Archivum Mathematicum

Yvona Coufalová

Polynomials over the permutation group of three elements

Archivum Mathematicum, Vol. 16 (1980), No. 2, 67--79

Persistent URL: http://dml.cz/dmlcz/107058

Terms of use:

© Masaryk University, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project $D M L-C Z:$ The Czech Digital Mathematics
Library http://project.dml.cz

ARCH. MATH. 2, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XVI: 67-80, 1980

POLYNOMIALS OVER THE PERMUTATION GROUP OF THREE ELEMENTS

YVONA COUFALOVÁ, Brno

(Received March 26, 1979)

The purpose of this paper is to determine the number of all the different polynomials of two variables with all the coefficients equal to the unit of the group, over the premutation group of three elements.

Let us first make a few remarks concerning the above problem. By a polynomial of n variables where n is an arbitrary positive integer over an arbitrary given group $(G,$.$) we generally understand any mapping of the Cartesian product G^{n}$ into G, in the form

$$
a_{0} \prod_{i=1}^{k} x_{1}^{r_{i}} x_{2}^{s_{i}} \ldots x_{n}^{t_{i}} a_{i}
$$

k is an arbitrary positive integer, $r_{i}, s_{i}, \ldots, t_{i}$ are, for $1 \leqq i \leqq k$, non-negative integers, $a_{0}, a_{1}, \ldots, a_{k}$ are elements of the given group, called coefficients of the polynomial; $x_{1}, x_{2}, \ldots, x_{n}$, called the variables of a given polynomial, run over all the elements of the group (see e.g. [1]). To determine the number and the list of all the different polynomials, thus defined, over an arbitrary group seems a rather difficult problem. Trying to solve it, at least a part of it, I proceeded in the following way: first, I determined the number and the list of all the polynomials of n variables whose coefficients equal the unit of the group, over an arbitrary Abelian group with a torsion. The result is given in [2] and proves that the number of all these different polynomials equals the least common multiple of the orders of all the elements of the given group, raised to n. Further, I considered the number of all the different polynomials of one variable with coefficients equal to the unit of the given group, over a non-Abelian group with a torsion. I arrived at the conclusion [3] that the number of all these different polynomials equals the least common multiple of the orders of all the elements of a given group. Furthermore, I considered the number of all the different polynomials of two variables with all the coefficients equal to the unit of the group, over a non-Abelian group of a small order. For that purpose I have chosen the permutation group of three elements, further denoted by $\left(S_{3}\right.$, .) or simply S_{3}.

To determine the number of all these different polynomials is the principal object of this work. The result is presented in Theorem $1, \S 2$. There is also the list of some of the different polynomials in question from which the procedure of determining all these polynomials follows (the complete list is in [4]). The number of all the different polynomials of three variables with coefficients equal to the unit of the group, over S_{3}, is found in $\S 3$; but there is no proof of this formula. The last paragraph of the present paper generalizes the above theory for an arbitrary positive integer n and ends with a formula determining the number of all the different polynomials of n variables with coefficients equal to the unit of the group, over S_{3}; there is no proof of the formula.

Let us add that by a polynomial we mean, throughout the paper, a polynomial over the group S_{3}, all the coefficients of which are equal to the unit of the group S_{3}. The equality of two polynomials as well as the elementary notions concerning the group S_{3} are introduced in $\S 1$.

The problem was suggested to me by RNDr. Milan Sekanina, CSc., to whom I am grateful for valuable advice concerning the present work.

§1. THE EQUALITY OF POLYNOMIALS; GROUP \boldsymbol{S}_{3}

Definition 1. Two polynomials $f\left(x_{1}, x_{2}, \ldots, x_{n}\right), g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over the group S_{3} are equal iff there holds, for any n elements $\alpha_{i} \in S_{3}, i=1,2, \ldots, n$

$$
f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) .
$$

Let us denote the elements of the permutation group S_{3} of three elements as follows:

$$
e=\binom{123}{123}, a=\binom{123}{132}, b=\binom{123}{213}, c=\binom{123}{231}, d=\binom{123}{312}, f=\binom{123}{321} .
$$

For the orders of the above elements there holds: $0(e)=1,0(a)=0(b)=0(f)=2$, $0(c)=0(d)=3$. Let us select, from the six possible pairs of generators of the group S_{3}, for example, the pair a, c. There holds

$$
c a=a c^{2}
$$

from which

$$
c a^{m}=a^{m} c^{2 m}
$$

and therefore

$$
\left(a^{m} c^{n}\right)^{r}=a^{m r} c^{n \frac{2^{m r}-1}{2^{m-1}}} \quad \text { for } m \neq 0
$$

Since a, c are generators of S_{3} and $0(a)=2,0(c)=3$, there holds

$$
\left(\forall x \in S_{3}\right)(\exists m \in\{0,1\})(\exists n \in\{0,1,2\})\left[x=a^{m} c^{n}\right] .
$$

§ 2. POLYNOMIALS $\boldsymbol{f}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ OVER \boldsymbol{S}_{3}

Theorem 1. There exist exactly $6^{2} .3^{3}$ different polynomials $f\left(x_{1}, x_{2}\right)$ of two variables over the group S_{3}.

