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TOLERANCE EXTENSIONS 
IN DISTRIBUTIVE LATTICES 

JOSEF NIEDERLE, Brno 
(Received June 22,1978) 

It is known that for every distributive lattice D9 all congruences on each its 
sublattice L have extensions on D. An analogous assertion does not hold for 
compatible tolerances. The aim of this paper is to give answers on questions of the 
following structure: 

Let DyL denote distributive lattices, D : L in the relation overlattice: sublattice, 
let T denote a compatible tolerance on L. Under which conditions set on GIVEN, 
has T an extension on D for arbitrary VARIABLE? GIVEN and VARIABLE denote 
all possible combinations of Z), £, T. These combinations are shown in the following 
table: 

GIVEN DLT DL 

VARIABLE - T 

QUESTION NB Q0 Ql 

*) T cannot exist without L. 

Answers to the questions Q0,.Q2, Q4 are given in this paper. The question Ql was 
answered in [3] and the question Q3 in [1]. 

1. PRELIMINARIES 

Tolerance relation is a symmetric and reflexive binary relation. 
Compatible tolerance on an algebra A is a tolerance relation on the support of A 

being a subalgebra of A xA. 
For a compatible tolerance T on a lattice L the following is valid: 

TL 1 [x, y] e To [x A y9 x v y] e T 
TL2 (x£y£z£ w9lx9w~\eT)*>£y9z]eT 

m 

DT LT D L T 
L D LT DT DL 

•) Q2 QЗ Q4 •) 



TL 3 ([x, j>] e f, [y9 z"] € T9 y V w =-= JC V y V z9 y A w = x Ay A z) => " 
=>[*AjAz, x v j > v z ] e r 

TL 4 ([*, w] € T, [y9 z] € F, w A z = x, w V w = j ) =-> [x9 y]eT 

An intersection of arbitrary system of compatible tolerances on an algebra A is 
again a compatible tolerance on A. 

For £ a sublattice of £' a compatible tolerance T* on £' is called an extension 
of a compatible tolerance T on £ if T is the restriction of T on £. 

Let £ be a lattice, <a, ft> an interval in £, e9c9de <a, &>. The element e is called 
a relative bicomplement of the elements c, d in <a, ft> if a = c A d A e and 
ft = c V d V e. 

Clearly, in this case c is a relative bicomplement of e, din <a, b} and dis a relative 
bicomplement of e9 c in <a, b}. 

Let £ be a sublattice of a lattice £'. £ is said to be closed under relative bicomple-
ments in £' if for each interval <a, b}L and each two elements c, de <a, ft>L there 
holds the following: c, dhave a relative bicomplement in <a, b}v iff c, dhave a relative 
bicomplement in <a, &>£. 

2. TOLERANCES ON DISTRIBUTIVE LATTICES 

The following assertion is well known. 

Lemma 1. Let D be a distributive lattice, J an ideal in D9 a e D \ J. Then there 
exists an ideal I which is maximal among all those ideals in D containing J and not con­
taining a. I is prime. 

Definition. Let D be a distributive lattice, a9b£ D9a < b. Let I be a maximal ideal 
under all those ideals in D not containing b9 let F be a maximal dual ideal among all 
those dual ideals in D not containing a. If D -=- I u F, T = (J x /) u (Fx F) is called 
a x-tolerance belonging to [a, 6]. 

Note. Clearly, such a t-tolerance is a compatible tolerance on D. 

Lemma 2. [3] Let D be a distributive lattice, T a compatible tolerance on D> 
d , i e D , a < b9 [a, ft] $ T. Then there exists a x-tolerance on D belonging to [a, ft] 
and containing T. 

Lemma 3. [3] Let D be a distributive lattice, T a compatible tolerance on D. Then 
there exists a family {Si}imr ofx-tolerances on D with T «- f)$i> 
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3. TOLERANCE EXTENSIONS IN DISTRIBUTIVE TLATICES 

Lemma 4. Let D be a distributive lattice, L its sublattice, T a compatible tolerance 
on L. If (A) is satisfied, then for every natural number n there holds (F„), where: 

(A) (o,p,q,reL,xeD,o SP S* S q> [o, r] 6 T> [p, ?] € T, x hp «• o, 
xVr~q)^[o,q\eT 

(Vn) (a,b,al,...,aH,b1,...,.btteL, xx,..., xnsD, a £ a, £ *i & b, 
n 

a^XiSbt,\J *j = b, xihai** a, [ai9 A,] € T) **> [a, h] € 2". 
i-=l 

Proof. Suppose (A). 

Ad (V,): Let a,b,ax, bx€L, xxe D, a g ax %bx g 6, a £ x t £ 6 l t x t = T, 
xt hat = a, [#!, 6 t] e F. Then xt « 6 « bx, at « a, i.e. [a, 6] e 6. 

Ad(Vn),n i> 2: Let (F-),.. . , (Vn-.x) hold. Let fl,Mi»..., an, b%, ..„ &„, xt,..., *„ 
satisfy the assumptions of the left side of (Vn). Denote / = {1, . . . , n}$ 

Ik~I\{k},Iktl~I\{k,l}. 
Let it # /, k,lel. 

