Archivum Mathematicum

Zuzana Došlá

The Riccati differential equation with complex-valued coefficients and application to the equation $x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0$

Archivum Mathematicum, Vol. 18 (1982), No. 3, 133--143
Persistent URL: http://dml.cz/dmlcz/107135

Terms of use:

© Masaryk University, 1982
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

THE RICCATI DIFFERENTIAL EQUATION WITH COMPLEX-VALUED COEFFICIENTS AND APPLICATION TO THE EQUATION

$$
x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0
$$

ZUZANA TESAROVA, Brno
(Received September 20, 1981)

Consider the Riccati differential equation

$$
\begin{equation*}
z^{\prime}=q(t)-p(t) z^{2} \tag{1}
\end{equation*}
$$

where $q(t)$ and $p(t)$ are certain continuous complex functions of the real variable $t \in\left[t_{0}, \infty\right)$ and z is the complex variable.

The aim of the present paper is to study the asymptotic behavior of solutions of (1) supposing $q(t)$ is "close enough" to the zero and $p(t)$ to the complex constant different from the zero.

The basic idea is to consider (1) as a perturbation of

$$
w^{\prime}=-a w^{2}
$$

where $a \neq 0$ is a complex number. The results are presented in a general form using the Ljapunov function method and comprehend some results of [1], [2] (Theorem 1, 2). The equation (1) is studied by M. Ráb in [3], [4] under the assumption $q(t)$ is "close enough" to the non-zero complex constant.

The results will be applied to the differential equation

$$
\begin{equation*}
x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0 \tag{2}
\end{equation*}
$$

under the corresponding assumptions on functions $P(t), Q(t)$. This idea is used in [5] supposing $\lim _{t \rightarrow \infty}\left[P^{2}(t)-4 Q(t)\right]^{1 / 2}=\Lambda, \operatorname{Re} \Lambda^{1 / 2}>0$. Some results concerning these problems are generalized in [6], [7], [8], [9].

1. PRELIMINARIES

Let R or K denote the sets of all real or complex numbers, respectively. If $z=u+i v, u, v \in R$, we denote $\operatorname{Re} z=u, \operatorname{Im} z=v, \bar{z}=u-i v, z=(z \bar{z})^{1 / 2}$.

In what follows we shall use "Ljapunov" functions $W(z), W_{j}(z), V_{j}(z), j=1,2$
defined by

$$
\begin{gather*}
W(z)=\operatorname{Re}\left[\frac{\bar{a}}{z}\right], \quad z \in K \backslash\{0\}, \tag{3}\\
W_{1}(z)=\operatorname{Re}\left[\frac{(1+i) \bar{a}}{z}\right], \quad W_{2}(z)=\operatorname{Re}\left[\frac{(1-i) \bar{a}}{z}\right], \quad z \in K \backslash\{0\}, \tag{4}\\
V_{j}(z)=|z|^{j}, \quad j=1,2, z \in K, \tag{5}
\end{gather*}
$$

where $a \in K \backslash\{0\}$ is fixed.
Let $A \in K \backslash\{0\}$ and let γ be a real parametr, $\gamma \neq 0$. Then the equation

$$
\gamma=\operatorname{Re}\left[\frac{A}{z}\right]
$$

represents a pencil of circles not-involving the point $z=0$, where the function $\operatorname{Re}\left[\frac{A}{z}\right]$ is not defined. The circle K_{γ} corresponding to the value γ has the center $\frac{A}{2 \gamma}$ and the radius $r=\frac{|A|}{2|\gamma|}$. The straight-line $\operatorname{Re}[A z]=0$ being the axis of the pencil corresponds to the value $\gamma=0$.

Define for the real function $U(z)$ the differentiation of $U(z)$ with respect to (1) as follows:

$$
D_{f} U(t, z)=\frac{\partial U(z)}{\partial \operatorname{Re} z} \operatorname{Re} f(t, z)+\frac{\partial U(z)}{\partial \operatorname{Im} z} \operatorname{Im} f(t, z)
$$

where $f(t, z)=q(t)-p(t) z^{2}$.
Then it holds

$$
\begin{equation*}
D_{f} W(t, z) \geqq \operatorname{Re}[\bar{a} p(t)]-\frac{|a||q(t)|}{\left|z^{2}\right|}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
D_{f} W_{j}(t, z) \geqq \operatorname{Re}[(1 \pm i) \bar{a} p(t)]-\frac{\sqrt{2}|a||q(t)|}{\left|z^{2}\right|} \tag{7}
\end{equation*}
$$