Proof. From the introduction of the present paper there follows that every polynomial of two variables over S_{3} has the form

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{r_{1}} \cdot x_{2}^{s_{1}} \cdot x_{1}^{r_{2}} \cdot x_{2}^{s_{2}} \ldots \ldots x_{1}^{r_{k}} \cdot x_{2}^{s_{k}} .
$$

Since x_{1}, x_{2} run over all the elements of S_{3}, there holds $f\left(x_{1}, x_{2}\right)=\left(a^{m} c^{n}\right)^{r_{1}}$. $.\left(a^{p} c^{q}\right)^{s_{1}} \cdot\left(a^{m} c^{n}\right)^{r_{2}} \cdot\left(a^{p} c^{q}\right)^{s_{2}} \ldots .\left(a^{m} c^{n}\right)^{r_{k}} .\left(a^{p} c^{q}\right)^{s_{k}}$, where $m, p \in\{0,1\} \wedge n, q \in\{0,1,2\}$.

The values $f\left(x_{1}, x_{2}\right)$ for $m \neq 0 \wedge p \neq 0$, i.e., the following forms of the numbers $22,23,24,28,29,30,34,35,36$ in Table 1, can easily be determined by means of the formula

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=\left(a^{m} c^{n}\right)^{r_{1}}\left(a^{p} c^{q}\right)^{s_{1}} \ldots\left(a^{m} c^{n}\right)^{r_{k}}\left(a^{p} c^{q}\right)^{s_{k}}= \\
=a^{m \sum_{1}^{k} r_{i}+p_{1}^{k} s_{i}^{k}} \cdot c^{\mathbf{E X P}_{k}},
\end{gathered}
$$

where

$$
\begin{aligned}
& +\frac{q}{2^{p}-1}\left(2^{m \stackrel{k}{\stackrel{K}{2}} r_{i}+p \stackrel{k}{\stackrel{k}{2}} s_{i}}-2^{m \stackrel{k}{\Sigma} r_{i}+p \stackrel{k}{2} s_{i}}+\ldots+2^{p s_{k}}-1\right) .
\end{aligned}
$$

Thus we get, on the whole, the following possibilities of the values of the polynomial $f\left(x_{1}, x_{2}\right)=a^{\operatorname{Exp}_{f a}} \cdot c^{\mathrm{Expfec}}\left(\right.$ we write only the exponents $\operatorname{Exp}_{f_{a}}, \operatorname{Exp}_{f_{c}}$):

Table 1

m	n	p	q	$\operatorname{Exp}_{f_{a}}$		$\operatorname{Exp}_{f_{c}}$
1	0	0	0	0	0	0
2	0	0	0	1	0	$\sum_{1}^{k} s_{l}$
	0	0	0	2	0	$2 \sum_{1}^{k} s_{l}$

Table 1 (Vorsetzung)

Table 1 (Vorsetzung)

