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TOLERANCE EXTENSIONS
IN DISTRIBUTIVE LATTICES

JOSEF NIEDERLE, Brno
(Received June 22, 1978)

It is known that for every distributive lattice D, all congruences on each its
sublattice L have extensions on D. An analogous assertion does not hold for
compatible tolerances. The aim of this paper is to give answers on questions of the
following structure:

Let D, L denote distributive lattices, D : L in the relation overlattice: sublattice,
let T denote a compatible tolerance on L. Under which conditions set on GIVEN,
has T an extension on D for arbitrary VARIABLE? GIVEN and VARIABLE denote
all possible combinations of D, L, T. These combinations are shown in the following
table:

.GIVEN DLT DL br LT D L T
VARIABLE - T L D LT br DL
QUESTION NB QO Ql *) Q2 Q3 Q4 ")

*) T cannot exist without L.

Answers to the questions Q0, Q2, Q4 are given in this paper. The question Q1 was
answered in [3] and the question Q3 in [1].

1. PRELIMINARIES

Tolerance relation is a symmetric and reflexive binary relation.

Compatible tolerance on an algebra A is a tolerance relation on the support of A
being a subalgebra of A x A.

For a compatible tolerance T on a lattice L the following is valid:

TL1 [x,y]leT<[xAy,xVyleT
TL2 xsyszsw([x,wleT)=>[yz]eT



TL 3 ([x,y]ie'T,[y,'z]’c-T,wa-—;xV‘yvz,y'_Aw=xA-yAz)=>"
=[xAyAz,xvyvz]eT o
TL 4 ([x,w]eT,[y,z]eT,qu=x,qu=y)=>[x,y]eT

An intersection of arbitrary system of compatlble tolerances on an algebra 4 is
again a compatible tolerance on A..

For L a sublattice of L’ a compatible tolerance T’ on L’ is called an extension
of a compatible tolerance 7 on L if T is the restriction of 7’ on L.

Let L be a lattice, {(a, b) an interval in L, e, ¢, d € {a, b). The element e is called
a relative bicomplement of the elements ¢, d in {a,b) if a=cAdAe and
b=cvdve.

Clearly, in this case c is a relative bicomplement of e, d in {a, b) and d is a relative
bicomplement of e, ¢ in {a, b).

Let L be a sublattice of a lattice L'. L is said to be closed under relative bicomple-
ments in L' if for each interval (a, >, and each two elements ¢, d € {a, b), there
holds the following: ¢, d have a relative bicomplement in' {a, b),.iff ¢, d have a relatlve
bicomplement in {a, b),.

2. TOLERANCES ON DISTRIBUTIVE LATTICES

The following assertion is well known.

Lemma 1. Let D be a distributive lattice, J an ideal in D, a€ D \ J. Then there
exists an ideal I which is maximal among all those ideals in D containing J and not con-
taining a. 1 is prime.

Definition. Let D be a distributive lattice, a, b€ D, a < b. Let I be a maximal ideal
under all those ideals in D not containing b, let F be a maximal dual ideal among all
those dual ideals in D not containing a. If D = I u F T=(IxI)u (FxF)is called
a t-tolerance belonging to [a, b]. ‘

Note. Clearly, such a 1-tolerance is a compatible tolerance on D.

Lemma 2. [3] Let D be a distributive lattice, T a compatible tolerance on D>
a,be D, a<b,[a,b]¢T. Then there exists a t-tolerance on D belongmg to [a b]
and containing T.

Lemma 3. [3] Let D be a distributive lattice, T a compatible tolerance on D. Then
there exists a family {Si}ie of t-tolerances on D with T = () S,.

iel
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3. TOLERANCE EXTENSIONS IN DISTRIBUTIVE TLATICES

Lemma 4. Let D be a distributive lattice, L its sublattice, T a compatible tolerance
on L. If (A) is satisfied, then for every natural number n there holds (V,), where:

(4 (o,p,q,reL,xeD,o<psrsqforleT,[pqleT,xAp=o,
. xVr=gq)=[o,q]eT
) (ab,ay,...,a,,b,y,....,.0,eL,x,....x,6D,aSa, Sb £b,
n
asx;sb,\/x;=bxAa,=a,[a,b]eT)=[ableT
i=1
Proof. Suppose (A).
Ad (V,): Let a,b,a,,b, €L, x,eD, asa b, £basx;5b, x,=T,
xyAa, =a, [a,,b,]€T. Then x;, =b =b,,a, =a,ie. [a, b]ebd.
Ad (V,),n = 2: Let(Vy),...,(¥V,-1) hold. Leta, b,a,,...,a,, by, ...,b,, X1, ..., X
satisfy the assumptions of the left side of (¥,). Denote I = {1, ..., n},
Ik=1\{k}, ]k.,=l\{k,l}. .
Letk + 1, k,lel
Set for ie I,

