.S.buS.a.bKj{a.b}^S.a.bKj{a.b} = a.b. 

Proposition 2.4. Let (S, .9Q) be an ideal space. Then the following assertions are 
equivalent: 

1. Ideals from Q are I-ideals. 

2. s€*S=>ses.s. 

3. s€.$=>.? = s.s. 

4. Л<-s=>Д = Л.Л. 

Examples. 

1. Ideals in a commutative ring are P-ideals and are $ot J-ideals with regard to 
ring's multiplication. 

2. Ideals in a distributative lattice are JP-ideals with regard to the infimum. 
3. Normal subgroups in a group (G, H-) are neither J-ideals nor P-ideals with 

regard to the operation 

a. b = - a - b + a -f b9 a9beG. 

4. Convex 1-subgroups in a lattice-ordered group (G, +, V, A) are I-ideals and 
are not P-ideals with regard to the operation 

a.b = \a\ A | H a,beG. 

5. Polars in a lattice-ordered group are J-ideals and are not P-ideals with regard 
to the same operation as in the example 4. 
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6. The following proposition is proved in the paper [3]: Let G be a lattice-ordered 
group, At be a convex 1-subgroup in G generated by a set A £ G. Then t: exp G -• 
-* exp G is an ideal operator on G with regard to the operation a. ft = I a I A I ft |, 
for a9beG. Further, as far as Bt is an ideal in G with regard to the operation ., 
that is a subgroup in G, then Bt is a convex 1-subgroup in G. 

Proposition 2.5. Let (G, 4-, v, A) be a lattice-ordered group and. be an operation 
on G defined in the following way: 

a.b = \a\ A|ft|, for a, ft €G. 

Then it holds: A closure operator s : exp G -• exp G w a/i ideal operator with regard 
to the operation . iff the inclusion ^ . 2 A u {geG : 0 £ g £ | a | , for some aeA) 
holds9 for every A £ G. 

Proof. =-: If a€>4,g6G,0 ^ g g | a | , then g = | g | A | a | = g . a € G . y < I £ 
£-4,. 

<=: We prove the conditions HI. and IV. from definition of an ideal operator: 
III. If g € G, a e Ag9 then 0 <; g. a = | g \ A | a | g | a | and G . ̂ , £ Ag. Similarly 
AS.GGAS. 

IV. If xe A . 2?,, then x = | a | A | c |, where a e -4, c e -8,. Further, c e J o r there 
exists an element b e B such that 0 <£ | c | g | ft |. It means that 0 <J x <; | a | A |ft| = 
= a. ft, for a suitable element beB, i.e., x e (A . B)a. Similarly Ag. B £ (A.. B)a. 

Proposition 2.6. Let (S9 Q) be a closure space, QeS. Then (S9 Q) is an ideal space 
with regard to the operation . defined in the following way: 

a . ft = 0, for every a, ft 6 S. 
Further it holds: 

a) Ideals from Q are I-ideals iff A = S9for every A £ S. 
b) Ideals from Q are P4deals iffO = {0}. 
c) Ideals from Q are IPAdeals iffS^ {0}. 

Proposition 2.7. If S is a non-empty set and A = S9for every A £ S9 then ~ iswi 
ideal operator and ideals belonging to that operator are l-ideals with regard to each 
operation on S. Those ideals are P-ideals with regard to an operation . iff S = S. S. 

Remark. If (S9.) is a commutative semigroup, then a mapping m : exp S -* exp S 
such that Am~ S. AKJ A, for every A £ 5, is the smallest ideal operator on S (i.e.9 

for every ideal operator " on S it is Am £ A, for every A £ S). Ideals belonging to m 
are P-ideals and S. A = S. Am9for every AGS. 

Further 9 ideals belonging to m are I-ideals iff for every se S it holds s = s. s or 
there exists I = S such that s = / .s .s. 

These facts follows from [4], Proposition 4.5 and definition of I-ideals and P-ideals. 
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Proposition 2.8. Let (S9 Q9.) be a closure space of finite character formed by 
I-ideals. Then it holds: 

1. Operation . is unique iff for every a9be S it is: 

ag*5=>a.ft = a, b. a = a. 

2. Operation . is commutative and unique iff for every a, be S it is: 

a = Boa = b. 

Proof. 1. =>: If operations . and * on S fulfil suppositions, then a .b = a n B = 
= a * b and a. b = (a. b). (a * *) = a * b9 for a, A 6 S. 