	m	n	p	q	$\operatorname{Exp}_{f_{a}}$	$\operatorname{Exp}_{f_{c}}$
19	1	0	0	0	$\sum_{1}^{k} r_{t}$	0
20	1	0	0	1	$\sum_{1}^{k} r_{t}$	$s_{1} \cdot 2^{\sum_{2}^{k} r_{i}}+s_{2} \cdot 2^{\sum_{3}^{k} r_{i}}+\ldots+s_{k}$
21	1	0	0	2	$\sum_{1}^{k} r_{1}$	$2 \cdot\left(s_{1} 2^{\sum_{2}^{k} r_{i}}+s_{2} 2^{\sum_{3}^{k} r_{i}}+\ldots+s_{k}\right)$
22	1	0	1	0	$\sum_{i}^{k} r_{i}+\sum_{i}^{k} s_{i}$	0
23	1	0	1	1	$\sum_{1}^{k} r_{i}+\sum_{i}^{k} s_{i}$	$2^{\frac{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{i}}{\sum_{2}}}-2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} s_{i}}+2^{\sum_{3}^{k} r_{i}+\sum_{2}^{k} s_{i}}-\ldots-1$
24	1	0	1	2	$\sum_{1}^{k} r_{t}+\sum_{1}^{k} s_{l}$	$2 \cdot\left(2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{i}}-2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} s_{i}}+\ldots+2^{s_{k}}-1\right)$
25	1	1	0	0	$\sum_{1}^{k} r_{t}$	$2^{\sum_{1}^{k} r_{i}}-1$
26	1	1	0	1	$\sum_{1}^{k} r_{l}$	$2^{\sum_{1}^{K} r_{i}}-1+\left(s_{1} 2^{\sum_{2}^{K} r_{i}}+s_{2} 2^{\sum_{3}^{k} r_{i}}+\ldots+s_{k}\right)$
27	1	1	0	2	$\sum_{1}^{k} r_{t}$	$2^{\frac{\sum_{1}^{k} r_{i}}{}-1+2 \cdot\left(s_{1} 2^{\sum_{2}^{k} r_{i}}+s_{2} 2^{\sum_{3}^{k} r_{i}}+\ldots+s_{k}\right) ~}$
28	1	1	1	0	$\sum_{1}^{k} r_{l}+\sum_{l}^{k} s_{l}$	$2^{\sum_{1}^{k} r_{i}+\sum_{1}^{k} s_{t}}-2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{t}}+\ldots+2^{r_{k}+s_{k}}-2^{3_{k}}$
29	1	1	1	1	$\sum_{1}^{k} r_{i}+\sum_{1}^{k} s_{l}$	$2^{\sum_{1}^{k} r_{i}+\sum_{1}^{k} s_{i}}-1$
30	1	1	1	2	$\sum_{1}^{k} r_{i}+\sum_{1}^{k} s_{l}$	$2^{\sum_{1}^{K} r_{i}+\sum_{1}^{K} s_{i}}-1+2^{\sum_{2}^{K} r_{i}+\sum_{1}^{K} s_{i}}-2^{\sum_{2}^{K} r_{i}+\sum_{2}^{k} s_{i}}+\ldots-1$
31	1	2	0	0	$\sum_{i}^{k} r_{i}$	$2 \cdot\left(2^{\frac{k}{1} r_{i}}-1\right)$
32	1	2	0	1	$\sum_{1}^{k} r_{t}$	$2 \cdot\left(2^{\sum_{2}^{k} r_{i}}-1\right)+s_{1} 2^{\sum_{1}^{k} r_{i}}+s_{2} 2^{\sum_{3}^{k} r_{i}}+\ldots+s_{k}$

Table 1 (Vorsetzung)

	m	n	p	q	$\operatorname{Exp}_{f_{a}}$	$\operatorname{Exp}_{f_{c}}$
33	1	2	0	2	$\sum_{1}^{k} r_{l}$	$2 \cdot\left(2^{\sum_{i}^{k} r_{i}}-1\right)+2 \cdot\left(s_{1} 2^{\sum_{2}^{k} r_{i}}+s_{2} 2^{\sum_{3}^{k} r_{1}}+\ldots+s_{k}\right)$
34	1	2	1	0	$\sum_{1}^{k} r_{t}+\sum_{1}^{k} s_{t}$	$2 \cdot\left(2^{\sum_{1}^{k} r_{i}+\sum_{1}^{k} s_{i}}-2^{\left.\sum^{\frac{k}{2} r_{i}+\sum_{1}^{k} s_{i}}+\ldots+2^{s_{k}+r_{k}}-2^{s_{k}}\right)}\right.$
35	1	2	1	1	$\sum_{1}^{k} r_{t}+\sum_{1}^{k} s_{t}$	$2.2^{\sum_{1}^{k} r_{i}+\sum_{1}^{k} s_{i}}-\left(2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{i}}-\ldots+2^{s_{k}}-1\right)$
36	1	2	1	2	$\sum_{1}^{k} r_{t}+\sum_{1}^{k} s_{t}$	$2 \cdot\left(2^{\sum_{1}^{\frac{k}{2} r_{i}+\sum_{1}^{k} s_{i}}}-1\right)$

If, for two polynomials $f\left(x_{1}, x_{2}\right), g\left(x_{1}, x_{2}\right)$ over S_{3}, there holds $f\left(x_{1}, x_{2}\right)=$ $=g\left(x_{1}, x_{2}\right)$, then there must, by Definition 1 , hold

$$
\begin{aligned}
& \left.=\left(a^{m} c^{n}\right)^{u_{1}} \cdot\left(a^{p} c^{q}\right)^{v_{1}} \ldots\left(a^{m} c^{n}\right)^{u_{k}} \cdot\left(a^{p} c^{q}\right)^{v_{k}}\right],
\end{aligned}
$$

thus

$$
a^{\mathrm{Exp}_{f e}} \cdot c^{\mathrm{Exp}_{f e}}=a^{\mathrm{Exp}_{g a}} \cdot c^{{\mathrm{E} x \mathrm{p}_{g c}}}
$$

so that

$$
\left[\operatorname{Exp}_{f_{a}} \equiv \operatorname{Exp}_{\boldsymbol{g}_{a}}(\bmod 2)\right] \wedge\left[\operatorname{Exp}_{f_{c}} \equiv \operatorname{Exp}_{g_{c}}(\bmod 3)\right]
$$