where $z \in K \backslash\{0\}, t \in\left[t_{0}, \infty\right)$.
Further for $j=1$ or $j=2$ it holds

$$
\begin{gather*}
j|z|^{j-1}(-|q(t)|-|z| \operatorname{Re}[p(t) z]) \leqq D_{f} V_{j}(t, z) \leqq \tag{8}\\
\leqq j|z|^{j-1}(|q(t)|-|z| \operatorname{Re}[p(t) z])
\end{gather*}
$$

where $z \in K \backslash\{0\}$ or $z \in K$, respectively.
Remark 1. Trajectories $w(t)$ of (3) satisfying the initial condition $w\left(t_{0}\right)=w_{0} \neq 0$ have the following properties:
(i) If $\operatorname{Im}\left[a w_{0}\right] \neq 0$, then $\operatorname{Re}\left[\frac{i \bar{a}}{w(t)}\right]=\gamma$, where $\gamma \in R \backslash\{0\}$ is determined by the initial condition, for all $t \geqq t_{0}$ and $w(t) \rightarrow 0$ as $t \rightarrow \infty$;
(ii) if $\operatorname{Im}\left[a w_{0}\right]=0, \operatorname{Re}\left[a w_{0}\right]>0$, then $\operatorname{Im}[a w(t)]=0$ for all $t \geqq t_{0}$ and $w(t) \rightarrow 0$ as $t \rightarrow \infty$;
(iii) if $\operatorname{Im}\left[a w_{0}\right]=0, \operatorname{Re}\left[a w_{0}\right]<0$, then $\operatorname{Im}[a w(t)]=0$ for $t \in\left[t_{0}, \omega\right)$, where $\omega<\infty$, and $\lim _{t \rightarrow \omega^{-}}|z(t)|=\infty$.

The following lemmas are necessary for our later considerations.
Lemma 1. Let $t_{*}<t^{*}$ and let $z(t)$ be a solution of (1). Assume $a \in K \backslash\{0\}$.
Suppose (i) for $t \in\left[t_{*}, t^{*}\right]$ it holds

$$
\begin{equation*}
\operatorname{Re}[a z(t)]>0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
|z(t)| \geqq\left|z\left(t_{*}\right)\right| ; \tag{10}
\end{equation*}
$$

(ii) for $t \in\left[t_{*}, t^{*}\right]$ and $z \in \mathrm{M}=\left\{z: \operatorname{Re}[a z]>0,|z| \geqq\left|z\left(t_{*}\right)\right|\right\}$ it holds

$$
\begin{equation*}
D_{f} W_{j}(t, z) \geqq 0, \quad j=1,2, \tag{11}
\end{equation*}
$$

where $W_{j}(z)$ is defined by (4).
Then, it holds

$$
|z(t)|<2\left|z\left(t_{*}\right)\right| \quad \text { for } t \in\left[t_{*}, t^{*}\right]
$$

Proof. It follows from the assumptions (9), (10), (11) that there exist $\gamma(t)$, $\gamma(t)>0$ and $j \in\{1,2\}$ such that $W_{j}(z(t))=\gamma(t)$ for $t \in\left[t_{*}, t^{*}\right]$. By definition $W_{j}(z)$ we obtain

$$
\frac{|z(t)|}{2} \leqq r(t) \leqq \frac{|z(t)|}{\sqrt{2}}
$$

where $r(t)$ is the radius of the circle. This together with (10), (11) implies the statement of Lemma 1.

Lemma 2. Let the hypothesis of Lemma 1 be satisfied with the exception that $\operatorname{Re}[a z(t)]>0$ and $|z(t)| \geqq\left|z\left(t_{*}\right)\right|$ are replaced by $\operatorname{Re}[a z(t)]<0$ and $|z(t)| \geqq$ $\geqq\left|z\left(t^{*}\right)\right|$, respectively. Then, it holds

$$
|z(t)|<2\left|z\left(t^{*}\right)\right| \quad \text { for } t \in\left[t_{*}, t^{*}\right]
$$

Proof. The proof is analogous to that of the previous lemma.

