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ON SOME SHEAVES OVER 
A DIFFERENTIAL SPACE* 

W. SASIN, Z. 2EKANOWSKI 
(Received November 17,1981) 

INTRODUCTION 

Let C be a non empty set of real functions defined on a set M. The set M will 
be interpreted as a topological space with weakest topology TC in which all functions 
from C are continuous. 

It is known ([7]) that the set C is called the differential structure on M iff the 
set C is closed with respect to the lokalization (C -= CM) and C is closed with 
respect to the superpositions with the smooth functions on Rn. 

It is easy to show that if C is the set of real functions on M closed with respect 
to the superposition with the smooth functions on Rn then C is a linear ring over R 
containing all constant functions and that topological space (M, TC) is a C-regular 
([7)])-

The pair (M, C), where C is a differential structure on M is called the differential 
space. 

Similarly as in theory of differential manifolds we define a tangent vector to the 
differential space (M, C) at the pointpeM m well as the smooth tangent vector 
field on (M, C) ([7]). 

The set Mp of all tangent vectors to differential space (M, C) at the point p € M 
has a natural structure of linear space over R and the set %(M) of all smooth 
tangent vector fields on (M, C) has a natural structure of C-module. 

In this paper by £ we shall denote the sheaf of all smooth real functions on (M9 C) 
and by X we shall denote the sheaf of all smooth tangent vector fields on (M> C). 

A sheaf 91 over differential space (M, C) is called the sheaf of C-moduIes ([2]) 
if 

(i) 9i(t/) is G(i7)-module for every open Uetc, 
(ii) Qv(Z'0 ** <x\ V. Q%(® for ae€(U) md ZeM(U)f 

where V cz U and Qy; 91(17) -* 91(F) is restricting homomorphism in the iheaf St. 

* (Delivered at the Joint Czech-Polish-G.D R. Conference on Differential Geometry and iti 
Applications, September 1980, Nove* Mesto na Moravi, Czechoslovakia.) 
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2. THE SHEAVES OF C-MODULES OVER 
A D I F F E R E N T I A L SPACE 

Let 91 be an arbitrary sheaf of C-modules over a differential space (Af, C). 
It is not difficult to prove. 

Lemma 1. If Uexc and r\ e 9l(t/) then for any point peU there exists an open 
neighbourhood Bep and f\ e 9l(M) such 

tfOl) - rffo), 

or equivalently, as we will write usually 

n\B = n\B. 

Now let 9li9 ...fyikf9lk + lfkeNbe any sheaves of ^modules over a differential 
space (Af, C). 
We introduce the following definition 

Definition 1. Any map 

f:nt(U)x...x9lk(U)^9lk^(U) 

satisfying the condition: 

(LF) */9,1 K « *,'| K, ^ , ^ e 9 l ( t / ) , i = 1,2,...,*, F c U 

and F e t c t h e n 
f{nu-<>,Vk)\V~f(ti'tf...fti'k)\Vf 

will be called the LF-mapping of £(t/)-modules 9lt(U)f 9l2(t/),..., 9tk(t/) into 
C(t/)-module9tk+1(t/). 

The set of all LF-mappings of C(t/)-modules 9l t(t/),. . . , 9tk(t/)into e(t/)-module 
9lk+1(t/) will be denoted by LF(9tt(U)9..., 9lk(t/); 9tk+1(l/)). 

Evidently this set can be equipped with the structure of (£(t/)-module. 
Now we shall give some examples of LF-mappings important in the theory of 

differential space. 
1. A smooth tangent vector field on differential space defined as a map X: C -+ C 

satisfying well known condition is of course LF-mapping. 
2. For any smooth tangent vector fields X9 Y, Xo Y is an LF-mapping, too. 
3. One can easy show that the operator of exterior derivative is also an LF-map

ping. 
4. Likely a linear connection D in a module 91, treated as a map D : 9l(t/) -» 

Al(X(U)f 9l(t/)) satisfying the condition 

D(aO = da.<* + aD£, 

for any a e <£(£/) and £ e 9l(t/), is an LF-mapping, too. 
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We shall prove. 

Lemma 2. Iff : 9li(l/) x ... x mk(U) -> %+t(U% i -» 1,2 are /Ae LF~mapping$ 
satisfying condition 

a) /iftii^f...ffljio-/a(i»iio;."..,ftiia 
for all Oh, ..),^)e9fli(F)x...x9flJk(V), where Va V9 U9 Ve%c then ft **/2. 

Proof. Let (*h, ..., qk) e 9tt(U) x.. . x 9lk(t/) and let there be an open covering 
of U such that for any Be» there exists (<J?, ..., tf)e9ti(V)x... x%(V)mch 
that 

* i l B - t f | B f 

for any i -= 1,2,..., &. Hence if/ , / « 1, 2 are LF-mappings then 

(2) AOh £T f ^ | B . /a(tf 11/ , . . . , tf | U) | B, 

and 

(3) h(nu : . . , ^ i B - / 2 « f 11/ , . . . , tf | to IB. 

From (t), (2) and (3) we get 

(4) /tOh, .— fl») I 5 - / 2 ( i f i , ..., ffc) I 5, 

for all B e 5B. From (4) and definition of sheaf we obtain 

ZiOh, ..-.ifc) ~fz(nu ...>f*X 

for any (ifj_, ..., *fc) e 9li(t/) x... x%k(U) or equivalently 

/ i - / a . 