Hence, from the conditions $1-36$, we get exactly five independent conditions:
$\mathrm{A}_{2}^{1}: \sum_{1}^{k} r_{i} \equiv \sum_{1}^{k} u_{i}(\bmod 6)$,
$\mathbf{A}_{2}: \sum_{1}^{k} s_{i} \equiv \sum_{i}^{k} v_{i}(\bmod 6)$,
$\mathrm{A}_{2}^{3}: r_{1} 2^{\sum_{1}^{k} s_{i}}+r_{2} 2^{\sum_{2}^{k} s_{i}}+\ldots+r_{k} 2^{s_{k}} \equiv u_{1} 2^{\sum_{1}^{k} v_{i}}+u_{2} 2^{\sum^{2} v_{i}}+\ldots+u_{k} 2^{v_{k}}(\bmod 3)$,
$\mathrm{A}_{2}^{4}: s_{1} 2^{\sum_{2}^{\frac{k}{2} r_{i}}}+s_{2} 2^{\frac{\sum_{3}}{\sum_{3}} r_{i}}+\ldots+s_{k} \equiv v_{1} 2^{\sum_{2}^{k} u_{i}}+v_{2} 2^{\sum_{3}^{k} u_{i}}+\ldots+v_{k}(\bmod 3)$,
$\mathrm{A}_{2}^{5}: 2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{i}}-2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} s_{i}}+\ldots+2^{s_{k}}-1 \equiv 2^{\sum_{2}^{k} u_{i}+\sum_{1}^{k} v_{i}}-2^{\sum_{2}^{k} w_{i}+\sum_{2}^{k} v_{i}}+\ldots+2^{v_{k}}-1(\bmod 3)$.

In fact, if we prove that the above 5 conditions are really independent, then the number of all the different polynomials of two variables over S_{3} will equal the number

$$
6^{2} \cdot 3^{3}=972
$$

Now let us prove the independence of the conditions $\mathrm{A}_{2}^{1}-\mathrm{A}_{2}^{5}$ for $k=4$, in the form:
(i): $\sum_{1}^{4} r_{i} \equiv a_{1}(\bmod 6)$,
(ii): $\sum_{1}^{4} s_{i} \equiv a_{2}(\bmod 6)$,
(iii): $r_{1} 2^{\frac{L_{1}^{1}}{L_{t}}}+r_{2} 2^{\frac{L_{2}^{2}}{2} s_{t}}+r_{3} 2^{s_{3}+s_{4}}+r_{4} 2^{s_{4}} \equiv a_{3}(\bmod 3)$,
(iv): $s_{1} 2^{\frac{L_{2}^{2}}{2} r_{i}}+s_{2} 2^{r_{3}+r_{4}}+s_{3} 2^{r_{4}}+s_{4} \equiv a_{4}(\bmod 3)$,
 $\equiv a_{5}(\bmod 3)$.

Remark 1. Since $2^{n} \equiv(-1)^{n}(\bmod 3)$, there follows $2^{\text {odd number }} \equiv-1(\bmod 3)$ and $2^{\text {even number }} \equiv 1(\bmod 3)$.

The independence of (i)-(v) can be proved by finding their solution by means of the method of elimination:

From the equation (i) there follows $r_{1} \equiv a_{1}-\sum_{2}^{4} r_{i}(\bmod 6)$. From the equation (ii) we get

$$
s_{1} \equiv a_{2}-\sum_{2}^{4} s_{i}(\bmod 6)
$$

The equation (iv) implies

$$
\left(a_{2}-\sum_{2}^{4} s_{i}\right) \cdot 2^{\frac{4}{2} r_{i}}+s_{2} 2^{r_{3}+r_{4}}+s_{3} 2^{r_{4}}+s_{4} \leqslant a_{4}(\bmod 3)
$$

hence

$$
s_{2}\left(2^{r_{3}+r_{4}}-2^{\frac{4}{2} r_{i}}\right) \equiv a_{4}+2^{\frac{2^{2} r_{i}}{}}\left(s_{3}+s_{4}-a_{2}\right)-s_{3} 2^{r_{4}}-s_{4}(\bmod 3)
$$

So that we have

$$
s_{2} \cdot 2^{r_{3}+r_{4}} \cdot\left(1-2^{r_{2}}\right) \equiv a_{4}+2^{\dot{L}_{2} r_{t}}\left(s_{3}+s_{4}-a_{2}\right) \backslash s_{3} 2^{r_{4}}-s_{4}(\bmod 3)
$$

Suppose $r_{3}+r_{4}$ to be even and r_{2} odd, that is to say, r_{2}, r_{3}, r_{4} will be chosen so that the above two conditions are satisfied. Hence we get

$$
\begin{aligned}
& s_{2} \equiv-a_{4}-2 s_{3}-2 s_{4}+2 a_{2}+s_{3} 2^{r 4}+s_{4}(\bmod 3) \\
& s_{2} \equiv-a_{4}-2 s_{3}-s_{4}+2 a_{2}+s_{3} 2^{24}(\bmod 3) \\
& s_{2}=-a_{4}-2 s_{3}-s_{4}+2 a_{2}+s_{3} 2^{r 4}+3 l
\end{aligned}
$$