2. MAIN RESULTS

Theorem 1. Suppose

$$
\begin{align*}
& \lim _{t \rightarrow \infty} q(t)=0, \tag{12}\\
& \lim _{t \rightarrow \infty} p(t)=a \tag{13}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Re}[a q(t)] \geqq 0, \quad q(t) \neq 0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}[\bar{a} p(t)]>0 \tag{15}
\end{equation*}
$$

for $t \geqq t_{0}$, where $a \in K \backslash\{0\}$.
Then every solution $z(t)$ of (1) satisfying at $t_{1} \geqq t_{0}$ the condition

$$
\begin{equation*}
\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0 \tag{16}
\end{equation*}
$$

exists for all $t \geqq t_{1}$ and it holds

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=0 \tag{17}
\end{equation*}
$$

Proof. Let $z=z(t)$ be any solution of (1) satisfying (16).
First, we are going to establish domains where there occurs $z(t)$. It follows from (13), (15) that there exist $A>0, B>0$ such that

$$
\operatorname{Re}\left[\frac{p(t)}{a}\right] \geqq \geqq, \quad\left|\operatorname{Im}\left[\frac{p(t)}{a}\right]\right| \leqq B \quad \text { for } t \geqq t_{0}
$$

Then, with respect to (14), it holds for $t \geqq \boldsymbol{t}_{\mathbf{0}}$

$$
\operatorname{Re}[a q(t)]-\operatorname{Re}\left[a p(t) z^{2}\right] \geqq-A \operatorname{Re}\left[a^{2} z^{2}\right]-B\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|
$$

Define $\Omega=\left\{z:-A . \operatorname{Re}\left[a^{2} z^{2}\right]-B\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|>0\right\}$. It is easy to see that $\Omega \neq \emptyset$, and if $w \in \Omega$, then $-\operatorname{Re}\left[a^{2} w^{2}\right]>0$. Hence

$$
\begin{equation*}
\operatorname{Re}[a q(t)]-\operatorname{Re}\left[a p(t) z^{2}\right]>0 \tag{18}
\end{equation*}
$$

for $z \in \Omega, t \geqq t_{0}$, in the case $z=0$ is valid (18) or

$$
\operatorname{Re}[a q(t)]-\operatorname{Re}\left[a p(t) z^{2}\right] \geqq 0, \quad \operatorname{Im}[a q(t)]-\operatorname{Im}\left[a p(t) z^{2}\right] \neq 0
$$

for $t \geqq t_{0}$.
That implies (i) $\operatorname{Re}\left[a z^{\prime}(t)\right]>0$ for $t \geqq t_{1}$ such that $z(t) \in \Omega$; (ii) $\operatorname{Re}\left[a z^{\prime}(t)\right]>0$ or $\operatorname{Re}\left[a z^{\prime}(t)\right] \geqq 0, \operatorname{Im}\left[a z^{\prime}(t)\right] \neq 0$ for $t \geqq t_{1}$ such that $z(t)=0$.
This together with (16) implies

$$
\begin{equation*}
\operatorname{Re}[a z(t)] \geqq 0, \quad \operatorname{Re}[a z(t)]=0 \Leftrightarrow \operatorname{Im}[a z(t)]=0 \tag{19}
\end{equation*}
$$

for all $t \geqq t_{1}$ for which there exists $z(t)$.
Choose "Ljapunov" functions $W_{j}(z)$ defined by (4). Then there exists $\gamma(t)>0$, $j \in\{1,2\}$ such that $\gamma(t)=W_{j}(z(t))$ for $z(t) \neq 0, t \geqq t_{1}$. In view of (13), (15) we infer from (7) and (19) that $z(t)$ is bounded for all $t \geqq t_{1}$ for which there exists $z(t)$. From the fact that each limit point of the set $M=\left\{(t, z(t)), t \geqq t_{1}\right\}$ is on the boundary of the domain on which the right-hand side of (1) is continuous, it follows that $z(t)$ exists for all $t \geqq t_{1}$.

Now, it remains to prove (17). Let $\varepsilon>0$ be arbitrary. From (12), (13) there follows the existence of $T=T(\varepsilon)$ such that for all $t \geqq T$ it holds

$$
\begin{gathered}
\operatorname{Re}[(1 \pm i) \bar{a} p(t)] \geqq \frac{2}{3}|a|^{2} \\
|q(t)| \leqq \frac{|a| \varepsilon^{2}}{12} .
\end{gathered}
$$

