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ITERATION GROUPS GENERATED
BY C* FUNCTIONS

G. BLANTON and JOHN A. BAKER
(Received March 3, 1981)

Throughout this paper I denotes a non-empty open interval in R, the real
numbers. Suppose G is a set of functions from 7 to I which is a group with respect
to composition. The main result of this paper gives sufficient conditions on G
to guarantee that it is the iteration group generated by a C" diffecomorphism of 7
onto R. The concept of iteration group is recalled below.

Whenever a set of functions from I to I is referred to as a group it is understood
that the group operation is composition of functions and the identity of the group
is the identity function, i, defined by i(x) = x for all x € I. Every member of such
a group must therefore be a bijection of I onto I and its inverse is its inverse
function.

Given a set G of functions from 7 to I we define U G = {(x, f(x)): x€ I, fe G},
the union of the graphs of members of G. Such a set is said to be disjoint provided
the graphs of any two distinct members of G are disjoint; that is, if £, g € G and
A(xo) = g(x,) for some x, € I then f(x) = g(x) for all x € I. We say G is complete
provided U G = Ix L

Suppose ¢: I — Ris a bijection of T onto R and for each « € R we define ¢, (x) =
= ¢ Y(p(x) + a) for x € I. Then it is easy to check that {¢,: « € R} is a group of
functions from 7 to I which we denote by F[@] and call the iteration group generated
by ¢. In fact the mapping « — ¢, is easily seen to be an isomorphism of the
additive group R onto F[@] and hence F[¢@] is abelian. It is also clear that F[¢]
is disjoint. To see that F[¢] is complete notice that if xo, ¥o € I and a = ¢(y,) —
@(x,) then @,(x;) = y,. Clearly, if ¢ is a C" diffeomorphism of 7 onto R then
every member of F[¢] is a C" function. To summarize, given a C” diffeomorphism ¢ *
of I onto R, F[¢] is a complete, disjoint group of C" functions from I to 1. Our
main result, which we now state, is a converse to the last assertion and answers
a question raised by O. Bortivka and F. Neuman.

Theorem 1. If n = 0 and F is a complete, disjoint group of C” functions from
to I then F = F[¢] for some C" diffeomorphism ¢ of I onto R.
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The case n = 0 is essentially a result of Aczél [1] for which we give a different
proof.

Boriivka and Neuman have also raised the following problems. Given a disjoint
group G of continuous functions from 7 to I such that U G is dense in Ix I, can G
be embedded in a complete, disjoint group F of continuous functions from 7to 7?7
If so, and if each member of G is a C”" function, is each member of F a C" function?
We answer the first question in the affirmative. The answer to the second question
is no if » = 1 and is the subject of a forthcoming paper of the first author.

The main tools used in this paper are a theorem of O. Holder concerning fully
ordered Archimedean groups and theorems of N. G. de Bruijn concerning the
so-called difference property.

Lemma 2. If G is a disjoint group of continuous functions from 7 to I then each
member of G is a strictly increasing bijection of 7 onto /.

Proof. As noted earlier, each member of G is a continuous bijection of I onto /
and hence strictly monotonic. If some fin G were decreasing then there would
exist an x, € I such that f(x,) = x, = i(x,). But this is impossible since f # i
and G is disjoint. Hence each member of G is strictly increasing.

If G is a disjoint set of continuous functions from 7to 7and if f, ge G with f # g
then either f(x) < g(x) for all xe I or g(x) < f(x) for all x e I. Thus we define
a total (full or linear) ordering on G by letting f < gin case f, g € G and f(x) < g(x)
for all (or some) x eI We refer the reader to [3] for terminology concerning
partially ordered sets and groups.

Propeosition 3. If G is a disjoint group of continuous functions from 7 to I then G
is a fully ordered Archimedean group.

Proof. As just observed, our ordering is full. If ,geGand f < g then clearly
foh<gohandhof < ho gforall he G since every hin G is stnctly increasing.
Thus G is a fully ordered group.

To see that G is Archimedean, let f, g e G with i < f i < gand suppose f* < g
forallm =1,2,... If xg € I then x4 = f"(x0) < f(f"(x0)) = "+ '(x0) < g(x,) and
s0, if yo = lim f"(xo) then y, eI and f(y,) = f(lim f™(x,)) = lim f(f™(x,)) =

n—>+ow n—+ o . n—++ao

= lim f™*1(x,) = yo = i(y,). It follows that f = i. Hence G is Archimedean.

n—+ o
Our proofs of the embedding result and the case n = 0 of Theorem 1 depend
heavily on the following theorem of O. Hélder (1901). A proof, due to H. Cartan
" can be found on pages 45—46 of the book [3] of L. Fuchs.