Consequently:

$$
s_{2}=-a_{4}+2 a_{2}-2 s_{3}-s_{4}+s_{3} 2^{r_{4}}+3 l
$$

From the equation (iii) there follows

$$
\left(a_{1}-\sum_{2}^{4} r_{i}\right) \cdot 2^{a_{2}}+r_{2} \cdot 2^{-a_{4}+3 l+s_{3}}+r_{3} \cdot 2^{s_{3}+s_{4}}+r_{4} 2^{s_{4}} \equiv a_{3}(\bmod 3)
$$

for $r_{4} \neq 0$. Let all the $r_{i}, s_{i}, a_{i} \neq 0$. So that

$$
r_{2}\left(2^{-a_{4}+s_{3}+3 l}-2^{a_{2}}\right) \equiv a_{3}+2^{a_{2}} \cdot\left(r_{3}+r_{4}-a_{1}\right)-r_{3} 2^{s_{3}+s_{4}}-r_{4} 2^{s_{4}}(\bmod 3)
$$

Now consider two cases according as a_{2} is even or odd.
A. a_{2} even

Furthermore, suppose $-a_{4}+s_{3}+3 l$ is odd. If it were even, then a_{4} in equation (iv) would be greater by 3 . This would only change the parity of $-a_{4}+s_{3}+3 l$ because we should get $-a_{4}-3+s_{3}+3 l$, which would be odd. Consequently, whether a_{4}, s_{3} is odd or even, we can arrange the expression $-a_{4}+s_{3}+3 l$ to be odd without changing the validity of the equation (i)-(v). Hence

$$
r_{2} \equiv a_{3}+r_{3}+r_{4}-a_{1}-r_{3} 2^{s_{3}+s_{4}}-r_{4} 2^{s_{4}}(\bmod 3)
$$

so that

$$
r_{2}=a_{3}-a_{1}+r_{3}+r_{4}-r_{3} 2^{s_{3}+s_{4}}-r_{4} 2^{s_{4}}+3 l^{\prime}
$$

Since r_{2} is odd, the above equation is true only if the expression $a_{3}-a_{1}+3 l^{\prime}$ is odd. If the latter is not odd, we change the parity by increasing a_{3} by 3 .

From the equation (v) there follows

$$
\begin{gathered}
2^{\text {odd }+a_{2}}-2^{\text {odd }-a_{4}+3 l+s_{3}}+2^{\text {even }-a_{4}+3 l+s_{3}}-2^{\text {even }+s_{3}+s_{4}}+2^{r_{4}+s_{3}+s_{4}}- \\
-2^{r_{4}+s_{4}}+2^{2 s_{4}}-1 \equiv a_{5}(\bmod 3),
\end{gathered}
$$

hence

$$
-2^{s_{3}+s_{4}}+2^{r_{4}+s_{3}+s_{4}}-2^{r_{4}+s_{4}}+2^{s_{4}}-1 \equiv a_{5}(\bmod 3)
$$

and consequently

$$
2^{s_{4}} \cdot\left(1-2^{r_{4}}+2^{r_{4}+s_{3}}-2^{s_{3}}\right) \equiv a_{5}+1(\bmod 3)
$$

Let us now consider three different cases according as $a_{5} \equiv 0(\bmod 3)$, or $a_{5} \equiv 1$ $(\bmod 3)$, or $a_{5} \equiv 2(\bmod 3)$.
I. $a_{5} \equiv 0(\bmod 3)$.

Then

$$
2^{s_{4}} \cdot\left(1-2^{r_{4}}+2^{r_{4}+s_{3}}-2^{s_{3}}\right) \equiv 1(\bmod 3)
$$

The above equation is true if we choose s_{4} even and r_{4} odd and s_{3} odd because

$$
L=2^{\text {even }} \cdot\left(1-2^{\text {odd }}+2^{\text {even }}-2^{\text {odd }}\right) \equiv-2 \equiv 1=R(\bmod 3)
$$

Hence $s_{3}=2 \alpha+1$. Inserting into $r_{2}, s_{2}, s_{1}, r_{1}$, we get the solution of equations (i)-(v):

$$
\begin{aligned}
& r_{1}=2 a_{1}+6 n_{1}-a_{3}-3 l^{\prime}-2 r_{3}-2 r_{4}+r_{3} \cdot 2^{2 \alpha+1+s_{4}}+r_{4} 2^{s_{4}} \\
& r_{2}=a_{3}+3 l^{\prime}-a_{1}+r_{3}+r_{4}-r_{3} \cdot 2^{2 \alpha+1+s_{4}}-r_{4} \cdot 2^{s_{4}} \\
& s_{1}=a_{2}+6 n_{2}+a_{4}-2 a_{2}-2 \alpha \cdot 2^{r_{4}}-2^{r_{4}}-3 l+2 \alpha+1 \\
& s_{2}=-a_{4}+2 a_{2}-4 \alpha-2-s_{4}+2 \alpha \cdot 2^{r_{4}}+2^{r_{4}}+3 l .
\end{aligned}
$$