With respect to (7) we receive $D_{f} W_{j}(t, z)>0$ for $t \geqq T,|z| \geqq \frac{\varepsilon}{2}$.
Put $J=\left\{t \geqq T:|z(t)| \geqq \frac{\varepsilon}{2}\right\}$. Suppose $J \neq \emptyset$. Then there exists $\tau=\tau(\varepsilon)$ such that $|z(\tau)|<\frac{\varepsilon}{2}$. We claim $|z(t)|<\varepsilon$ for all $t \geqq \tau$. If this were not true, there would exist a $t^{*}>\tau$ such that $\left|z\left(t^{*}\right)\right| \geqq \varepsilon$, and define $t_{2}=$ $=\sup \left\{t \in\left[\tau, t^{*}\right]:|z(t)|<\frac{\varepsilon}{2}\right\}$. Clearly $t^{*}>t_{2}>\tau$. Then,

$$
\left|z\left(t_{2}\right)\right|=\frac{\varepsilon}{2}, \quad|z(t)| \geqq \frac{\varepsilon}{2} \quad \text { for } t \in\left[t_{2}, t^{*}\right]
$$

Since $\left[t_{2}, t^{*}\right] \subset J$, we have $D_{f} W_{j}(t, z)>0, j=1,2$, for $t \in\left[t_{2}, t^{*}\right]$ and $z \in M=$ $=\left\{z:|z| \geqq\left|z\left(t_{2}\right)\right|\right\}$. Using Lemma 1 we obtain

$$
|z(t)|<2 \frac{\varepsilon}{2}=\varepsilon \quad \text { for } t \in\left[t_{2}, t^{*}\right]
$$

which contradicts $\left|z\left(t^{*}\right)\right| \geqq \varepsilon$. The proof is complete.
Theorem 2. Let the assumptions of Theorem 1 be satisfied with the exception (12) is replaced by

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|q(t)| d t<\infty \tag{20}
\end{equation*}
$$

and suppose in addition

$$
\begin{equation*}
\operatorname{Im}[\bar{a} p(t)] \equiv 0 \quad \text { for } t \geqq t_{0} \tag{21}
\end{equation*}
$$

Then, the conclusion of Theorem 1 is valid.
Proof. Let $z=z(t)$ be any solution of (1) satisfying (16). To prove the boundedness and existence of $z(t)$ choose $V_{1}(z)$. In the proof of Theorem 1 we obtained (19) from (13), (14), (15) and (16). In addition it follows from (21)

$$
\operatorname{Re}[p(t) z(t)]=\operatorname{Re}\left[\frac{p(t)}{a}\right] \operatorname{Re}[a z(t)]
$$

thus with respect to (15) and (19) it holds

$$
\begin{equation*}
\operatorname{Re}[p(t) z(t)] \geqq 0, \quad \operatorname{Re}[p(t) z(t)]=0 \Leftrightarrow z(t)=0 \tag{22}
\end{equation*}
$$

for all $t>t_{1}$ for which there exists $z(t)$.

Integrating the second inequality of (8), where $z=z(t)$, from $t_{2} \geqq t_{1}$ to t we get according to (20)

$$
V_{1}(z(t)) \leqq V_{1}\left(z\left(t_{2}\right)\right)+\text { const }
$$

for $t \geqq t_{2}$ such that $z(t) \neq 0$. From the same reason as in the previous proof it follows that $z(t)$ is defined for all $t \geqq t_{1}$.

First we are going to show $\lim \inf |z(t)|=0$. Suppose for the sake of argument, $t \rightarrow \infty$ that there exists an $\varepsilon>0$ such that $|z(t)| \geqq \varepsilon$ for $t \geqq t_{2} \geqq t_{1}$. According the assumption (13) there exists $t_{3} \geqq t_{2}$ such that $\operatorname{Re}[\bar{a} p(t)] \geqq \frac{2}{3}|a|^{2}$. Choosing the function $W(z)$ and integrating (6), where $z=z(t) \neq 0$, from $t_{3} \geqq t_{2}$ to t we obtain

$$
W(z(t)) \geqq W\left(z\left(t_{3}\right)\right)+\frac{2}{3}|a|^{2}\left(t-t_{3}\right)-\frac{|a|}{\varepsilon^{2}} \int_{t_{3}}^{t}|q(s)| \mathrm{d} s,
$$