Xi=aVvaVvx xXo=a, Va VxVx a=aVa
a;=aVaVva; ay = a, vV a
b;=akVa,Vb‘ bé):kabl b'=b

Denote I' = I, , U {0}. I’ has n — 1 elements and the “‘primed” system satisfies the
assumptions of (¥,_,), hence [a, Va;,b]eT. Put z= A (a;Va). Clearly,

i,jel
ikj

[z, 6] € T. Therefore [a, Az, b, ] € T for all kel Then the elements @, = a; A z

have all properties required for a, and & V @ = z for k % /. The bar may be omitted

and it may be supposed g, Va, = z. Clearly g, = a, Ab = a, A \/ x, = \/ (&, A x)).
1 I

Denote for i e [,

x| =a; A X,
a;=a,Aa; a=a .
by=a,Ab, b=a I=]I,.
.The obtained “‘primed” system satisfies all assumptions of the left side of (¥a-1),

therefore [a, a,] € T. Hence [a, z] € T..Let b,-= b, v z. Then b, satisfies all assump-
tions on b,.  The bar may be omitted. Clearly g S zA\/ x,=\/(zA X) =
I I

= Y((a, Va)Ax) = >/(ag AXx) S ay
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Thereby z A \/x, =a,b Vv \/ x;=band g, < z < b, < b. [a, b,] € T implies
[z,0]eT (for z = \/ a,b= \/ b‘) and by (A4) [a,, b] € T. Hence, because a =
= Aa,[ableT q.e.d.

1

Theorem. Let D be a distributive lattice, L its sublattice and T compatible tolerance
on L. Then following assertions are equivalent:

(i) T has an extension on D
(ii) for each pair a,be L with a < b, [a,b] ¢ T there exists a t-tolerance on D
belonging to [a, b] and containing T
(iii) whenever a,b,c,deL, a<c<d<b, [a,d]eT, [c,b]eT, [a,b]¢ T then
there exists no relative bicomplement of the elements c, d in {a, b)p.

Proof. (i)= (iii): If there were such an element, denote it by x, then [a, b] =
=[@vx)Ac,(dVvx)AbleT, but[a,b]¢T.

(iii)= (ii): Clearly (iii) <> (4). Suppose (iii) holds, let a, be L, a < b, [a, b] ¢ T.
Denote R={reD|3z, teL, z<t [t,z]eT, r<t, rAz=a}. LetJbe the
ideal generated by R in D. Clearly ae J. If b e J, then there must exist an a-tuple

is..., 7, of elements of R with b < \/r;. Denote a; = z; Ab, b, =t; A b, x; =
i=1

= r; A b, where z;, t; are the elements from the definition of R belonging to r;.
Then the assumptions of (¥,) are satisfied and from this [a, 5] € T. Hence b ¢ J.
There exists an ideal 7 containing J and not containing b, a maximal one with
this property. Let P=(D\I)u {deL|3ceLn(D\I), [c,d]eT}. LetE be the
dual ideal generated by P. If a € E, then there must exist ee D\ 1, zeL, teL n
N (D\I), such that [t,z]eT, a<e, t,z<bh, z5t, eAz=a. But for r=
= e Ate D\T there holds r < t, r Az = a, consequently re€ R. This is a con-
tradiction, therefore a¢ E. Let F denote a dual ideal containing £ and not con-
taining @ a maximal one with this property. Then I, F are tolerance classes of
the t-tolerance in request. (ii) = (i): The intersection of all those t-tolerances is
an extension of T on D g.e.d.

It follows a list of answers to forementioned questions.

AQO Let D be a distributive lattice, L its suBlattice, T a compatible tolerance
on L. T has an extension on D iff there exists no relative bicomplement in D of ele-
ments b, ¢ in interval {(a,d), whenever a,deL, b, ce{a,d), satisfying b < c,
[a,c]eT, [b,d]eT, [a,d]¢T.

AQl Let D be a distributive lattice, L its sublattice .7 has an extension on D
for arbitrary compatible tolerance T on L iff L is closed in D under relative bi-
complements. :

AQ2 Let L be a distributive lattice, T a compatible tolerance on L. T has an
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extension on D for arbitrary distributive lattice D being an overlattice of L iff
T is a congruence.

AQ3 Let D be a distributive lattice. T has an extension on D for arbitrary
sublattice L of the lattice D and for arbitrary compatible tolerance T on L iff D is
a chain.

AQ4 Let L be a distributive lattice. T has an extension on D for arbitrary compat-
ible tolerance T on L and for arbitrary distributive lattice D being an overlattice
of L iff L is relatively complemented.

AQ2 follows from AQO, AQ4 follows from AQI,
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