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ARCH, MATH. 3, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XVI; 137—152, 19S0 

LATTICES OF GENERATING SYSTEMS 

JOSEF DALfK, Brno 
(Reccived March 12,1979) 

0. INTRODUCTION 

In [6] and [3], every closure operator f on the set of all subsets of a lattice L 
such that <p{a) m {beL;b £ a} for each a € L9 was called an embedding operator 
and the set of all A s L satisfying q>A = A a. generating system on L. These con
cepts were investigated in [4] on arbitrary posets. In [5], there were proved some 
properties of the lattice of all embedding operators on a poset P. This one is dual 
to the lattice Gs (P) of all generating systems on P which we call the gs-!attice on P. 

In this paper some statements concerning gs-lattices in general are formulated. 
For an arbitrary set {Pt; i e /} of nonempty posets, a poset P is found such that 
Gs (P) s n Gs (P|). We say that a poset P is simple whenever there are only those 

generating systems in Gs(P) which were constructed in [2] as a solution of a certain 
embedding problem. An elementary description of the gs-lattice on each simple poset 
is given and the class of all gs-lattices on simple posets is characterized. It is shown 
that every poset, in the gs-lattice on which each completely v-irreducible element his 
a complement, is simple and that the class of all gs-lattices with this property is 
(up to isomorphism) exactly the class of all complete atomic Boolean algebras. 

1. THE CONCEPT OF A GS-LATTICE 

We denote by 0 the empty set, by s the relation of inclusion and by c that of 
a proper inclusion. We say that a set % is a sysiem whfnever every element of U 
is a set. If n 93 e 91 for all 9J» 0 c S s % then we call the system M multiplicative. 
In case I * 0 w e p u t U i * f t The standard partial ordering on each system is the 
inclusion. . • ;, •-•'•,. -»v-*\ • *< v4 i, ' . .*ti'. *u *4 

Let P be a poset We denote by ^ the partial order,, by < the relation "less than" 
and by -< the covering relation on P. P is said to be a chain, an antkhmn it tvtry 
two different elements of P are comparable, incomparable, respectively. Each fit 
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Q s P is considered partially ordered by the restriction of ^ from P to Q. If this is 
the case then we call P an extension of Q. 

We denote by yPA the 1. u. bound and by /\PA the g. 1. bound of A in P. Instead 
of yP{a> b) we write ay b. We define \fP0 iff P has a least element o; then we put 
VJ»0 = 0. We say that an element a e P is completely V-irreducible in P if a = 
= VP-4 S> a e A for all ,4 £ P. The set of all completely v-irreducible elements 
in P will be denoted by IRF and the set of all elements of P having the dual property 
byIR£. 

If a S b => la ^ ib for all a,beP then we call the map i: P -> Q isotone; if the 
converse implication is also true then we say that i is an embedding of P into Q for 
arbitrary posets P and Q. Clearly, each embedding is an injection. If i is an embedding 
and also a surjection then we call i an isomorphism of P onto Q9 Q the isomorphic 
image of P and write P s (?. 

Whenever a <£ VL-4 => there exists 6 e A such that a <* b for all A £ L holds 
for an element a in a complete lattice L then we say that a is completely V-primitive 
in L. The set of all completely V-primitive elements in L will be denoted by PL 

and that of all dual atoms in L by A*. 
We consider every ordinal number p. to be the set of all ordinals less than p ordered 

in the natural way. 
The elements of the cartesian product At xA2 x... xAm of sets will be denoted 

by (ai9a2> ...,tfw). If Li9L29 . . . ,£m are complete lattices then LxxL2x...xLm 

means the direct product of them. We denote by ( a ^ j an element of the direct 
product J ] Lt of complete lattices. In case Lt = L for all i e / we write L1 instead 

of J ] £,... We identify the complete lattice 2r with the system of all subsets of the set /. 
i t / 

If if is a class of complete lattices then TlJSf denotes the least superclass of if 
closed under direct products and isomorphic images. One can easily see that H& is 
exactly the class of all complete lattices L for which there exists a system {L(; i e /} £ 
c se satisfying L s. f] L{. 

iel 

The definitions of those basic lattice-theoretical notions which we use and do not 
define here can be found in [1]. 

1.1. Definition. Let P be a poset and aeP. Then we denote 

WpO == {b; b e P and b S #}- Mi -= {b; b e P and a g b}9 

(Dp~a = Wpa — {a}9 BPa = P — e^. 

We put apA = Uap[-4] for a « ct), e and all At c P. 

1.2. Definition. Let A be an arbitrary subset of a poset P. If A =- c.v.1, -4 = zwA 
then we call .4 an initial\ final segment in P, respectively. 

We denote by -Dj» (or, if no confusion arises, by O) the system of all initial segments 
in P. 
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1.3. Definition. Let P be a poset. 
We say that © is a generating system on P whenever {P} u o>p[P] S © S Op 

and © is multiplicative. 
The system of all generating systems on P is '$ki& to l>e a gs-lattice on P and 

denoted by Gs(P). 

1.4. Theorem. Let P be a poset. Then the assertions (i), (ii), (iii) hold. 
(i) Every generating system on P is a complete lattice. 

(ii) Gs(P) is a complete lattice. 
(iii) Both in an arbitrary generating system on P and in Gs(P) the I. u. bound of each 

nonempty subset is its intersection. 
Proof. The statements follow by theorem 10 [1], by the multiplicativity of Gs(P) 

and by the fact that Op is a greatest element in Gs (P). 