$W(z(t)) \rightarrow \infty$ for $t \rightarrow \infty$, a contradiction.
Now, let us prove (17). Choose the function $V_{2}(z)$. There exists a sequence $\left\{s_{n}\right\}$, $s_{n} \rightarrow \infty$ such that for arbitrary $\varepsilon>0$ there exists $n_{1} \in N$ such that $V_{2}\left(z\left(s_{n}\right)\right)<\frac{\varepsilon}{2}$ for $n \geqq n_{1}$. There exists a $L>0$ such that $|z(t)| \leqq L$ for $t \geqq t_{1}$ and $n_{2} \in N$ such that for $n \geqq n_{2}$ it holds

$$
\int_{s_{n}}^{\infty}|q(s)| \mathrm{d} s<\frac{\varepsilon}{4 L} .
$$

Let $n_{3}=\max \left(n_{1}, n_{2}\right)$. Using (8) we get

$$
V_{2}(z(t)) \leqq V_{2}\left(z\left(s_{n}\right)\right)+2 \int_{s_{n}}^{t}|q(s)||z(s)| \mathrm{d} s-2 \int_{s_{n}}^{t}|z(s)|^{2} \operatorname{Re}[p(s) z(s)] \mathrm{d} s
$$

for $t \geqq s_{n}, n \geqq n_{3}$ and with respect to (22)

$$
V_{2}(z(t))<\varepsilon \quad \text { for } t \geqq s_{n} .
$$

The proof is complete.
Theorem 3. Let the assumptions of Theorem 1 be fulfilled.
Let $z(t)$ be a complete solution of (1) defined on $\left[t_{1}, \omega\right)$, where $t_{1} \geqq t_{0}$.
If $\omega=\infty$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=0 \tag{23}
\end{equation*}
$$

If $\omega<\infty$, then $\operatorname{Re}[a z(t)]<0$ for $t \in\left[t_{1}, \omega\right)$ and

$$
\lim _{t \rightarrow \infty^{-}}|z(t)|=\infty
$$

Proof. Let $z(t)$ be any solution of (1) defined on [$\left.t_{1}, \omega\right)$. If $z(t)$ satisfies at $T \geqq t_{1}$ the condition $\operatorname{Re}[a z(T)] \geqq 0$, then by Theorem 1 there hold $\omega=\infty$ and (23).

Now, let $\operatorname{Re}[a z(t)]<0$ be for $t \in\left[t_{1}, \omega\right)$. If $\omega<\infty$, then $\lim _{t \rightarrow \infty^{-}}|z(t)|=\infty$.

Let $\omega=\infty$. Suppose by contradiction that (23) is not satisfied. Then, there exists a $K>0$ such that $\lim _{t \rightarrow \infty} \sup |z(t)| \geqq 3 K$. From (12), (13) it follows that there exists $T_{1}(K) \approx T_{1} \geqq t_{1}$ such that

$$
\begin{gathered}
|q(t)| \leqq \frac{|a| K^{2}}{3} \\
\operatorname{Re}[(1 \pm i) \bar{a} p(t)] \geqq \frac{2}{3}|a|^{2} \\
\operatorname{Re}[\bar{a} p(t)] \geqq \frac{2}{3}|a|^{2}
\end{gathered}
$$

for $t \geqq T_{1}$. From the definition of the superior limit it follows that there exists $T_{2} \geqq T_{1}$ such that

$$
\left|z\left(T_{2}\right)\right| \geqq 2 K
$$

Using Lemma 2 it is not difficult to see that

$$
\begin{equation*}
|z(t)| \geqq K \quad \text { for } t \geqq T_{2} . \tag{24}
\end{equation*}
$$

Finally, choose the pencil of circles $W(z)=\gamma, \gamma<0$ covering the half-plane $\operatorname{Re}[a z]<0$. With respect to (24) there exists $\gamma_{0}<0$ so that $W(z(t)) \geqq \gamma_{0}$ for $t \geqq T$. To each point of the domain $\operatorname{Re}[a z]<0, W(z) \geqq \gamma_{0}$ there exists a unique circle $W(z)=\gamma, \gamma \in\left[\gamma_{0}, 0\right)$ passing through it.

According to (6) it holds

$$
D_{f} W(t, z(t)) \geqq \frac{2}{3}|a|^{2}-\frac{|a|^{2} K^{2}}{3 K^{2}}=\frac{1}{3}|a|^{2}
$$

Integrating this inequality from $T \geqq T_{2}$ to t we get

$$
W(z(t)) \geqq W(z(T))+\frac{1}{3}|a|^{2}(t-T) \rightarrow \infty \quad \text { as } t \rightarrow \infty
$$

which contradicts the fact that $\operatorname{Re}[a z(t)]<0$ for $t \in\left[t_{1}, \infty\right)$.
Since in the case $\omega=\infty$ it holds (23) and the proof is complete.
Theorem 4. Let the assumptions of Theorem 2 be fulfilled.
Let $z(t)$ be a complete solution of (1) defined on $\left[t_{1}, \omega\right)$, where $t_{1} \geqq t_{0}$.
Then, the conclusion of Theorem 3 is valid.
Proof. The scheme of the proof is in the main the same as that used in the proof of Theorem 3 and thus it will be omitted here.

