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ITERATION GROUPS GENERATED 
BY Cn FUNCTIONS 

G. BLANTON and JOHN A. BAKER 
(Received March 3,1981) 

Throughout this paper / denotes a non-empty open interval in R, the real 
numbers. Suppose G is a set of functions from / to / which is a group with respect 
to composition. The main result of this paper gives sufficient conditions on G 
to guarantee that it is the iteration group generated by a Cn diffeomorphism of / 
onto R. The concept of iteration group is recalled below. 

Whenever a set of functions from / to / i s referred to as a group it is understood 
that the group operation is composition of functions and the identity of the group 
is the identity function, /, defined by i(x) = x for all x e /. Every member of such 
a group must therefore be a bijection of / onto / and its inverse is its inverse 
function. 

Given a set G of functions from I to I we define u G = {(*./(*)): xel,fe <?}, 
the union of the graphs of members of G. Such a set is said to be disjoint provided 
the graphs of any two distinct members of G are disjoint; that is, if / , g e G and 

/(*o) - g(xo) f°r some x0 e I then f(x) = g(x) for all xel. We say G is complete 
provided u C = / x / , 

Suppose <p: I -> R is a bijection of / onto R and for each a e R we define <pa(x) = 
= <P~ 1(<p(x) + «) for xel. Then it is easy to check that {<pa: aeR] is a group of 
functions from /to /which we denote by F[^] and call the iteration group generated 
by <p. In fact the mapping a -* <pa is easily seen to be an isomorphism of the 
additive group R onto F[<p] and hence F[<p] is abelian. It is also clear that F[q>] 
is disjoint. To see that F[<p] is complete notice that if x0f y0 e / and a •» <p(yo) — 
<p(x0) then <pa(x0) = y0. Clearly, if <p is a Cn diffeomorphism of/onto R then 
every member of F[<p] is a C" function. To summarize, given a C* diffeomorphism <p * 
of / onto R9 F[<p\ is a complete, disjoint group of Cn functions from / to /. Our 
main result, which we now state, is a converse to the last assertion and answers 
a question raised by O. Borftvka and F. Neuman. 

Theorem 1. If n J* 0 and F is a complete, disjoint group of Cn functions from / 
to / then F == F[<p] for some C* diffeomorphism <p of / onto R. 
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The case n = 0 is essentially a result of Aczel [1] for which we give a different 
proof. 

Borftvka and Neuman have also raised the following problems. Given a disjoint 
group G of continuous functions from / to / such that u G is dense in Ix /, can G 
be embedded in a complete, disjoint group F of continuous functions from / to / ? 
If so, and if each member of G is a Cn function, is each member of F a Cn function ? 
We answer the first question in the affirmative. The answer to the second question 
is no if n J> 1 and is the subject of a forthcoming paper of the first author. 

The main tools used in this paper are a theorem of O. Holder concerning fully 
ordered Archimedean groups and theorems of N. G. de Bruijn concerning the 
so-called difference property. 

Lemma 2. If G is a disjoint group of continuous functions from / to / then each 
member of G is a strictly increasing bijection of / onto /. 

Proof. As noted earlier, each member of G is a continuous bijection of / onto / 
and hence strictly monotonic. If some f in G were decreasing then there would 
exist an x0el such that f(x0) = x0 = i(x0). But this is impossible since f # i 
and G is disjoint. Hence each member of G is strictly increasing. 

If G is a disjoint set of continuous functions from / to / and iff, ge G withf # g 
then either f(x) < g(x) for all xel or g(x) < f(x) for all xeI. Thus we define 
a total (full or linear) ordering on G by lettingf < g in casef ge G andf(x) < g(x) 
for all (or some) xel. We refer the reader to [3] for terminology concerning 
partially ordered sets and groups. 

Proposition 3, If G is a disjoint group of continuous functions from / to / then G 
is a fully ordered Archimedean group. 

Proof. As just observed, our ordering is full. If f g e G andf < g then clearly 
fo h < go h and A o f < A o g for all A € G since every A in G is strictly increasing. 
Thus G is a fully ordered group. 

To see that G is Archimedean, letf, g e G with i <^f i <g g and suppose f" < g 
for all n = 1, 2 , . . . If x0 e I then x0 £ fn(x0) = f(f*(x0)) = fn+1(x0) < g(x0) and 
so, if y0 = lim f%x0) theti y0 e / and f(y0) = /(l im f"(x0)) = lim f(fn(x0)) * 

n-> + ao I I - * + OO n-> + ao 

= lim fn+t(x0) = y0 = i(y0). It follows thatf = /. Hence G is Archimedean. 
ii-* + ao 

Our proofs of the embedding result and the case n = 0 of Theorem 1 depend 
heavily on the following theorem of O. Hdlder (1901). A proof, due to H. Cartan 
can be found on pages 45—46 of the book [3] of L. Fuchs. 