1.5. Definition. The class of all complete lattices isomorphic to Gs (P) for some 
poset P will be denoted by G. 

1.6. Definition. Let P be a poset. We denote by 9tp (by 91) the least element in Gs(P). 
The complete lattice 9lF is called a normal or a MacNeille completion of P. 

1.7. Lemma. Let P be a poset. Then the assertions (i)—(iv) are true. 
(i) Bp'.P -» Op i5 an embedding. 

(ii) © n gP[P] s m*mfor each © e Gs (P). 
(iii) fip[P] S © => © = Dp for each © e Gs(P). 
(iv) sP[P] = IR£. 
Proof. (1) a «£ b o BPa s Bpb for all a, b e P is true trivially. 
(2) Consider © e Gs(P), Spa e © and 91 s © such that Bpa = A©2L If 91 = 0 

then Bpa = P which is a contradiction. In case 91 # 0 we have Bpa = fl 91 by 1.4(iii). 
Then a $ (191 and there is A e 91 with the property a # A. This and Bpa s A give 
£pdi = A. e 91 which proves (ii). 

(3) The statement (iii) follows immediately by 1.4(iii) and by the fact that A = 
= r\BP[P - A} for each AeDP - {P}. This fact and (ii) imply (iv). 

1.8. Lemma. If P is a poset, © e Gs(P) and 91 S IR | - 9lF then © - 91 € Gs(P). 
Proof. Clearly, it is sufficient to prove the multiplicativity of © - 91. If 0 c 33 s 

S © - 91 then fl® e © and either ( IS e® s © - 91 or OS #93. In the second 
case n » # I R | according to 1.4(iii). Hence fi93#9l and, further, f l S e © - 9 1 . 

1.9. Ctrollary. ([5], Corollary 1 of Theorem 4) Each complete lattice LeG is 
dually atomic and the set kd

L generates a complete sublattice of L isomorphic to 2A£. 
Proof. If P is an arbitrary poset, © e Gs(P) and © c Op then there exists a € P 

satisfying Bpa$ © by 1.7 (iii). We obtain © s § -<Op for § = Op - {#pa} and 
§ e Gs(P) according to 1.8. This says that Gs(P) is dually atomic and that k4

G%iPy «* 
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== {-DF — {A}; _4€fiP[P] — 9lp}. The remaining part of the statement is a con
sequence of 1.8 and of the selfduality of 2'piP}~mp. 

1.10. Definition. Let P be a poset and 91 £ ©P. We denote by <9l> the least 
multiplicative system -B with the properties P G 93, 91 £ -B. 

If©eGs(P)and9l = {Ai9A2, ...,Am} then it is possible to write <©, Al9 A29..., 
..., Amy instead of <© u 9I>. 

1.11. Lemma. Let P be a poset, 91 £ ©p and AeDP. Then the assertions (i)> 
(ii) hold. 

(0 <2l> = {nS; 0 c 93 s {P} u 91}. 
(ii) <9lF, A[> is fhe /east © G Gs(P) satisfying AG®. 

1.12. Lemma. Let P be a poset, I # 0 a«d 91 f £ Opfor each 16 7. Then 

< U ^ > = { f l ^ ; Ate<%> for all ieI}. 
iel iel 

Proof. Let us put G = { fl At; A% e <9l<> for all i G / } . Clearly, P G G, U % S G, 
i6 / 16/ 

and U 91* £ 15 => G £ D for every multiplicative system D. That is why it is sufficient 
iel 

to verify the multiplicativity of G only. Choose 93, 0 c. 93 £ G, arbitrarily. Then 
there is Cf G <9t<> such that B = f\ Cf for all iel, Be®. If we put Cf = (\ Cf 

iel Be© 

then C, G <9Ij> for each i G / and, obviously, (193 =? f| C i G $• 
ie / 

1.13. Corollary. The assertions (i), (ii) hold for an arbitrary poset P. 
(0 VGS(P)A = { fl ^ A§ G $ for each § e A } for every nonempty system A £ 

£eA 
£ Gs(P). 

(ii) <©, Ay c © u o>0A for a// © G Gs(P), A G O P : 
Proof. The statement (i) follows by U 2 and by VGS(P>A = <UA> for each non

empty system A £ Gs(P). Regarding 1.12 we obtain <©, A> = {C n D; C e © 
and D G {P, A}}; this gives (ii). 

1.14. Lemma. Le* P be a poset, © e Gs(P) and A eDP. If A $ © *he« <©, ̂ > -
-~{,4}GGs(P). 

Proof. Suppose that A $ © and put G = <©, -4> - {A}. G is multiplicative: 
Let us take 91, 0 c 91 £ G, arbitrarily. Then 9t £ <©, A> => (191 G <©, A>. 21 £ 
£ © u co$A by 1.13(H). If 91 n G>gv4 = 0 then 91 £ © and ri9l G © £ G. Otherwise 
f l9 leA . and 091 GG, too. 

1.15. Lemma. mGs(P) = {<9lF, Ay; AeDP- 9tP} for every poset P. 
Proof. Let P be an arbitrary poset. Clearly, ® » VGS(J»){<91J»> ^>; A G © - 9M 

for each © e Gs(P). If © G IRGs(P) then © « <9tj>, -4> for some At € © - #j> £ 
£ O F - 9lF. 
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Put © = <9ij», Ay for an A eO F - 9lP and suppose that <5 «- V Q ^ A where 
A c Gs(P). It holds A # 0 trivially and for each § € A there is A$ B § satisfying 
A = f\A$ according to 1.13(i). By this, $ s S g J t F u mDA (see 1.13(ii)) and by 

A c ^ it follows that Af^ € 9lj» or ^ = A for every $ 6 A. If A$ € 9lF for each 
§ e A then Afe9tF£ (5 and we have a contradiction. Thus there exists &0eA 
with A$Q = A. Then © £ .£>0 and, with respect to the validity of the converse 
inclusion, © = § 0 e A. 