II. $a_{5} \equiv 1(\bmod 3)$

Then

$$
2^{s_{4}} \cdot\left(1-2^{r_{4}}+2^{r_{4}+s_{3}}-2^{s_{3}}\right) \equiv 2(\bmod 3)
$$

This equation is true if we choose s_{4} odd and s_{3} odd and r_{4} odd because

$$
L=2^{\text {odd }} \cdot\left(1-2^{\text {odd }}+2^{\text {even }}-2^{\text {odd }}\right) \equiv 2=R(\bmod 3)
$$

Consequently $s_{3}=2 \alpha+1$. The solution of equation (i) $-(v)$ is the same as in A.I. but for a different condition as to s_{4}.
III. $a_{5} \equiv 2(\bmod 3)$

Then

$$
2^{s_{4}} \cdot\left(1-2^{r_{4}}+2^{r_{4}+s_{3}}-2^{s_{3}}\right) \equiv 0(\bmod 3)
$$

This equation is true if we choose s_{3} even and r_{4} even because

$$
L=2^{\text {s4 }} \cdot\left(1-2^{\text {even }}+2^{\text {even }}-2^{\text {even }}\right) \equiv 0=R(\bmod 3)
$$

Hence $s_{3}=2 \alpha$. Inserting into $r_{2}, s_{2}, s_{1}, r_{1}$, we obtain the solution of equations (i) - (v) of the form

$$
\begin{aligned}
& r_{1}=2 a_{1}-a_{3}+6 n_{1}-2 r_{3}-2 r_{4}+r_{3} 2^{s_{4}}+r_{4} 2^{54}-3 l^{\prime} \\
& r_{2}=a_{3}-a_{1}+r_{3}+r_{4}-r_{3} 2^{s_{4}}-r_{4} 2^{24}+3 l^{\prime} \\
& s_{1}=-a_{2}+a_{4}+6 n_{2}-3 l \\
& s_{2}=-a_{4}+2 a_{2}-2 \alpha-s_{4}+3 l \\
& s_{3}=2 \alpha .
\end{aligned}
$$

Now it remains to consider the case

B. a_{2} odd

Suppose that $-a_{4}+s_{3}+3 l$ is even. Again, as in case A., this condition can always be satisfied. Thus

$$
r_{2} \equiv-a_{3}-2 r_{3}-2 r_{4}+2 a_{1}+r_{3} 2^{s_{3}+s_{4}}+r_{4} 2^{s_{4}}(\bmod 3)
$$

so that

$$
r_{2}=-a_{3}+3 l^{\prime \prime}-2 r_{3}-2 r_{4}+2 a_{1}+r_{3} 2^{s_{3}+s_{4}}+r_{4} 2^{s_{4}}
$$

Now, on condition that r_{2} is odd, we get that $-a_{3}+3 l^{n}$ is odd, which can always be arranged by a convenient choice of a_{3}. From the equation (v) there follows

$$
2^{s_{4}} \cdot\left(1-2^{r_{4}}-2^{r_{4}+s_{3}}-2^{s_{3}}\right) \equiv a_{5}+1(\bmod 3)
$$

which is the same equation as in case \mathbf{A}. and the theorem is proved.
Remark 2. So we have proved that, to enumerate all the polynomials, it is sufficient to consider the products of eight factors. From the enumeration in [4] it is clear that even six factors are sufficient.

For $k=3$ the equations (i) $-(\mathrm{v})$ have the form (we write only the left sides of these equations):

$$
\begin{gathered}
r_{1}+r_{2}+r_{3}(\bmod 6) \\
s_{1}+s_{2}+s_{3}(\bmod 6) \\
r_{1} 2^{s_{1}+s_{2}+s_{3}}+r_{2} 2^{s_{2}+s_{3}}+r_{3} 2^{s_{3}}(\bmod 3) \\
s_{1} 2^{r_{2}+r_{3}}+s_{2} 2^{r_{3}}+s_{3}(\bmod 3) \\
2^{r_{2}+r_{3}+s_{1}+s_{2}+s_{3}}-2^{r_{2}+r_{3}+s_{2}+s_{3}}+2^{r_{3}+s_{2}+s_{3}}-2^{r_{3}+s_{3}}+2^{s_{3}}-1(\bmod 3) ;
\end{gathered}
$$

so that the polynomials $f\left(x_{1}, x_{2}\right)$ can be written in the form
Table 2