Theorem 5. Suppose in addition to the assumptions stated in Theorem 2 that $\operatorname{Re} p(t), \operatorname{Im} p(t)$ are monotonic.

Then, each solution $z(t)$ of (1) defined for all $t \geqq t_{1} \geqq t_{0}$ satisfies for $\alpha \geqq 2$

$$
\begin{equation*}
\int_{i_{1}}^{\infty}|z(t)|^{\alpha} \mathrm{d} t<\infty \tag{25}
\end{equation*}
$$

Proof. According to Theorem 4 it holds $\lim z(t)=0$. Consider circles $V_{1}(z)=$ $=\gamma ; \gamma>0$. Put $\mathscr{M}=\left\{t \geqq t_{1}, z(t) \neq 0\right\}, \mathscr{M}_{0}=\left[t_{1}, \infty\right)$. According to (8) for $t \in \boldsymbol{\mu}$ it holds

$$
\begin{gathered}
-|q(t)|-|z(t)| \operatorname{Re}[p(t) z(t)] \leqq D_{f} V_{1}(t, z(t))= \\
\quad=V_{1}^{\prime}(z(t)) \leqq|q(t)|-|z(t)| \operatorname{Re}[p(t) z(t)]
\end{gathered}
$$

Let $\tau \geqq t_{1}$ be such that $z(\tau)=0$. Then

$$
\begin{aligned}
& D^{+} V_{1}^{\prime}(z(\tau))=\lim _{t \rightarrow \tau+} \frac{|z(t)|}{t-\tau}=\left|z^{\prime}(\tau)\right|=|q(\tau)|, \\
& D^{-} V_{1}^{\prime}(z(\tau))=\lim _{t \rightarrow \tau^{-}} \frac{|z(t)|}{t-\tau}=-|q(\tau)|,
\end{aligned}
$$

e.g. $V_{1}^{\prime}(z(\tau))$ does not exist, as $q(t) \neq 0$ for $t \geqq t_{0}$. The set $\mathscr{M}_{0} \backslash \mathscr{M}$ is, as known, at most countable.

Define

$$
B(t)= \begin{cases}V_{1}^{\prime}(z(t)) & t \in \mathscr{M}^{\prime} \\ 0 & t \in \mathscr{M}_{0} \backslash \mathscr{M}\end{cases}
$$

For $\in \in \mathscr{M}_{0}$ it holds

$$
\begin{gather*}
-|q(t)|-|z(t)| \operatorname{Re}[p(t) z(t)] \leqq B(t) \leqq \tag{26}\\
\leqq|q(t)|-|z(t)| \operatorname{Re}[p(t) z(t)] .
\end{gather*}
$$

The function $B(t)$ is continuous on \mathscr{M}. Denote $\mathscr{M}_{1}=\left\{t \geqq t_{1}: B(t)\right.$ is not continuous $\}$. Since $\mathscr{M}_{1} \subset \mathscr{M}_{0} \backslash \mathscr{M}$ is valid, \mathscr{M}_{1} is at most countable and thus

$$
\int_{i_{1}}^{t} B(s) \mathrm{d} s=V_{1}(z(t))-V_{1}\left(z\left(t_{1}\right)\right) ; \quad t \geqq t_{1}
$$

Consequently integrating the inequality (26) we get

$$
\begin{aligned}
-\int_{i_{1}}^{i}|q(s)| \mathrm{d} s & -\int_{i_{1}}^{t}|z(s)| \operatorname{Re}[p(s) z(s)] \mathrm{d} s \leqq V_{1}(z(t))-V_{1}\left(z\left(t_{1},\right) \leqq\right. \\
\leqq & \int_{t_{1}}^{t}|q(s)| \mathrm{d} s-\int_{i_{1}}^{t}|z(s)| \operatorname{Re}[p(s) z(s)] \mathrm{d} s .
\end{aligned}
$$