1.16. Corollary. If L e G then every element of L is the I. u. bound of a set of 
completely N-irreducible elements. 

2. DIRECT PRODUCT IN THE CLASS G 

yiP = {jp} u {ncoF[X]; 0 c X c p} is an easy consequence of 9tP = <coF[P]> 
andl.ll(i). 

2.1. Lemma. Let us take a poset P, a final segment Q in P, A e O Q — {0} a«d 
i? == (p — Q) u A. Then the assertions (i), (ii), (iii)9 are true. 

(i) Be9lP=>Ae9tQ. 
(ii) Pegp[P]-^AegQ[Q] . 

(iii) P e (oP [P] => A e coQ [g] . 
Proof. Suppose that BeSflp. B = P implies ^ = 2 <=9tQ. If B c P then B = 

= ncoP[X] for a set X, 0 c X c p. Since A # 0 there is a € -4 c ncoF[X] and we 
obtain Xc £pa; this and ePa c g give I g g . Then _4 = P n Q = nc%[X] n g = 
= na>Q[X]€9tQ. 

If Be£/»[P] then there exists aeP satisfying B = BPa. By P - Q c p and a # P 
we obtain a e g . Then .A = B n g = 8Qa e £Q[g]. 

If P e mp [P] then P = coPa for an element a e P. As g is a final segment in P, 
0 c A c g and >4 c coPa, we have a e g and _4 = cop~a n g = coQa 6 <oQ[g], 

2.2. Lemma. Lef P be a poset, Q a final segment in P, A eOQ — {0} an</ fet P = 
= (P ~ 0 u -4 satisfy o)PA = P. Then the assertions (i), (ii), (iii) ho/d. 

(i) AG9lQ=->Pe9V 
(ii) ^ e g Q [ g ] = > P 6 ^ [ P ] . 

(iii) A 6 cwQ [g ] => B € cop"[P]. 
Proof. Let us assume that A e9lQ. A. = g implies P = Pe5lp. If A c g then 

-4 = ncoQ[X] for a nonempty set X c g. 4̂ c ncop[X] is true evidently. For each 
heP ~ Q there is an ae-4 such that ft < a because cop_4 = B. Hence 66 ncop[JT] 
and also P - g c ncaF[X]. We have proved B c nc%[Jif]|. This inclusion and the 
obvious validity of its converse give P*e9tp. 
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If A 6 %[G] then there is an a e Q with A = BQa. As a $ 6 for all b e P - 2 , 
we get P — Q £ 5^ . By this and by ipa n g = gQa we obtain Bpa -= (£pa n g) u 
u (s*a n (P ~ g)) « Ai u (P - g) = B which proves UeSp[P]. 

If A € t*>a[g] then A = co^a for some a e g. For every beP— Q there exists 
c e A such that b <£ c. As simultaneously c < a, it holds 6 < a and we have P — Q cz 
c cap a. This and O>Q a = copa n g imply i? = copa e a>p [P]. 

2.3. Definition. Let / be a chain and {Pf; 16 7} a system of nonempty posets. We 
denote by £ P, the disjoint union U pi partially ordered in the following way. For 

iel iel 

arbitrary elements a, be \J Pt there are j9 kel such that aePj9bePk. We put 
iel 

a£bifj = k and a e (Opjb or iff < k. 
The poset ^£iPi is called an ordinal sum of {P,; iel). One can write P0 + Px 

iel 
instead of £-Pi

le 2 

2.4. Lemma. Let P = £ Pf, .A e Op, j e I and Aj = Pj n .4. 7V.e/i (i), (ii) are true. 
16/ 

(i) 0 c ^ => Pj c .A /ar eacA 1 < f 
(ii) 0 c Aj cz Pj => A = ^ -Pi + Aj. 

*</ 

2.5. Lemma. Let P = Y. Pi> ^ e ° F » 7 e -* ̂ wrf Aj = Pj n A. If 0 cz Aj c Py 
ie/ 

tAefl fAe assertions (i), (ii), (iii) A0W. 
(i) AieSlpO^yeSlp^ 

(ii) ^ e g p f P J o ^ e ^ p J P y ] . 
(iii) Aecop[P]<=>^yeojpJPJ. 
Proof. If we put g = £ Pf and JR = P - g then P = g + 1* and R = P, + 

i< i 

+ (* - -fy 
(1) A^ e nPj o Aj e 9lR: Since Aj c py , it holds Aj e 9tPj iff Aj * Hcyp^^] for 

a set JT, 0 c X £ P^. This is equivalent to Aj = Oe^X] e 9lR regarding coPja = G)Ra 
for each aeXand Pj s cô a for each as R - Pj. 

(2) .4/ ^ «#»,[-*/] < > 4f6 a * M for a = «, co": aPja = <xRa for all a e Pf and ^y c 
cz Pjgz <xRa for all a e 1? - Py. 

(3) A j G 9tR o A 6 9lp follows immediately by 2.1(i) and 2.2(i). 
(4) A j e «u[!(] o At e aP[P] for a = s, a>~ is a consequence of 2.1(ii), (iii) and 

2.2(ii), (iii). 
% (-)» (3) we obtain (i) and (2), (4) imply the statements (ii), (iii). 