Theorem 4. Every fully ordered Archimedean group is 1somorph1c, as an ordered
group, to a subgroup of the additive group R w1th the natural ordering and is
therefore abelian.

Corollary 5. Suppose Jis a dense subset of 7and J is a fully ordered Archimedean
group with respect to a binary operation * on J and the natural ordering inherited
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from R. Then there exists a strictly increasing bijection ¢ of I onto R such that
otx *y) = @o(x) + o(y) for all x,ye J.

Proof. By Theorem 4 there exists a strxctly increasing ¢ :J — R such that
Y(x *y) = Y(x) + Y(») for all x, ye J. Since J is dense in I, between any two
members of J we can find another member of J. Since y is strictly increasing,
between any two members of y(J) we can find another member of y(J). Thus in y(J)
we can find a bounded, strictly monotonic sequence which is therefore a Cauchy
sequence in R. That is, given & > 0, there exists u, v € Y(J) such that u < v <
< u + € Now Y(J) is a subgroup of R so v —uey(J) and 0 <v —u < &.
Thus ¥(J) contains arbitrarily small positive members. It follows that y(J) is
dense in R. - ‘

Now we show that ¢ is continuous. Given ¢ > 0 choose é € J such that 0 <
< Y(0) < e. Then e < & where e is the identity of J. If x, € J then X0 < xy <
< x00. If X007 ! < x < xpdand xe Jthen 6! < x5 'x < dandso —¢ < —Y(f) =
=YY < Ylxglx) = Ylx) — Y(xo) < Y() < e. Now U = {xéJlx 6! <
< x < x00}is aneighborhood of x, in Jand we have shown that} W(x) — Ylxg) | <
< ¢ if x € U. Hence ¢ is continuous.

Since J is dense in 7 there exists a continuous ¢ : I — R such that ¢(x) = y(x)
for all x € J. But y is ~trictly increasing and hence so is ¢. Moreover, ¥(J) is dense
in R so ¢o(I) = R.

Theorem 6. If G is a disjoint group of continuous functions from I to I such
that, for some @ € J, {f(©) : fe G} is dense in I then G is a subgroup of F[¢]
for some strictly increasing continuous bijection ¢ of I onto R. Moreover if
{f(®):fe G} = Ithen G = F[o]."

Proof. Suppose J = {f(O):fe G} is dense in I for some @eI and define
@ : G — J by letting &(f) = f(O) for all fe G. Then & is a stnctly increasing
bijection of G onto J where J has the natural ordering. For x, y € Jdefine x x y =
= ®(® 1(x) o ®~1(»)). Then (J, %) is a fully: ordered 'Archimedean group with
respect to the natural ordermg and in fact & is an order isomorphism of G onto J.
Notice that © = (i) is the identity of J. By Corollary 5 there exrsts a strictly
increasing continuous bijection ¢ of I onto R such that go(x * y) = o(x) + o(»)
for all x, y € J. We claim that G is a subgroup of F[¢].

Let fe G and put a = (p(f(@)) Notice f(©) € J. Then, for any x € J

P(x) = 071 (@(x) + o) = 9~ (p(x) + P(f(O))) =
= <P"(<P(f(@)) + (p(x)) f(@) * X = ‘P(d’ (@) o 45 ‘(x)) =
=&(fop l(X)) = (f o 1(x)) (9) f(‘P 1) (9)) &)

since d5 1(x) (@) = x Smce (o, and f are contmuous and J is densc in I ¢,(x)

= f(x) for all x el Thus Gisa subgroup of p[,,,] Bren
If J = 1 we claim G = F[@]. For, if f € R, then’ there exists fe G such that
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(@) = ¢4(O). But there exists « € R such that f = @, 50 @ (0) = ©4(0). Hence
¢ = @, since F[o] is disjoint and so ¢, = feG.

Notice that we have proved Theorem 1 for n = 0 because, if G is complete, then
{f(©):feG} =Iforall @€el

To settle the first embedding problem it is convenient to consider first the case
I = (0, 1). We will use

Proposition 7. Suppose G is a disjoint group of continuous functions from (0, 1)
to (0, 1) such that U G is dense in (0, 1)x (0, 1). Then

(i) for every & > O there exists g€ G such that x < g(x) < x + ¢ for all
x€(0,1)and

(ii) for every © € I, {f(©) : fe G} is dense in 1.