From the proof of Theorem 2 it follows either that $\operatorname{Re}[p(t) z(t)]<0$ for $t \geqq t_{1}$, or there exists $\tau \geqq t_{1}$ such that $\operatorname{Re}[p(t) z(t)]>0$ for $t \geqq \tau$. Hence,

$$
\begin{equation*}
\int_{i_{1}}^{\infty}|z(t)||\operatorname{Re}[p(t) z(t)]| \mathrm{d} t<\infty . \tag{27}
\end{equation*}
$$

According to (13), (15) it follows from (27)

$$
\begin{equation*}
\int_{i_{1}}^{\infty} \operatorname{Re}^{2}[p(t) z(t)] \mathrm{d} t<\infty . \tag{28}
\end{equation*}
$$

Integration the equation (1) from t_{1} to $t, t \rightarrow \infty$, we receive

$$
\left|\int_{t_{1}}^{\infty} p(t) z^{2}(t) d t\right|<\infty
$$

Hence there exist integrals

$$
\begin{equation*}
\int_{t_{1}}^{\infty} \operatorname{Re} p(t) \operatorname{Re}\left[p(t) z^{2}(t)\right] \mathrm{d} t, \quad \int_{t_{1}}^{\infty} \operatorname{Im} p(t) \operatorname{Im}\left[p(t) z^{2}(t)\right] \mathrm{d} t . \tag{29}
\end{equation*}
$$

It holds $\operatorname{Re}[u] \operatorname{Re}\left[u z^{2}\right]-\operatorname{Re}^{2}[u z]=-|u|^{2} \operatorname{Im}^{2} z, \operatorname{Im}[u] \operatorname{Im}\left[u z^{2}\right]+$ $+\operatorname{Re}^{2}[u z]=|u|^{2} \operatorname{Re}^{2} z$. Using (28), (29) we get

$$
\int_{i_{1}}^{\infty}|p(t)|^{2} \operatorname{Im}^{2} z(t) \mathrm{d} t<\infty, \quad \int_{i_{1}}^{\infty} \mid p\left(\left.t\right|^{2} \operatorname{Re}^{2} z(t) \mathrm{d} t<\infty,\right.
$$

therefore

$$
\int_{t_{1}}^{\infty}|p(t)|^{2}|z(t)|^{2} \mathrm{~d} t<\infty
$$

Thus, with respect to (13), (15) it holds

$$
\int_{i_{1}}^{\infty}|z(t)|^{2} d t<\infty,
$$

and with respect to (17) the inequality (25) is proved. The proof is complete.
Remark 2. Choose in the equation (1) the functions

$$
p(t) \equiv 1, \quad q_{\alpha}(t)=\frac{1}{\sqrt[\alpha]{t^{2}}}-\frac{1}{\alpha t \sqrt[\alpha]{t}} \quad t \geqq t_{0}>\frac{1}{\alpha}
$$

where if $\alpha \geqq 2$ or $1<\alpha<2$, then the assumptions of Theorem 1 or Theorem 5, respectively, are fulfilled. Thus the solution $z(t)=\frac{1}{\sqrt[a]{t}}$ for $t>\frac{1}{a}$ does not satisfy (25).

This example shows the invalidity of the assertion of Theorem 5 under the assumptions of Theorem 1 and the invalidity of Theorem 5 for $1<\alpha<2$.

3. APPLICATIONS

Using some results concerning solutions of the Riccati differential equation we establish asymptotic behaviour of the equation

$$
\begin{equation*}
x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0 \tag{30}
\end{equation*}
$$

where $P(t)$ and $Q(t)$ are complex functions of the real variable $t \in J=\left[t_{0}, \infty\right)$ and x is the complex variable.

Remark 3. Let

$$
\begin{equation*}
P(t) \in C^{1}(J), \quad Q(t) \in C^{0}(J) \tag{31}
\end{equation*}
$$

(i) If $x(t)$ is a solution of (30) on an interval $J_{0} \subset J$ and $x(t) \neq 0$ on J_{0}, then the function

$$
z(t)=x^{\prime}(t) x^{-1}(t)+\frac{1}{2} P(t)
$$

is a solution of the equation

$$
\begin{equation*}
z^{\prime}=\frac{1}{4} P^{2}(t)-Q(t)+\frac{1}{2} P^{\prime}(t)-z^{2} \tag{32}
\end{equation*}
$$

on J_{0}.
(ii) If $z(t)$ is a solution of (32) on $J_{0} \subset J$ and $\beta \in J_{0}$ then the function

$$
x(t)=\exp \int_{B}^{t}\left(z(s)-\frac{1}{2} P(s)\right) \mathrm{d} s
$$

is a solution of (30) on J_{0}.
Successive corollaries imidiently follow from Theorem 1-5 and Remark 4.
Corollary 1. Suppose (31) and