2.6. Lemma. Let A be an initial segment in P = £ Pt with the property P4 n As 
iel 

€ {0, Pi} for each i e L Denote by (a) the following condition. There iske I such that Pk 

has a least element o9 A = WpO and A has Hot a greatest element. 
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Then A e (sP[P] n G>P [P]) - 9tp // (a) is true and Ae$tp otherwise. 

Proof. It holds P ** A + Rfor i? = £ P* w h e r e J " 0*» * s /, -P< n _4 « 0}. 
lei 

If J? = 0 or if .4 has a greatest element then, clearly, Ae9lP. 
Suppose that R # 0 and .4 has not a greatest element. By the assumption that R 

has not a least element we obtain A = fkopfi*] e9tp. If R has a least element o 
then / has a least element k and o is a least one in Pk. As o is comparable with all 
elements of P, we have A~8pO=* o>pO e £P[P] n <wp [P]. Let us admit that Al e 9lF. 
Then Af = ncoP[X] for some set X s P. For each a e -Y it holds a # -4 because i4 
has not a greatest element and a is an upper bound of A. Hence o e mPa and we 
obtain o e neoP[X] -= A, a contradiction. 

2.7. Corollary. Let P be a poset. Then 0 € (sP[P] n o>P [P]) ~-3lpifP has a least 
element and 0 e 9lp otherwise. 

2.8. Definition. If / is a chain and T = {Pf; /€ /} a system of nonempty posets 
then we put I0(T) = {/; Pt has a greatest element and there is i" satisfying t «< i*9 

Pv, has a least element}. Let /0(F) be a set disjoint with /for which there is a bijection 
' : I0(T) -* J0(T). Let the chain J(T) = /0(F) u / be an extension of / with the 
property i < V < i" for all / e /0(F), i -< V in /. 

The ordinal sum of the system {P/, je /(.T)}, where Pj is an antichain {aj9 bj) 
m 

for eachy e /0(r) , is said to be an ordinal m-sum of f and denoted by V Pt. One 
m m irnl 

can write P0 + Pt instead of £P*. 
irnl 

m 

2.9. Lemma. Let A be an initial segment in P = £ Pf satisfying P(r\ Ae {0, Pg} 

jbr eacA i € /. Then A 4 ftp if and only if there is k e I such that Pk has a least element o 
and A -= cop~o. 

Proof. Let us denote F » {P,; iel). 
If there is k e J0(F) with 0 c Pk n A c Pk then A. € {copa*, o>pbk} £ 9lP. Suppose 

that P$n Ae{0,PJ for each /e/(_T). Regarding 2.6, it is sufficient to prove the 
equivalence (a) o there is k e I such Pk has a least element o and _4 « o P o. 

(a) implies that Pk has a least element 0 and A = c% o for some k e J(T). Since Pt 

has not a least element for each / € /0(P), it holds kel. 
If there exists kel such that Pk has a least element o and _4 =- aipo then _4 has 

not a greatest element: Let us admit that i is a greatest element in A. Then we can 
find l,K kin J(F) such that i is the greatest one in Pt. As / e I is obvious, we have 
/ < k in /, P! has a greatest and Pk a least element. Thus there is /' e J0(T) with 
I < T < k in J(r), a contradiction. 

2.10. Theorem. # P « £ P , then Gs(P) s ] ] Gs(Pf). 
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Proof. Let us put #® = (©iW where 

~ _ /{Pi n A; A e ©} - {0} if Pt has a least element o and a>pO $ ©, 
' \{Pin A;Ae<5} otherwise 

for an arbitrary © e Gs(P). 

(1) ©, 6 Gs(Pi) for each i e I: By P e © and 0 c P4 == P, n P it follows that 
Pi€^bi. Because of & a Ptn(Opa — mPia and co^ae® for all aePi9 it holds 
<DPt[Pi] £ ©i. The inclusion ©j c ©^ is true trivially. If 0 c 8tf £ ©i then there 
is 21,0 c 21 £ ®, with the property 21, = {Pt n A; A e 21}. By this we obtain n2lf = 
« ( I{^ n Al; ^ 621} = Pi n 021 € {Pj n yl; Al e ©}. If Pc has a least element o 
and (Dp o $ © then 0 £ 2lf and we have 0 e _4 for each A e 2lg. Hence 0 c (121,. and 
aIson2l,€©i. 

(2) i is an embedding of Gs(P) into J~I Gs(Pi): Regarding (1) and the fact that i is 
iel 

isotone it is sufficient to prove ©$ .§=> there is k e I having the property ©* $ $* 
for all ©, § e Gs(P). 

Thus, let A e © - § for some ®, $ e Gs(P). Then / # 0, .4 £ 9lP and, by 2.9, 
one of the following possibilities arises. 

(a) There is k e I such that Ph has a least element o and A = cop 0. 
(b) B c P ^ n ^ c P n for an index fc e J. 
In case (a) we have (Op o e ® — § and it follows that 0 e ®k — $>k. If (b) is true 

then Ph n A e ©*. If we admit Ph n A e §* then there is B e $ satisfying Pkn B — 
*= Pkn A. By this and by 2.4(ii) we obtain .4 = B e § which is a contradiction. 

(3) i is a surjection: Let us denote F = {Pf; / e / } and gi = £ P,- for each 
Jeo)j(r) * 

/€ /. Choose (§i)i€/ G J"] Gs(Pf) arbitrarily and put 
i€l 

© - « P u {6i + ^ ; ^ e S i - {pj , i 6 / } . 