Theorem 4. Every fully ordered Archimedean group is isomorphic, as an ordered 
group, to a subgroup of the additive group R with the natural ordering and is 
therefore abelian. 

Corollary 5. Suppose / i s a dense subset of/and / i s a fully ordered Archimedean 
group with respect to a binary operation-* on /and the natural*ordering inherited 

I • , 
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from R. Then there exists a strictly increasing bijection <p of / onto R such that 
<pix -* y) = <p(x) 4- <p(y) for all x, y e J. 

Proof. By Theorem 4 there exists a strictly increasing \(f : J ~* R such that 
*Kx*y) — M*) + $(y) for all x ,ye J. Since / is dense in /, between any two 
members of / we can find another member of / . Since ifr is strictly increasing, 
between any two members of ^i J) we can find another member of ^( /) . Thus in \jt(J) 
we can find a bounded, strictty monotonic sequence which is therefore a Cauchy 
sequence in R. That is, given e > 0, there exists w, v e \j/(J) such that u < v < 
< u -F e. Now \j/(J) is a subgroup of R so v ~ ue \j/(J) and 0 < v — u < e. 

Thus \j/(J) contains arbitrarily small positive members. It follows that \fr(J) is 
dense iti R. 

Now we show that \j/ is continuous. Given e > 0 choose 8 6 J such that 0 < 
< $(8) < e. Then e < 8 where e is the identity of / . If x0 e / then x08~l < x0 < 
< x08. UXQS"1 < x < x08 and x e J then 8"f < x0

xx < 8 and so — e < —\^(8) = 
= W1) < ^(x^x) = ij/ix) - <K*o) < $(8) < e. Now U = {x e J \ XQS"1 < 
< x < x08} is a neighborhood of x0 in /and we have shown that | \l/(x) — *Kx0) | < 
< e if x G (7. Hence ^ is continuous. 

Since / i s dense in /there exists a continuous <p : 1-+ R such that <p(x) = ^(x) 
for all x e / . But ^ is nrictly increasing and hence so is <p. Moreover, \j/(J) is dense 
in R so <p(I) = R. 

Theorem 6. If G is a disjoint group of continuous functions from / to / such 
that, for some Gel, {f(©):feG} is dense in / then G is a subgroup of F[<p] 
for some strictly increasing continuous bijection (p of / onto R. Moreover, if 
{f(9):feG}= I then G~F[c{>l 

Proof. Suppose / = {f(&) :feG} is dense in / fofr some & el and define 
& : G -* / by letting 0(f) = /(©) for all fe G. Then # is a strictly increasing 
bijection of G onto / where /has the natural ordering. For x, y e /define x •* y = 
= $(4>~1(x)o $~%(y)). Then (/, *) is a fully ordered Archimedean group with 
respect to the natural ordering and in fact $ is an order isomorphism of G onto / . 
Notice that © = &(i) is the identity of / . By Corollary 5 there exists a strictly 
increasing continuous bijection q> of / onto R such that <p(x * y) = tp(x) 4- <p(y) 
for all x,y e J. We claim that G is a subgroup of F[<p]. 

Let fe G and put a ~<p(f(©)). Notice/(©) e/ .Then, for any x e / , 

<pa(x) = <P~l((f>(x) + a) = <p~l(<t>(x) + <K/(©))) = ^ 

= ?~>(/(<S>)) + <K*)) = / ( 0 ) * * - ' # ( * - 1 ( A « » o , # " * W ) = 

. ~ # ( / o $ - ' ( x ) ) - = ^ 

since #^x(x) (0) = x. Since q>m and/are continuous and / i s dense in /,<P*(x) = 
= /(x)for all x e /. Thus jG is a subgroup of F[^] . ^ ' 

If / = / we claim G =- F[^l- F°r» if J-*e^. tSen there exists / e G such that 
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f(0) = <pfi(0). But there exists a e R such thatf = cpa so <pa(0) = <p„(0). Hence 
<P/j = 9a since F[^>] is disjoint and so (pfi = fe G. 

Notice that we have proved Theoreiti 1 for n = 0 because, if G is complete, then 
{f(0) :fe G} = / for all 0 e I. 

To settle the first embedding problem it is convenient to consider first the case 
/ = (0, 1). We will use 

Proposition 7. Suppose G is a disjoint group of continuous functions from (0, 1) 
to (0, 1) such that u G is dense in (0, l)x(0, 1). Then 

(i) for every e > 0 there exists g e G such that x < g(x) < x + e for all 
xe(0, 1) and 

(ii) for every 0 e /, {f(0) :fe G} is dense in /. 