Proof. (i) Let 0 < e < 1/2. For xel, U G must intersect the open set
{(t,):x <t <x+ ¢t <u<x+ e} Hence for each x €1 there exists f, € G
and t€(0, 1) such that x <7 < x + ¢ and ¢t < f,(t) < x + &. Since t < f,(t) we
must have i < f, and so x < f,(x). Since x < t and f, is increasing, f(x) < f(t) <
< x + & Thus x < f,(x) < x + & Since f, is continuous, there is a neighborhood
V, of x in (0, 1) such that r < f,(t) <t + ¢ for all te V,. Now [¢,1 — €] is

n

compact so we can choose x,, ..., x, € [e, 1 — ¢] such that [¢, 1 —¢] = () V,,.
k=1

Let g be the smallest of f,, ..., f,, . It follows that x < g(x) < x + ¢ for all xe
efe,1 —e]l. f0<x<ethen x <g(x) <gle)<e+e<x+2 If1—e<
< x < 1then x < g(x) <1 < x + & Thus we have x < g(x) < x + 2¢ for all
x € (0, 1).

Similarly we could show that for every ¢ > 0 there exists h € Gsuch that x — ¢ <
< h(x) < x for all x € (0, 1).

(ii) Let ® eI and 0 < ¢&. Choose ge G such that x < g(x) < x + ¢ for all
x€(0,1). Then g(®) < g(g"(®)) = g"*1(O) < g"(®) + e for all n =10,1, 2, ...
Moreover lim g"(@) = 1 becauseif x, = lim g"(@)and 0 < x, < 1 then g(x;) =

B+ R+
= Xo = i(x,) which is impossible since i/ < g. It follows that {f(€) : fe G, i < f}
is dense in [@, 1). Similarly {f(©) : f€ G, f < i} is dense in (0, €].

Theorem 8. Suppose G is a disjoint group of continuous functions from 7 to 7
and U G is dense in Ix I. Then there exists a strictly increasing bijection ¢ of I
onto R such that G is a subgroup of F[¢].

Proof. If I = (0, 1) this follows from (ii) of Proposition 7 and Theorem 6.
In general choose a strictly increasing homeomorphism t of / onto (0, 1) and
let G = {tofot ':feG}. Then the mapping f— 10fo1~ ' of G onto G is
an order preserving group isomorphism. Since the mapping (x, ») :» (z(x), ()

is a homeomorphism of IxI onto (0, 1)x (0, 1) it follows that U G is dense in
(0, 1)x (0, 1). Hence there exists a strictly increasing homeomorphism ¢ of (0, 1)
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onto R such that G is a subgroup of F[¥]. It follows that G is a subgroup of F[¢]
ifo=yor

To complete the proof of Theorem 1 we will use the following result of N. G.
de Bruijn [2].

Theorem 9. Suppose f: R — R is such that for every a € R the mapping x-—
= f(x + a) — f(x) is continuous on R. Then there exists a continuous g: R - R
and an additive 4 : R — R such that f(x) = g(x) + A(x) for all x € R. Moreover,
if n 2 1 and for every a € R the mapping x — f(x + a) — f(x) is n times (conti-
nuously) differentiable on R, then g is n times (continuously) differentiable.

Theorem 10. Suppose n = 1 and F is a complete, disjoint group of n times
(continuously) differentiable functions from I to I. Then there exists a strictly
increasing bijection ¢ of I onto R which is n times (continuously) differentiable
on I and such that F = F[¢] and ¢'(x) > 0 for all xe I.

Proof. According to Theorem 6 there exists a strictly increasing homeomorphism
¢ of I onto R such that F = F[¢].

Since ¢ is increasing it is differentiable almost everywhere on I (see [4], p. 264).

Hence there exists x, € I such that ¢'(x,) exists. Now let x; be an arbitrary member
of I. Since F is complete there exists f € F such that f(x,) = x,. Choose « € R such
that f = ¢, so that !

o(f(x)) = o(x) + « for all xe I

Hence, for sufficiently small real 6 # 0,

o(f(xo + 0)) — o(f(xp)) = o(xo + ) — @(xo)
and so
P(f(xo +9)) — ¢(J(x0)) , S(*o +8) — f(x0) _ @(x0 + I — &(x0)
J(xo + ) — f(xo) o 0 )

Now ¢'(x,) exists and f is differentiable on 7. Since £~ ! is also differentiable it
follows that f'(x) > 0 for all x € I and we concluded that ¢’(f(x,)) exists. But
x; = f(x) and x, was chosen arbitrarily from 1. Hence ¢ is differentiable and
o' (f(x)) f'(x) = ¢'(x) for all xe I and all fe F.