© e Gs(P): The inclusions {P} u coP[P] c © c ©P hold obviously. We prove 
that © is multiplicative. Let 21, 0 c 21 c ©, be arbitrary and let A = f12l. With 
respect to 9tP £ ©, 2.9 it is sufficient to investigate the possibilities (a), (b) from (2). 
If (a) is true then A = sPo. Thus it follows A e 21 c © by 1.7(iv), 1.4(iii). In case (b) 
denote 93 = {P;Pe2l and Pk $ P} and 93* = {PknB; Pe93}. Then, clearly 
93 =* 0 .-* 93k. For an arbitrary P* e 93* we can find B e 93 such that Bk = Pkn B. 
If P e Sip then P* e 9iPfc - {Pj c j k - {pfc} regarding 2.5(i) and Bk c P*. If B £ 9tp 

then there are i e J, Ce Si - {Pf} with the property B = Qt 4- C. This and P = 
= G* + #*> 0 c #* c Pk g*ve * = fc and Bk = C e § * - {Pk} by 2.4. Hence 93* c 
£ & - {A} and Ak = P* n ^ = (193* e § * - {Pj ; we have A = & + Ake ©. 

(©*).€* = (Si)i€/: L e t i e * a n d -4 e ©i be arbitrary. 
A — Pt implies A e $i-
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By 0 c A c P f we obtain A = Pt n J?for some J?e(5. If Be$tP then Ale JlP| s 
£ $f according to 2.5(i). If B = Qj + C for some jf e J, C € % - {P;} then j = i 
and At = Ce $f regarding 2.4. 

Assume that >4 = 0. Then either P| has not a least element or Pg has a least 
element o and 0, = coP o e (5. In the first case A e 9tP| £ § | by 2.7. In the second 
one 0<£9tP according to 2.9. Thus, there are ; e J and C e ^ - {Pj} with the 
property Q% = 0^ + C. Hence y = i and C = _4 so that >4 € §,. 

If we consider an arbitrary element A e §, then one of the cases -4 = Pi5 0 c ^ c 
<= Pi, A = 0 arises. A = P* € ©4 with respect to (1). If 0 c ,4 c P, then B = 0r + A 
and >4 = Pg n 5 € ®,. By A = 0 it follows that 0, e ® and by this A 6 ®t. 

2.11. Corollary. G = IIG. 

3. THE CONCEPT OF A SIMPLE POSET 

3.1. Definition. Let P be a poset. We say that an ordered pair (a, a!) of elements 
of P is a twin-pair in P whenever a $ x o x :g a' for each jceP. 

We put UP = VP u WP where VP is the set of all first members of twin-pairs 
in P and Wp is the set of all such elements of P which are comparable with all elements 
of P. Clearly, Vp = {a; a e P and Bpa e caP[P]} and Wp = {a; a e P and Bpa = cop a}. 

3.2. Lemma. VP = UP n HtP for every poset P. 
Proof. Let a e VP be arbitrary. One can find a' eP such that (a, a') is a twin-pair 

in P. Suppose that B £ P satisfies \/PB = a. If a # 5 then a%b and thus 6 <£ a' 
for all 6 € B. This implies a = \/PB S <*'• But then a' $ a' by the definition of a twin-
pair which is a contradiction. Hence a e B and we have proved a € IRPf VP £ IRP. 
That is why VP £ UP n IRP. 

Let us admit that there is an element a e (UP n IRP) — VP. Then Bpa = o>Pa 
regarding a e UP - VP = WP and because of a € D*P, VpCOpa = a is not true. Thus, 
there exists an upper bound b of cop a with the property a % b. If b < a then becoPa 
and, further, Bpa = coP a = a)P6. That means a e VP which is a contradiction. In case 
b < a it holds 6 6 fi|»a — coPa; this contradicts a € WP. 

3.3. Definition. We say that (R, C) is a suitable pair in a poset P if the assertions 
(i), (ii) hold. 

(i) IRP £ R £ P. 
(ii) Up n -R £ C £ J?. 
We denote by S(P) the set of all suitable pairs in P ordered in the following way. 

(Rt, Cx) S (*2, Ca) if Rt £ i*2 and Q £ C2 for arbitrary (Rt, Ct), (£2, C2) e S(P). 

3.4. Theorem. If P is a poset then S(P) s 2B x3J x2J w/rere if « Up - IMP> 

/ = P - (UP u IRP) and / = m P - UP. 
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Proof. For each (R9 C)eS(P) put i(R9 C) = ((ka)a€fi9 (ma)aet9 (na)aeJ) in such 
a way that 

. J O f o r a ^ P ) j ? r 0 r a ^ f A A JO fo ra#C) 
K^S.c D h nta = U for a e P - C\ and na = <t

 F v. * l l f o r a e i q - r - I l f o r a e C f u J (2 for a e C J l J 

i is an embedding of S(P) into 2H x3 f x2 J: It is evident that i is isotone. Let us 
thus suppose that (Ri9 Cx) $ (R2, C2) for some (Ri9 Ct), (P2, C2) e S(P). 

If there is a e Rx ~~ R2 then a £ IRP and either a e UP or a # UP. In the first case 
we have a e UP - IRP; by this we obtain ka = 1 in i(Rt, Q) , fcfl = 0 in *(P2, C2). 
In the second one a e P - (UP u IRP), ma > 0 in *(/*!, CJ and ma = 0 in *CR2, C2). 