=>: If elements a9be S exist such that d e 5 , a . A # f l o r i . a # a , then we define 
a binary operation * on S in the following way: As far as a g B and a. & # a or 
b. a & a we define a*b ~ a or 6 * a = a, respectively, otherwise a .b ~ a*b9 

for a9beS. To get a contradiction it is sufficient to prove that (£, fl, -*) is an ideal 
space formed by /-ideals: It is a non g 5 => a*b = a. 6 = a n 5 and a g 5 => 
= > a * i = fi = flnj = fli, That fact and Proposition 1.1 (2. o 5.) imply a * b = 
= a . i = a n S 2 a ^ / 5 . 2 a * { . According to Corollary 1.3 we have to prove 
a * (5 u c) g a * 5 u a * c, for every a9b9ce S. 

If x e a * (5 u c)9 then x = j * z, for suitable j> e a, z e 5 u c. If J non g z, then 

x = ^ z = ) / , 2 e a . S u c £ d J u d . c and if j g z, then x = y* z = yea n 

nZ&an(Bvc) = a.(Bvc)Ga.Bua.c~a.Bua.c. Finally, we have 

a * ( 5 u c ) g a . 5 u a . c and now we prove a . 5 u a . c g a * 5 u a - * c : a g f i 

(the case a g c, similarly) = > a * 5 u a * c . 2 { a * f t } u { a * c } = a 2 a . £ u a . c 

and a non g 5, a non g c => a * 5 u a * c 2 {a * b) u {d * c) = {a. &} u {a. c} = 

= a i u f l , c 2 a .Ba .c. 
2. =>:5 = 5=>a = a . t = &.a = ft. 
=>: If operations . and * on S fulfil suppositions, then a. b = flnfi = a * 6 and 

a. 6 = flf * 6, for every a9beS. Finally, a.b~anB~Bna~b.a9 i.e., a. b = 
== 6 . a, for every a9beS. 

Corollary 2.9* Let (S9 Q) be a closure space and. be the unique operation on S such 
that (S, Q,.) is? an ideal space formed by I-ideals. Then it holds: 

1. Ideals from Q are P-ideals. 
2. If. is a commutative operation, then a relation g on S defined in the following 

way: 
a £ b <-> a g 5, for a,be S9 

» 
is a partially order on S and a. b = a A b, for a, be S in (S, 5J). 
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Proof. 1. From 2.8 we have a = a. a and ideals from Q are P-ideals — sec 2.1. 
2. a & a=>a £ a; a £ b9 A ^ d => d c i, 5 g i = > a = fi=->a = fr (see 2.8); 

fl^i,Hc=>(i£{,{cc=>dcc=>o^c. Further, a . 6 € a . d = fltn»5s-> 
= » f l . H o , a .b S b. If c € S exists such that c S a> c £ b9 then c n a .b -» 
= cn(anf i ) = c = > c £ a . £ = > c i ^ a . A . Finally, a. ft = a A ft in (S, «£). 

Proposition 2.10. If(S9 Q9.) w an ideal space formed by F-ideals, then Q is a distribute 
ative lattice with regard to the set-inclusion. 

Proof. From [1], Theorem 1 it follows A . B u C = A . B u A . C, for A9 B9 C £ 

S 5. It implies I A ( 5 V C ) = I n (5 v7 C) = A n ( 5 u cT= 3 n (B u C) =-

= A .~B~uC = ATI? u I7c = (J n B) u (if n C) = (A A J) v (A A C) - see 1.1.. 

Further, I v ( i ! A C ) = I u ( J n C ) = ( I n l ) u ( I n C ) = ( iA .8)V( lAC) . 

Proposition 2.11. Let (G9 +) fte a .group, (<J, O,.) fte an ideal space such that g 
is a subgroup in (G9 +)9for every geG. Then it holds: Ideals from Q are hideals iff 
x + (a. b) 6 (x + U). (x + 5), for every a, ft, x e G. 

Proof. <=: xeanb=>x + a£a9 jc + 5 c 5 = > ( x + a).(x + 5)£5.5=-= 
= a. ft => x + (a . f t ) ea . f t=>xea . f t -~a . f t£ a.ft — a.ft£a.ft--$»dnft£ 
£ a. b => a n b = a. 6, for every a, ft e S, i.e., ideals from Q are I-ideals. 

=>-: x + (a. ft) 6 x + a . b = x + (a n 5) £ (x + 8) n (x + 5) £ x + 5 n 
n x + 5 = (x + â). (x + 5), see 2.4. 
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