	$f\left(x_{1}, x_{2}\right)$	(i)	(ii)	(iii)	(iv)	(v)
1.	$x_{1}^{0}, x_{2}^{0}, x_{1}^{0}, x_{2}^{0}, x_{1}^{0}, x_{2}^{0}$	$0(\bmod 6)$	$0(\bmod 6)$	$0(\bmod 3)$	$0(\bmod 3)$	$0(\bmod 3)$
2.	$x_{1}^{2}, x_{2}^{1}, x_{1}^{3}, x_{2}^{3}, x_{1}^{1}, x_{2}^{2}$	$0(\bmod 6)$	$0(\bmod 6)$	$0(\bmod 3)$	$0(\bmod 3)$	$1(\bmod 3)$
3.	$x_{1}^{3}, x_{2}^{3}, x_{1}^{3}, x_{2}^{3}, x_{1}^{0}, x_{2}^{0}$	$0(\bmod 6)$	$0(\bmod 6)$	$0(\bmod 3)$	$0(\bmod 3)$	$2(\bmod 3)$
4.	$x_{1}^{1}, x_{2}^{4}, x_{1}^{5}, x_{2}^{2}, x_{1}^{0}, x_{2}^{0}$	$0(\bmod 6)$	$0(\bmod 6)$	$0(\bmod 3)$	$1(\bmod 3)$	$0(\bmod 3)$
5.	$x_{1}^{2}, x_{2}^{1}, x_{1}^{3}, x_{2}^{1}, x_{1}^{1}, x_{2}^{4}$	$0(\bmod 6)$	$0(\bmod 6)$	$0(\bmod 3)$	$1(\bmod 3)$	$1(\bmod 3)$
	!					
972.	$x_{1}^{0}, x_{2}^{3}, x_{1}^{5}, x_{2}^{3} \cdot x_{1}^{0}, x_{2}^{5}$	$5(\bmod 6)$	$5(\bmod 6)$	$2(\bmod 3)$	$2(\bmod 3)$	$2(\bmod 3)$

§3. POLYNOMIALS $f\left(x_{1}, x_{2}, x_{3}\right)$ OVER S_{3}

Every polynomial of three variables over S_{3} is of the form

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{r_{1}} \cdot x_{2}^{s_{1}} \cdot x_{3}^{t_{1}} \cdot x_{1}^{r_{2}} \cdot x_{2}^{s_{2}} \cdot x_{3}^{t_{2}} \cdot \ldots x_{1}^{r_{k}} \cdot x_{2}^{s_{k}} \cdot x_{3}^{t_{k}} .
$$

Since x_{1}, x_{2}, x_{3} run over all the elements of S_{3}, there holds

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(a^{m} \cdot c^{n}\right)^{r_{1}} \cdot\left(a^{p} \cdot c^{q}\right)^{s_{1}} \cdot\left(a^{\alpha} \cdot c^{\beta}\right)^{t_{1}} \cdot \ldots \cdot\left(a^{m} \cdot c^{n}\right)^{r_{k}} \cdot\left(a^{p} \cdot c^{q}\right)^{s_{k}} \cdot\left(a^{\alpha} \cdot c^{\beta}\right)^{t_{k}}
$$

where $m, p, \alpha \in\{0,1\}$ and $n, q, \beta \in\{0,1,2\}$. So we get $2^{3} \cdot 3^{2}$ different possibilities of the values of the polynomial $f\left(x_{1}, x_{2}, x_{3}\right)$. But from these possibilities we only get the following probably independent conditions for the equality of two polynomials (we write only the left sides of the congruences):

$$
\begin{aligned}
& A_{3}^{1}: \quad \sum_{1}^{k} r_{i}(\bmod 6) \\
& \mathrm{A}_{3}^{2}: \quad \sum_{i}^{k} s_{i}(\bmod 6) \\
& \mathrm{A}_{3}^{3}: \quad \sum_{1}^{k} t_{l}(\bmod 6) \\
& \mathrm{A}_{3}^{4}: \quad r_{1} 2^{2^{\frac{k}{2} s_{i}}}+\ldots+r_{k} 2^{s_{k}}(\bmod 3) \\
& \mathrm{A}_{3}^{\mathrm{s}}: \quad r_{1} 2^{2^{\frac{k}{2} t_{l}}}+\ldots+r_{k} 2^{t_{k}}(\bmod 3) \\
& \mathrm{A}_{3}^{6}: \quad r_{1} 2^{\sum_{1}^{k} s_{i}+\sum_{1}^{k} t_{i}}+\ldots+r_{k} 2^{s_{k}+t_{k}}(\bmod 3) \\
& \mathrm{A}_{3}^{7}: \quad s_{1} 2^{\frac{2_{k}^{2}}{\sum_{1}}}+\ldots+s_{k}(\bmod 3) \\
& \mathrm{A}_{3}^{8}: \quad s_{1} 2^{\frac{2^{2}}{i_{1}} t_{1}}+\ldots+s_{k} 2^{t_{k}}(\bmod 3) \\
& A_{3}^{9}: \quad s_{1} 2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} t_{i}}+\ldots+s_{k} 2^{t_{k}}(\bmod 3) \\
& \mathrm{A}_{3}^{10}: \quad t_{1} 2^{\sum_{2}^{k} r_{i}}+\ldots+t_{k}(\bmod 3) \\
& \mathrm{A}_{3}^{11}: t_{1} 2^{\frac{k_{2}}{\Sigma_{2}} s_{i}}+\ldots+t_{k}(\bmod 3) \\
& \mathrm{A}_{3}^{12}: t_{1} 2^{\sum_{2}^{k} r_{1}+\sum_{2}^{k} s_{i}}+\ldots+t_{k}(\bmod 3)
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{A}_{3}^{13}: & 2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{i}}-2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} s_{i}}+\ldots+2^{s_{k}}-1(\bmod 3) \\
\mathrm{A}_{3}^{14}: & 2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} t_{i}}-2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} t_{i}}+\ldots+2^{t_{k}}-1(\bmod 3) \\
\mathrm{A}_{3}^{15}: & 2^{\sum_{2}^{k} s i+\sum_{1}^{k} t_{i}}-2^{\sum_{2}^{k} s_{i}+\sum_{2}^{k} t_{i}}+\ldots+2^{t_{k}}-1(\bmod 3) \\
\mathrm{A}_{3}^{16}: & 2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} s_{i}+\sum_{1}^{k} t_{i}}-2^{\sum_{2}^{k} r_{i}+\sum_{2}^{k} s_{i}+\sum_{2}^{k} t_{i}}+\ldots+2^{t_{k}}-1(\bmod 3) \\
\mathrm{A}_{3}^{17}: & 2^{\sum_{2}^{k} r_{i}+\sum_{1}^{k} s_{i}+\sum_{1}^{k} t_{i}}-2^{\sum_{2}^{k} r_{i}+\frac{\sum_{2}}{k} s_{i}+\sum_{1}^{k} t_{i}}+\ldots+2^{s_{k}+t_{k}}-2^{t_{k}}(\bmod 3) .
\end{array}
$$