Let there exist fleQ-Ca. Since UP n IRP £ UP n i?2 c C2 and a £ C2, it 
holds a £ U P n I R P . Thus, exactly one of the assertions a e U P — IRP, aeP — 
- (UP u IRP), a 6IRP - UP is true. In the first case aeCx=> ae Rl9 a$C2=> 
=>a£UPni?2 and, as aeU P , it holds a$R2. Hence aeRx — R2 and we have 
ka = 1 in i(Ri9Ci)9 ka = 0 in /CR2, C2). In the second one it holds ma = 2 in 
j(ilj, Cj), mfl < 2 in /(£2, C2) and in the third one na = 1 in i(ilt, Cj), ?ifl = 0 
ini(P2 ,C2). 

We have shown that each possibility gives i(Ri9 Cx) % i(R29 C2) which proves 
the statement. 

i is a surjection: Let us put R = IRP u {a € H; ka = 1} u {a e /; m. = 1} and 
C = (UPnmP )u{aef-T; ka = 1} u {ael; m<l = 2 } u { a e / ; /i« = 1} for an 
arbitrary element n = ((fc«)«6H> (ma)a*i> Mamj) e 2H x 3J x2J. 

IRP c -R s P is true obviously. This, UP n U = (UP n IRP) u {a e H; km = 1} s 
s C and C s i* imply (R9 C) e S(P). It is now easy to verify that i(R9 C) = n. 

In the following we shall need some corollaries and nonessential modifications 
of statements from [2]. For a better understanding of the text we introduce all 
of them consecutively. 

3.5. Lemma. ([2], 2.10(i), 2.11) Let P be a poset ami © e Gs(P). Then the asser
tions (i), (ii) hold. 

(i) o)P: P -* © is cm embedding. 
(ii) IR$ and P$ are subsets ofcoP\P"]. 

3.6. Theorem. ([2], 4.7, 4.10, 4.13) Let P be a poset and R9 C subsets in P. Then 
(R9C) e S(P) if and only if there is © e Gs(P) satisfying 1R& = coP[R}9 ¥m = coP[C]. 

3.7. Lemma. ([2], 3.4, 3.5) Let P be a poset9 © e Gs(P) and aeP. Then the asser
tions (i), (ii) are true. 

(i) (Opa e IR0 o (oP a e ffi. 
(ii) a>pa e Vm o Spa e ©. 

3.8. Corollary. If P is a poset and ©, § e Gs(P) rte« © c § -=> IR^ s ffi^, 
P ^ P * . 
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Proof. Suppose that © s §. If A elR^ then there is aeP such that Am mpa 
according to 3.5(ii). By this and by 3.7(i) it follows that mfa 6 © and this gives <op a 6 
e §. Then A = coPa e IR^ by 3.7(i) again. The inclusion P@ £ P^ can be proved 
similarly using 3.7(ii) instead of 3.7(i). 

3.9. Corollary. IRm = coP[IRp] and P-̂  * coF[Vp] for every poset P. 
Proof. If P is a poset then there exists (P, C) 6 S(P) with the properties o>p[P] » 

= IRgj, a>p[C] = ¥m by 3.6. (P0, C0) -* (IRF, VP) is the least element in S(P) regard
ing 3.2. From this and 3.6 it follows IR@ = ce>p[P0]> P© = G>P[Q] for some © e Gs(P). 
According to 9lp s © and 3.8 we obtain tuP[P] = IR$ £ IR© « C0p[j?o], ct>p[C] -= 
= Pgj s P 0 = cop[C0]. Then (P, C) £ (P0, C0) by 3.5(i) and, immediately, (P, C) « 
= (P0, C0). 

3.10. Corollary. Lef P be a poset. Then the assertions (i), (ii) are true 
(i) «pa#9lpoa€P - VP. 
(ii) 7%ere i$ a bisection of P — VP <?« to AGS(P). 

Proof. It follows by 3.9 and 3.5(i) that <oPa€¥moa€VP. This and 3.7(ii) 
give fipa e 9lp o a G Vp which is equivalent to (i). 

The proof of 1.9 and (i) imply Ad
Gs(P) == {Op - {ipa}; aeP - VP}. By this and 

by 1.7(i) we obtain (ii). 

3.11. Definition. If P is a poset and Q £ P then we put $$ == {A; A eOp and 
cop a c .4 => a e A( for all a e P - Q}. 

3.12. Lemma. Let P be a poset and Q s P. JAe« §? =- <$?>. 
Proof. P e £$ holds trivially. $? is multiplicative: Let us take 91, 0 c 21 s §& 

arbitrarily. If a>p~a c (191 for an element aeP — Q then o)P"fl s ,4 and c e ^ for 
each A e 9T. Thus a e (19L 

3.13. Lemma. ([2], 3.11, 3.12, 3.13) Let P be a poset andTBLpCRcp. Then the 
assertions (i), (ii), (iii) hold. 

(i)SfeGs(P). 
(ii) IR^H = a>p[P] = P ^ . 

(iii) mm s G)p[P] <*>©£§* /ar a// © e Gs(P). 

3.14. Definition. Let P be a poset and (P, C) e S(P). We put 3p(Pf C) - f>* -
- 5p[P - C]. 

3.15. Theorem. Let P fo? a poset and (P, C)eS(P). Then the assertions (i)-(iv) 
are true. 

(i)%p(R,C)€Gs(P)> 
(ii) IR3l»(K,c) = % W -

(iii) P3P(K,C) - <%[£]. 
(iv) D ^ . s O>P[P] and¥mc: caF[C] o © £ 3p(P, C)/ar atf © e Gs(P). 
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Proof. (1) If Bpa e flP then a € VP by 3.10(0 and a e C as VP c C by 3.2. Hence 
$P[R - C] n 9lP * 0 and we obtain 3P(P, C) » §f - gF[H - C] 6 Gs(P) using 
3.13(i), L7(ii) and 1.8. 