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(P^{2}(t)-4 Q(t)+2 P^{\prime}(t)\right)=0 \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}\left[P^{2}(t)-4 Q(t)+2 P^{\prime}(t)\right] \geqq 0, \quad P^{2}(t)-4 Q(t)+2 P^{\prime}(t) \neq 0 \tag{34}
\end{equation*}
$$

Then each solution $x(t)$ of (30) satisfing at t_{1} initial conditions

$$
\operatorname{Re}\left[x^{\prime}\left(t_{1}\right) x^{-1}\left(t_{1}\right)+\frac{1}{2} P\left(t_{1}\right)\right] \geqq 0, \quad x\left(t_{1}\right) \neq 0
$$

exists for $t \geqq t_{1}$ and it holds

$$
\lim _{t \rightarrow \infty}\left[2 x^{\prime}(t) x^{-1}(t)+(P t)\right]=0
$$

Corollary 2. Let us assume (31), (34) and

$$
\begin{equation*}
\int_{i_{0}}^{\infty}\left|P^{2}(t)-4 Q(t)+2 P^{\prime}(t)\right| \mathrm{d} t<\infty . \tag{35}
\end{equation*}
$$

Then, the conclusion of Corollary 1 is valid.
Corollary 3. Let us assume (31), (33), (34) and let $x(t)$ be a complete solution of (30) defined on $\left[t_{1}, \omega\right), t_{1} \geqq t_{0}$.

If $\omega=\infty$, then

$$
\lim _{t \rightarrow \infty}\left[2 x^{\prime}(t) x^{-1}(t)+P(t)\right]=0
$$

If $\omega<\infty$, then $\operatorname{Re}\left[x^{\prime}(t) x^{-1}(t)+\frac{1}{2} P(t)\right]<0$ for $t \in\left[t_{1}, \omega\right)$ and

$$
\lim _{t \rightarrow \omega_{-}}\left|x^{\prime}(t) x^{-1}(t)+\frac{1}{2} P(t)\right|=\infty
$$

Corollary 4. Let us assume (31), (34), (35) and let $x(t)$ be a complete solution of (30) defined on $\left[t_{1}, \omega\right), t_{1} \geqq t_{0}$.

Then, the conclusion of Corollary 3 is valid.
Corollary 5. Let us suppose (31), (34), (35).
Then, each solution $x(t)$ of (30) defined for all $t \geqq t_{1} \geqq t_{0}$ and $x(t) \neq 0$, satisfies for $\alpha \geqq 2$

$$
\int_{t_{1}}^{\infty}\left|x^{\prime}(t) x^{-1}(t)+\frac{1}{2} P(t)\right|^{\alpha} \mathrm{d} t<\infty .
$$

REFERENCES

[1] Butlewski, A.: Sur un mouvement plan, Ann. Polon. Math. 13 (1963), 139-161.
[2] Kulig, C.: On a System of Differential Equations, Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, LXXVII (1963), 37-48.
[3] Ráb, M.: The Riccati Differential Equation with Complex-valued coefficients, Czechoslovak Math. J. 20 (1970), 491-503.
[4] Ráb, M.: Geometrical approach to the study of the Riccati differential equation with complexvalued coefficients, Journal of Differential Equations 25 (1977), 108-114.
[5] Ráb, M.: Asymptotic behaviour of the equation $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0$ with complex-valued coefficients, Arch. Math. (Brno) 4 (1975), 193-204.
[6] Kalas, J.: Asymptotic behaviour of the solutions of the equation $\mathrm{d} z / \mathrm{d} t=f(t, z)$ with a complexvalued function f, Colloguia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary) 1979, pp. 431-462.
[7] Kalas, J.: On the asymptotic behaviour of the equation $\mathrm{d} z / \mathrm{d} t=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 17 (1981), 11-12.
[8] Kalas, J.: On certain asymptotic properties of the solutions of the equation $\dot{z}=f(t, z)$ with a complex-valued function f, Czech. Math. Journal, to appear.
[9] Kalas, J.: Asymptotic behaviour of equations $\dot{z}=q(t, z)-p(t) z^{2}$ and $\ddot{x}=x \psi\left(t, \dot{x} x^{-1}\right)$, Arch. Math. (Brno) 17 (1981), 191-206.

Z. Tesařová
66295 Brno, Janáčkovo nám. 2a
Czechoslovakia