If ¢'(xo) = 0 for some x, € then @'(f(xo)) = 0 for all fe F. This implies
¢'(x) = 0 for all x e I which is impossible since ¢ is strictly increasing. Hence
@'(x) > 0 for all x € I. Therefore ¢~ ! is differentiable as well and (¢ "!)'(x) > 0
for all xe R.

Now suppose f~ is continuous for every fe€ F. This means that, for every a € R,
the mapping x —» ¢~ !(¢(x) + «) is continuously differentiable on 1. Let y = ¢!
so that, for every a € R, the mapping x = ¥(p(x) + ) is continuously differentiable
on I. Hence, for every a € R, the mapping x = ¥'(¢(x) + «) ¢’(x) is continuous
on I. Since y = ¢~ ' is a homeomorphism of R onto 7, for every o € R the mapping
x = Y'(x + o) 9'(Y(x)) is continuous on R. Let ¢(x) = log ¥'(x) and o(x) =

125



= log ¢'(Y(x)) for x € R. Then, for every a € R, the mapping x - o(x + &) + o(x)
is continuous on R. In particular the mapping x — g(x) + o(x) is continuous.
Hence, for every a € R, the mapping x -+ o(x + @) — @(x) is continuous on R.
By Theorem 9 there exists a continuous yu: R — R and an additive 4 : R > R
such that g(x) = u(x) + A(x) for all x e R. Since ¥ is differentiable, ' is mea-
surable and so g is measurable. Hence A is measurable and therefore there exists
c € R such that A(x) = cx for all xe R (see, for example, Ostrowski [5]). It
follows that ¢ is continuous and hence Y’ is continuous. Therefore ¢’ is conti-
nuous and the proof is complete in case n = 1.

Next suppose n = 2. Then, for every « € R, the mapping x — V' (p(x) + a) ¢'(x)
is (continuously) differentiable on 7. We have seen that ¢’ and ¥’ are continuous
and so for every ae R the mapping x — Y'(x + a) ¢'(Y(x)) is (continuously)
differentiable on R. It follows from Theorem 9 that u is (continuously) differentiable
on R. But so is 4 and hence g is (continuously) differentiable on R. Thus ¥’ and ¢’
are (continuously) differentiable on R. This proves our result in case n = 2

The proof can be completed by induction. :

Our results can be reformulated to give the following analogue of the result
of de Bruijn.

Theorem 11. Suppose n=0 and lP is a bijection of I onto R such that for every
o € R the mapping x -» ¢~ l(\,l/(x) + o) is continuous from I to R. Then there
exists a strictly increasing, continuous bijection ¢ of I onto R and an additive
bijection A4 of R onto R'such that y(x) = A(¢(x)) for all x € I. Moreover, if for
every a € R the mapping x — ¥ ~'(Y(x) + «) is n times (continuously) differentiable
on I, then ¢ is n times (continuously) differentiable on I.

Proof. The iteration group F[¥] is complete and disjoint and we are assuming
that each of its members is continuous. Hence there exists a strictly increasing,
continuous bijection g of  onto R such that F[¥] = F[g], according to Theorem 6.

Thus, for every a € R there exists B(x) € R such that Y, = gp,,. Clearly B is
a bijection of R onto R. Moreover, if a, § € R, then

Qn(a'+p) ll’a+p =Y,o0 ‘ﬁp = @B(a) © Qa(p) = QB(u)+B(ﬂ)
so that B is additive. Choose x, €1 such that Y(x,) = 0 and let k = Q(xo) ‘Then

1(“) 1('/’("0) + @) = Y lx) = a(ay(X0) =
= 0" !(e(xo) + B@) = ¢ '(k + B(®)) forallaeR.

Thus x = ¥~ }(Y(x)) = ¢~ *(k + B(x))) for all x e I. Hence o(x) = k + B(Y(x))
for all xe I Let (p(x) ="o(x) — k for all xel and let A=B"1 Then Y(x) =
A(tp(x)) for all xe L.
If n 2 1 and, for eévery a € R, the mapping x — ¢ l(nlla(x) + a) is''m times
'(contmuously) differentiable on ‘I then from Theorem 10 it follows that o (and
hence @) is n times (continuously) differentiable.
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