(2) Bp[R - C]n <Op[P] « 0 : L e t a e P - C b e arbitrary. Then a e !*, a # UP n 
n P and for this reason a $ UP 2 WP. Hence caja c ĝ a. If we admit Bpa e ©p [P] 
then gfdr == G)p b for an element 6 e P. This is equivalent to a $ x o x < b for all 
jeeP and it gives a = b. But then Spa == (Opa which is a contradiction. 

(3) R - {oeP; ojpaelR^*} » {a€P; o>Pae§?} = {a e P; (Op~a e 3P(P, C)} 
according to 3.13(ii), 3.5(i), 3.7(i) and (2). By (Op a e 3P(P, C) o a 6 R and by 3.7(i) 
we obtain (ii). Similarly, 3.13(ii), 3.5(i) and 3.7(H) imply R*= {aeP; Bpae^f} so 
that C - {aeP; Bpae%(R9 C)} regarding 1.7(i). This and 3.7(ii) give (Hi). 

(4) Let us take ® e Gs(P) arbitrarily. ® s 3P(P, C) implies IR6 e coP[R~\9 P e c 
S <0P[C] according to 3.8 and (ii), (Hi). 

If m 6 s IR3J,(R,O then IR@ s coF[P] by (ii); this and 3.13(iii) give ® s $£. 
If, moreover, P 0 £ P3P(HJC) then P@ c a>F[C] with respect to (Hi). By this and by 
3.5(i) we obtain copae¥moaeC. Then Bpae (5oaeC by 3.7(H) and, clearly, 
® n £F[P ~ C] = 0. We have proved © £ §* - gF[p - C] = 3P(P> C). 

3.16. Corollary. 3P ' S(P) -• Gs(P) is an embedding for each poset P. 
Proof. Let a poset P and (P«, Q), (P2, C2) e S(P) be arbitrary. Regarding 3.5(i) 

it holds (Rl9 CJ £ (R29 C2) iff cop[Ri~\ £ Q>P[P2] and G>p[C,.] £ o>F[C2]. This 
assertion is equivalent to IR3P(KI>CI) £ coP[R2~\ and P^R^CO s wi»[C2] by 3.15(H), 
(Hi) and this is true iff 3p(Rt, C,) £ 3P(*2> C2) by 3.15(iv). 

3.17. Definition. A poset P is said to be simple whenever 3P- S(P) -• Gs(P) is 
a surjection. 

We denote by 0>s the class of all simple posets and by Gs the class of all complete 
lattices isomorphic to Gs(P) for some Pe&s. 

3.18. Corollary. If P is a simple poset then Gs(P) £ 2Hx3 fx2J where H = 
= UP - IRP, / = P - (UP u IRP) and J === ffiP - UP. 

Proof. This is a consequence of 3.16, 3.4. 

3.19. Theorem. Let P be a poset. Then the assertions (i), (ii) are equivalent. 
( i ) P e ^ s . 

(ii) O P s nP u BP[P] u o)P [P]. 
Proof. Assume that there is _4eOP - (9tP*jgP[P] u a)P [P]). If we denote 

® « ^ p , A[> and $ = ® - {At} then § e Gs(P) by U4. Let us admit that § e 
e3P[S(P)]. Then § = 3P(*> C) for some (P, C)eS(P) and IR^ = o>F[P], P^ » 
«- caP[C] according to 3.15(H), (Hi). By this and by 3.7(i), (ii), 3.5(i) we obtain R = 
=*{aeP; Wpae&}9 C^{aeP; BpaeSy}. This and coF a e § o cop a e ®, Bpae 
€ § <=>Bpae ® for each a e ? imply IR@ = coP[P], P@ * G>P[C] regarding 3.7(i), (ii). 
Then ® s § by 3.15(iv) which is a contradiction; hence § # 3P[SCP)] and also P$&s. 
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Suppose that Pt&s. Then there exists ® e Gs(P) - S.-I.Stf')] and we can find 
(R, C)eS(P) such that JRQ = ©,[/?], P« - o)f[C] by 3.6. From this it follows 

1,00 Єpaєi&oЄpaє3,,(Ä, C), co/вє©•*»»<OpaєЗ^Ä, C) 

according to 3.15(H), (iii), 3,7(i), (ii) on the one hand and ® s %(R9 C) by 3.15(iv) 
on the other hand. As we suppose <5 *- %F(R9 C% (there is A e 3p(j?, C) - ®. By 
this, (a) and 9lp s <5 we get AI e Op - (9lp u fip[P] u cop [P]). 

Р2: Ѓ: 
C? 

Figure 1 

3.20. Example. By means of 3.19 one can easily see that the posets P2, P3 from 
Fig. 1 are simple. Regarding 3.18 and Up2 » {a, 6}, WBLp2 » {a, fc, c}, Up3 «• 
=-= {a, ft, c} = IRps it holds Gs(P2) s 20 x3 0 x2<c> s 2 and Gs(P3) a 2* x 3 w x 
x 2 0 £ 3. 