Proof, (i) Let 0 < e < 1/2. For xel, u G must intersect the open set 
{(t, u) : x < t < x + e, t < u < x + e}. Hence for each xel there exists fxe G 
and t 6 (0, 1) such that x < t < x + e and / < fx{t) < x + e. Since t < fx(t) we 
must have / < fx and so x < fx(x). Since x < t andf. is increasing, fx(x) < fx(t) < 
< x + e. Thus x < fx(x) < x + e. Since fx is continuous, there is a neighborhood 
Vx of x in (0, 1) such that t <fx(t) < / + e for all te Vx. Now [e, 1 - e] is 

n 

compact so we can choose xl9 ..., xn e [e, 1 — e] such that [e, 1 — e] £ (J KXfc. 

Let g be the smallest offXl, ...,fXn. It follows that x < g(x) < x + e for all xe 
G [e, 1 - a]. If 0 < x < e then x < g(x) < g(e) < e + e < x + 2e. If 1 - s < 
< x < 1 then x < g(x) < 1 < JC + e. Thus we have x < g{x) < x + 2e for all 
xe(0 , 1). 

Similarly we could show that for every e > 0 there exists he G such that x — e < 
< A(JC) < x for all x e (0, 1). 

(ii) Let 0 el and 0 < e. Choose g e G such that x < g(x) < x + e for all 
xe(0 , 1). Then g"(6>) < g(gH(0)) = £B+1(©) < gn(0) + £ for all n = 0, 1, 2 , . . . 
Moreover lim g"(4?) = 1 because if x0 = lim #"(®)and0 < x0 < 1 theng(x0) = 

= x0 = /(x0) which is impossible since / < g. It follows that {f(0) :fe G, i ^f} 
is dense in [0 , 1). Similarly {f(0) :feG9f<> /} is dense in (0, ©]. 

Theorem 8. Suppose G is a disjoint group of continuous functions from / to / 
arid u G is dense in /x /. Then there exists a strictly increasing bijection <p of / 
onto /* such that G is a subgroup of F[<p]. 

Proof. If / = (0, 1) this follows from (ii) of Proposition 7 and Theorem 6. 
In general choose a strictly increasing homeomorphism T of / onto (0, 1) and 

let G a* {T ofo T - 1 :fe G}. Then the mapping / - » T ofo T" 1 of G onto G is 
an order preserving group isomorphism. Since the mapping (x, y) -> (r(x), x(y)) 
is a homeomorphism of Ixl onto (0, l)x(0, 1) it follows that u G is dense in 
(0, l)x(0, 1). Hence tliere exists a strictly increasing homeomorphism ^ of (0, 1) 
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onto R such that G is a subgroup of Fty]* It follows that G is a subgroup of F[<p] 
i f <p = iff o T. 

To complete the proof of Theorem 1 we will use the following result of N. G. 
de Bruijn [2]. 

Theorem 9. Suppose f:R~>Ris such that for every a € R the mapping x -~» 
->f(x F a ) — f(x) is continuous on R. Then there exists a continuous g : R ~> R 
and an additive A : R -» R such thatf(x) = g(x) 4- A(x) for all XG R. Moreover, 
if n ^ 1 and for every <xe R the mapping x -> f(x F a ) — f(x) is n times (conti­
nuously) differentiable on R, then g is n times (continuously) differentiable. 

Theorem 10. Suppose n J> 1 and F is a complete, disjoint group of n times 
(continuously) differentiable functions from / to /. Then there exists a strictly 
increasing bijection <p of / onto R which is n times (continuously) differentiable 
on / and such that F = F\jp] and q>'(x) > 0 for all x e /. 

Proof. According to Theorem 6 there exists a strictly increasing homeomorphism 
<p of/ onto R such that F = F[<p]. 

Since <p is increasing it is differentiable almost everywhere on /(see [4], p. 264). 
Hence there exists x0 e / such that <p'(x0) exists. Now let xt be an arbitrary member 
of L Since Fis complete there existsfe F such thatf(x0) = x{. Choose a e R such 
that f == <pa so that 

<p(f(x)) = <p(x) F a for all x e I. 

Hence, for sufficiently small real 8 # 0, 

<p(f(x0 + 8)) - (p(f(x0)) = <p(x0 + S) - <K*o) 
and so 

<K/(*o 4- 8)) - <p(f(x0)) f(x0 F <3) - f(x0) = <p(*o 4- ft - CJP(X0) 

/(*o + «) - / ( *o ) 5 6 

Now <p'(x0) exists and fis differentiable on /. Sincef"1 is also differentiable it 
follows that f'(x) > 0 for ail x e / and we concluded that <p '(f(x0)) exists. But 
xt = f(x0) and x, was chosen arbitrarily irom /. Hence <p is differentiable and 
<p'(f(x)) f'(x) = <p'(x) for all x e / and all fe F. 