From these conditions it follows that the number of polynomials of three variables over S_{3} equals the number $6^{3} .3^{14}$.

§ 4. POLYNOMIALS $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ OVER S_{3}

In the same way as in § 2 . we could derive the conditions for the equality of two polynomials of n variables over S_{3}, namely n conditions with regard to modul 6 . The number of conditions with regard to modul 3 is:

$$
\begin{aligned}
& (n-1) n+\binom{n-1}{2} n+\binom{n-1}{3} n+\ldots+\binom{n-1}{n-1} n+ \\
& +\binom{n}{2}+\binom{n}{3} 2+\binom{n}{4} 3+\ldots+\binom{n}{n}(n-1)= \\
& \underbrace{\left[\binom{n-1}{1}+\binom{n-1}{2}+\binom{n-1}{3}+\ldots+\binom{n-1}{n-1}\right]+\underbrace{\sum_{k=1}^{n-1} k\binom{n}{k-1}}_{Q} .}_{P} .
\end{aligned}
$$

Hence $P=n \cdot\left(2^{n-1}-1\right)$ and for Q we get

$$
\begin{gathered}
(k+1)\binom{n}{k+1}=n\binom{n-1}{k}, \\
k\binom{n}{k+1}=(k+1)\binom{n}{k+1}-\binom{n}{k+1}, \\
k\binom{n}{k+1}=n\binom{n-1}{k}-\binom{n}{k+1}, \\
\sum_{k=1}^{n-1} k\binom{n}{k+1}=n \sum_{k=1}^{n-1}\binom{n-1}{k}-\sum_{k=1}^{n-1}\binom{n}{k+1}=2^{n-1}(n-2)+1
\end{gathered}
$$

so that $P+Q=\left(2^{n}-1\right) \cdot(n-1)$ and we can say that the number of different polynomials of n variables over S_{3} is equal to

$$
6^{n} \cdot 3^{(n-1) \cdot\left(2^{n}-1\right)}
$$

CONCLUSION

The basic relation of the present paper is the relation $c a=a c^{2}$ between the generators a, c of the group S_{3}; that means that the product $x y$ of two arbitrary elements of S_{3} may be expressed in the form $y^{u} . x^{v}$ where u, v are integers. This is no longer possible for the group S_{4}. Consequently, the question of the number of all the differen polynomials over the group $S_{n}(n>3)$ and, therefore, even over an arbitrary nonAbelian group, will probably have to be solved in a different way. The answer to this question will help to answer the original question proposed in the Introduction, concerning the number and the list of all the different polynomials of n variables with arbitrary coefficients over an arbitrary group.

REFERENCES

[1] Lausch, H., Nöbauer, W.: Algebra of Polynomials. North-Holland Mathematical Library. 1973.
[2] Coufalová, Y.: Polynomy nad konečnými abelovskými grupami. Sbornik PedF UJEP. Brno. 1975.
[3] Coufalová, Y.: Polynomy jedné promènné nad neabelovskými grupami. Sbornik PedF UJEP. Brno. 1978.
[4] Coufalová, Y.: Polynomy na grupě permutací ze tři prvkú. Brno. 1972. (Not published, kept at the Faculty of Sciences, UJEP.)
Y. Coufalová

66280 Brno, Poříči 31
Czechoslovakia