3.21. Theorem. G5 » Il{2, 3}. 
Proof. G5 s II{2, 3} according to 3.18. 
If L€ Il{2, 3}then there are ordinal numbers p.9 v satisfying L s 2 " x 3 V . Let us 

m 

put x = pi + v, Pi = P2 for r < JU, Pt * P3 for /i ^ i < x and P = J] Pf. Then 

Gs(P) £ [ ] Gs<p«) S 2" x 3V s L by 2.10 and 3.20. 
iex 

Pe&>s: Choose AeDP arbitrarily. With respect to 2,9 it holds Ae3lP in all 
cases except (a), (b) from 2.10(2). The possibility (a) does never arise because P< 
has not a least element for all * e x. If (b) is true then there is k e x such that 
0cPknAcPk. By Pk e {P2, P3} s &>s and by 3.19 it follows Pk n .4 e 9lpte u 
u fip-XP*] u ^[Pfc]. This gives A e 9lF u £p[P] u <*>p [P] regarding 2.5 and then 
Pe^sby3.19. 

The following example is a negative answer to the question whether Gs(P)e 
eGs=> Pe&s for each poset P. 

3.22. Example. Consider the poset Q from Fig. 2 and put A -= {a, 6}, i? =-* {a, 6, </}, 
C = (a, c, d}, D * {a9 b9 c9 d}9 E = {a9 b9 c9 d9 e}. One can easily verify that Gs (0 
is the complete lattice from Fig. 2 where, for example, the generating system 9le u 
u {A9 C} is denoted by A9 C. 

Gs(0 e Gs obviously and, at the same time, Q$@*sby 3.19 because A e Op — 
- (yip u £P[P] u Qlp [P]). 

149 



&(Ш: AMM 

Q: wљ MДE 

AA ДŐД 
<ш,ŕ> 

ч ><Ж 
i A Ҳ > < \Дß,o\ <мű\ <^QfS/ v ДßJ KҐ дbк yШ) SйE 

У ,/дûN 
;H f1 ч 

Figure 2 

4. COMPLEMENTATION IN THE CLASS G 

4.1. Lemma. Let P be a poset, A e€)P - 9lP and © = <9tP, A}. Then © has 
a complement in Gs(P) if and only if Ae BP[P — VP]. 

Proof. If A i sP[P - VP] then A i gP[P] according to A # 9tP and 3.10(i). This 
and 1.7(iv) give A£lRd

0. Then there is a system S, 0 c 8 c O f , satisfying A = 
= OS, A $ S with respect to A cz P and 1.4(iii). Let us admit that © has a comple
ment .§ in Gs(P). Then ©P = © V § = {C n D; Ce© and D e $ } by 1.13(i). 
Especially, for each BeB there are CBe ©, DBe § such that B = CB n DB. By 
this, > < c J c C B and 1.13(ii) we have CBe9tP£ $. We obtain consecutively 
J € $, IB £ § and A e §. But then .4 6 © n § = 9tP which is a contradiction. 

If .4 e BP[P - VP] then there is a e P - VP such that A[ = ePa. Put §a = §J~{fl> 
and 0 = <9tP u £a>. 

© V § = OP: It is sufficient to prove that £)P £ © v §. For the sake of this let 
us take BeCp arbitrarily. If mPa £ B => a e J5 then J5 6 §a £ § £ © V §. In case 
aip a £ -8, a # J? denote Ba~Bu {a}. Then 2?a 6 $a £ § and 1? = B&n Bae 
6© V§. 

© n $ « 9tP: We prove the inclusion © n <?> £ 9tP. Thus, let 5 e S n § be 
arbitrary. Since Be © and © = <9tP, gj»a>, there are Cx €9tP and Dt e ({Bpa}} = 
= {P,ipa} with the property B ^ C1nD1 by 1.12. If 5 = Ct then 5€9tP . If 
B <z Ct then Dj = 5|»a, a is the least element in Ct — 2? and, clearly, coP a £ _B. 
Regaining 1.12 and 3.12, $** {CnD; Ce9tP,2>e£>a}. By this and by -8e$ we 
obtain B = C2 n 2)2 where C2e9tP, -D2e.§fl. Since o>P a £ J £ D2, we have 
afeD2; thisanda#J give a$C2. Then .ficQnCj, a is a least element 
in Ci — B and a £ C2. It is now obvious that B = Q n C2 € 9tP. 
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4.2. Definition. We denote by Gc the class of all complete lattices L 6 G such 
that each element of IRL has a complement in L. 

The class of all posets P satisfying Gs(P) e Gc will be denoted by 0>c. 

4.3. Theorem. Let P be a poset. Then the assertions (i), (ii), (iii) are equivalent. 
( i ) P e ^ c . 

(ii) C>F s nP u SF[P]. 
(iii) Gs(P) s 2/>"Vl\ 
Proof. (i)=>(ii): l{ there is A e ©F - (9iF u £F[P]) then <9lF, Al> eIRGs(F) 

by 1.15 and <9tF, .4) has not a complement in Gs(P) according to 4.1. Hence P # 9C. 
(ii) => (iii): If DF s 9tF u £F[P] then ©F - 9tF = sF[P - VF] regarding 3.10(i). 

By this, 1.7(i), (iv) and 1.8 it follows that the map /: 2 F ~ V F -> Gs(P)defined by iX** 
= 9lP \J £P[X] is an isomorphism. 

(iii) => (i) holds trivially. 

4.4. Theorem. Gc = il{2}. 
Proof. GC c JJ{2} is true by 4.3. The validity of the converse inclusion can be 

verified by the method used in the proof of 3.21. 

4.5. Definition. We denote by &T the class of all posets with a trivial (one-element) 
gs-lattice. 

4.6. Theorem. P 6 0>r <=> DF £ 9lP for each poset P. 
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