If <p'(x0) = 0 for some x0 e / then <p'(f(x0)) = 0 for all fe F. This implies 
<p'(x) = 0 for all x e I which is impossible since <p is strictly increasing. Hence 
<p'(x) > 0 for all xel. Therefore >̂""1 is differentiable as well and (<p~l)'(x) > 0 
for all x 6 R. 

Now suppose f is continuous for every fe F. This means that, for every <xe R, 
the mapping x -» <p~l(<p(x) -F a) is continuously differentiable on /. Let $ = <p~l 

so that, for every ae R, the mapping x -• $(q>(x) 4- a) is continuously differentiable 
on J. Hence, for every <xe R, the mapping x -> $'(<p(x) + a) <?'(*) is continuous 
on /. Since \j/ = <p~l is a homeomorphism of JR onto /, for every a e R the mapping 
x -» ^f'(x 4- a) p'GK*)) is continuous on R. Let Q(X) = log \lt'(x) and <r(x) -* 
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- log (p'(\jf(x)) for xeR. Then, for every a e JR, the mapping x -+ Q(X + a) 4- a(x) 
is continuous on R. In particular the mapping x -» #(x) + a(\) is continuous. 
Hence, for every a e /?, the mapping JC -* Q(X + a) - Q(X) is continuous on /?. 
By Theorem 9 there exists a continuous }i : R -+ R and an additive A : R -» R 
such that g(x) = JI(X) + v4(x) for all xe R. Since ^ is differentiable, if/' is mea­
surable and so Q is measurable. Hence A is measurable and therefore there exists 
ce R such that A(x) = ex for all xe R (see, for example, Ostrowski [5]). It 
follows that Q is continuous and hence ij/' is continuous. Therefore <p' is conti­
nuous and the proof is complete in case n = 1. 

Next suppose n = 2. Then, for every ae i? , the mapping x -* \lf'(q>(x) + a) <p'(x) 
is (continuously) differentiable on /. We have seen that q>' and */>' are continuous 
and so for every <xe R the mapping x -> ^'(x + a) <p'GK*)) is (continuously) 
differentiable on R. It follows from Theorem 9 that n is (continuously) differentiable 
on R. But so is A and hence Q is (continuously) differentiable on R. Thus ^' and <p' 
are (continuously) differentiable on R. This proves our result in case n = 2. 

The proof can be completed by induction. 
Our results can be reformulated to give the following analogue of the result 

of de Bruijn. 

Theorem 11. Suppose n _• 0 and ^ is a bijection of / onto R such that for every 
as R the mapping x -* \l/~~l(\l/(x) + a) is continuous from / to R. Then there 
exists a strictly increasing, continuous bijection q> of / onto R and an additive 
bijection A of R onto R such that \jj(x) = A(<p(x)) for all xe I. Moreover, if for 
every a e R the mapping x -» if/~~i(\l/(x) + a) is «times (continuously) differentiable 
on /, then (p is n times (continuously) differentiable on /. 

Proof. The iteration group F[i^] is complete and disjoint and we are assuming 
that each of its members is continuous. Hence there exists a strictly increasing, 
continuous bijection Q of I onto R such that F[^] = F[Q]9 according to Theorem 6. 

Thus, for every a e R there exists l?(a) e R such that \j/a = QB{a). Clearly B is 
a bijection of R onto R. Moreover, if a, p e R, then ( 

QB(*+fi) = ^ 0 . + /? = *K ° *rV = GB(«)'° £fl(/0 ~ QB{*) + B(fi) 

so that J? is additive. Choose x0 e / such thyat *Kx0) = 0 and let k = e(x0). Then 

^~1(«) = ^(Uxo) + a) = >.(*<>) = £B(a)(x0) = 

= C^Hcfro) + ^(a)) = a"1^ + ^(°0) for aI1 a e *• 

Thus x = ^-^(x)) == e""1^ + B ( ^ ) ) ) for all x e L Hence g(x) = k + B(^f(x)) 
for all x e / . Let <p(x) = g(i) - k for all x e / and let ^ = B"1, Thtn \j/(x) = 
=» i (9W)fo ra l l xe / I : 

If n ^ 1 and, for every a e R, the mapping x -* (p~i(\lt(x) + a) is; n times 
(continuously) differentiable on/ , ' thferi froM Theorem 10 it follows thatQ (and 
hence <p) is n times (continuously) differentiable. 
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