Set for i e Iktl 

x\ = akV atV xt x0 = ak V at v xk V x{ a' = akV at 

a\ = ak v atV ai aQ = a* V ax 

b\*z. akV axV bt b'Q = bkV bt V = b 

Denote / ' = / M u {0}. / ' has n - 1 elements and the "primed" system satisfies the 
assumptions of (Vn„x), hence [ak v at, b] e T. Put z = / \ (a{V a^). Clearly, 

*#/ 
[z, 6] € T. Therefore [ak A z, 6J € T for all k e /. Then the elements &h** akhz 
have all properties required for a* and §k v 8t = z for k 4- /. The bar may be omitted 
and it may be supposed akv at = z. Clearly ak *=* ak h b ** ak h \/ xt ** \/ (ak h xt)t 

Denote foг i є Iк 

x\ = aкЛx{ 

a', = aкл a, a' = a 

b't = aк л bt *' = o* /'-/*. 

The obtained "primed" system satisfies all assumptions of the left side of (K»-i)# 
therefore [a, akJ e T. Hence [a, z] e T. Let Bk**bkV z. Then £* satisfies all assump­
tions on 6k. The bar may be omitted. Clearly ak jg z A V *J * V (f A %d m 

h h 
~ V((*< v **) A **) - V(% A x*) g ak. 

h h 
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Thereby z A V xt m ak9 bk V \ / x{ = 6 and a* g z <; ft* g ft. [a*, ft*] e r implies 

[z, i ] e r (for z « \ / a,, & = \ / *i) and by (^) [a*f ft] 6 T. Hence, because a = 

= /\ahiafb]eTq.Q.d. 
i 

Theorem. Let D be a distributive lattice, L its sublattice and T compatible tolerance 
on L. Then following assertions are equivalent: 

(i) T has an extension on D 
(ii) for each pair a9beL with a < ft, [a, ft] ^ T there exists a x-tolerance on D 
belonging to [a, ft] and containing T 
(iii) whenever a, ft, c, deL9 a < c <> d < ft, [a, d] e T9 [c9 ft] 6 T9 [a, ft] $ T then 
there exists no relative bicomplement of the elements c9 d in <a, b}D. 

Proof. (i)=> (iii); If there were such an element, denote it by x9 then [a, ft] = 
« [(a V x) A c, (d V x) A ft] € T, but [a, ft] £ T. 

(iii)=> (ii): Clearly (iii) o (A). Suppose (iii) holds, let a9beL9 a < ft, [a, ft] £ T. 
Denote /? = {r e D | 3 z, t eL9 z <* t9[t9z]eT9 r £ r, r A z = a}. Let / be the 
ideal generated by R in D. Clearly a e J. If ft 6 /, then there must exist an w-tuple 

rl9..., rn of elements of R with ft g V r«- Denote a< = z* A ft, ftf = r( A ft, *, = 

= rf A ft, where zf, /, are the elements from the definition of R belonging to rf. 
Then the assumptions of (Vn) are satisfied and from this [a, ft] e T. Hence ft <£ / . 
There exists an ideal / containing / and not containing ft, a maximal one with 
this property. Let P = (D \ /) u {de L\ 3 c e L n (D \ /), [c, d] e T}. Let £ be the 
dual ideal generated by P. If a 6 E9 then there must exist ee D\Iy zeL9 teL n 
n (D \ /), such that [t9z]eT9 a S e9 t9z £ ft, z g /, e A z = a. But for r = 
a* e A t e D\I there holds r £ r, r A z = a, consequently re /? . This is a con­
tradiction, therefore a $ E. Let F denote a dual ideal containing £ and not con­
taining a a maximal one with this property. Then /, F are tolerance classes of 
the T-tolerance in request. (ii)=>(i): The intersection of all those T-tolerances is 
an extension of T on D q.e.d. 

It follows a list of answers to forementioned questions. 

AQO Let D be a distributive lattice, L its suolattice, T a compatible tolerance 
on L. Thas an extension on D iff there exists* no relative bicomplement in D of ele­
ments ft, c in interval <a, d}D whenever a9deL9 ft, ce<a, d>t satisfying ft £ c, 
{a9c]eT9 [ft,d]€F, {a9d]$T. 

AQ1 Let D be a distributive lattice, L its sublattice .Thas an extension on D 
for arbitrary compatible tolerance T on L iff L is closed in D under relative bi-
complements. 

AQ2 Let £ be a distributive lattice, T a compatible tolerance on L. Thas an 
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extension on D for arbitrary distributive lattice D being an overiattice of L iff 
T is a congruence. 

AQ3 Let D be a distributive lattice. T has an extension on D for arbitrary 
sublattice L of the lattice D and for arbitrary compatible tolerance T on L iff D is 
a chain. 

AQ4 Let L be a distributive lattice. T has an extension on D for arbitrary compat­
ible tolerance T on L and for arbitrary distributive lattice D being an overiattice 
of L iff L is relatively complemented. 

AQ2 follows from AQO, AQ4 follows from AQ1, 
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