Lemma 3. For any LF-mapping f: 3tt(U)x ... x%(U) -> 9ljk+i(t/) and for any 
open set V <=. U there exists one and only one LF-mapping 

/K:9li(V)x...x?l / f e(V)^9lk . fi(F), 
such that 

fv(rix\V9...9rik\V)~f(nl9...9rik)\V9 

forall(riu...9rik)e9ll(U)x...xnk(U). 
Proof: Let ({l9 ...9Zk)ent(V)x... x%(V) and S be an open covering of V 

such that for any B e » there exists (ff[, ..., *?£) e 9li(t/) x.. . x9i*(t/) such that 

ftlB-^flB, 
for i » 1,2,..., fc. 

Now, let / : 5li(t/) x... x9lk(U) -* 9t*+i(t/) be an LF-mapping. Let us consider 
a family 

(5) (r?St/(Si. ...•«&))•.•. 

of an elements of G(J?)-modules 9t*+10&) for B € S. 
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Of course the elements of family (5) depend upon the choice of (f t , . . . , f t ) e 
€»1(F)x.. .x9l i k(J0. 

Now we shall show that the elements of the family (5), are agreeable on the 
intersections of sets of the covering. Indeed, let B9 B' e S and B n B' # 0. Then 
evidently 

ft | B n B' « rjf \ B n B' « ij? | B n B', 

for any f « 1, 2, ..., &. 
As the map / is the LF-mapping then 

( / ( ^ , . . . , ^ ) ) | B n B V - = ( / ( ^ f , . . . , ^ f ) ) | B n B ' = 

- (/(«?. - . , ifB I B) | B n B' - (/(5|f,..., n*k ) | B) (B n B'. 

From here and from definition of the sheaf follows that there exists one and only 
one element/$(£tf ...» ft) e 9t*+i(K) such that 

/t»(ft, . . . ,ft) |B = f(^,. ,*f)I*> 
for any B € 33. 

Now, let us put 

(6) /r(f t . . . . . « : - / • « ! . . . - W . 
for an arbitrary (ft, ..., ft) e mt(V)x ... x 9t*(V). 

We shall show next that the definition (6) does not depend on the choice of the 
covering S of the set K 

To this end let us take other open covering 91 of V such that for any A e 91 there 
exists point (fjf9..., fjk) e mx(U) x...xmk(U) such that 

ftU = ^ | A , 
for i -a 1,2, ...»fc. 

By definition (6) we have 

(7) J4ti,--.,to\A'-j(tt,...9ni)\A9 

for any A. 6 91. 
Now, let 91 V 33 = {A n B : .4 6 91 A B e 93}. Of course 91 v 93 is an open 

covering of F, refinement of a covering 91 and 93. From (6) and (7) as well as 
definition of LF-mapping it follows 

* / ( ^ , . . . , ^ ) M n B = / s ( f t , . . . , f t ) M n B , 

for all A 6 91 and B e 33 such that A n B # 0. 
From here and definition of the sheaf we obtain 

/$(f t» •••, ft) ^ / © ( f t , •••> ft), 

for any (ft , . . . , ft)€ ^ (POx . . . x ...9l,(F). 
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The verification tha t / r is LF-mapping satisfying the condition 

Mvi\r9...9fim\r)mfhlr..9nk)\r9 

for all Oh, ..., ifc) e 9i1((7) x... x91^(7) is not difficult. 

Lemma 4. Let 95 be an open covering of U and 

{f* : «.(*) x... x%(B) - <Rt+<(-»)}».*, 

family of LF-mappings such that 

fB\Br\B' =fB'\Bn B', 

for all B, B' e SB JMCA fhaj' B r\ B' # 0. !%«» fAere exfrte one and only one LF-mapping 

f:9ll(U)x...x9lk(U)-+Vtk+i(U)> 
such that 

f\B~f*9 

for any B e -B. 
Proof: Let (/B)B6® be a family of LF-mappings of the form 

fB : 91,(5) x... + » t(B) - 9lfe+1(B), 

satisfying the condition 

(8) / * | B n B' =- /* ' | B n B'9 

for all J J , i 3 ' e8 , f i n f i ' 5 - 0. Let Oh, ..., ^ ) 6 9l1(E/)x ... x9lk(£/)andlet us take 
under consideration the family 

{/*0h|£, •..,•** I B ) W 
* 

of the elements of (£(B)-module 9lfc+1(.B). 
From our assumption (8) it follows that 

fB(ni i B9 .....if* i B) | B n 5 ' = /*'0h I B\ ..., ^k ! BO ! B n B', 

for any B, B' e 93, B n B' =# 0. Now, from here and from the fact that 91*4.1 is 
a sheaf it follows that there exists an element /Oh»... , i?k)€9tfc+1(C/) such that 

yx*ii v*) 1 -»-y 'Cvi 1 A 1 
for any B e S and 0h> . . , nde 9i1(C/)x... x9fe(£0-

Hence there exists one and anly one LF-mapping 

/eLF(9l t(C/),..., 9l*(t/); 9lft+1(t/)), 
such that 

/ I B * * / * 
for any Be®. 
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Let 91%, ..-,9tk,9lk+1, fceN be an arbitrary sheaves of £(£/>modules over 
a differential space (M, C). Let us denote by LF(9l1, ..., 9lk; 9lk+i) the category 
whose objects are C(t/>modules LF (9lt(U),..., 9lk(U); 9lk + i(U))9 UexC9 of 
the LF-mappings. 

The above proved lemmas imply the theorem 

Theorem 1. The three-triple (LF(9li9 ...99lk;9lk+i)9 F,xc) is a sheaf over 
a differential space, where F is a contravariant functor from the category xc into 
category LF(9lif ...,9lk;9lk+i). 

For the arbitrary sheaves 91 i9 ..., 9lk, 9lk+i over a differential space we shall 
denote by LF(9lt, ..., 9lk; 9lk+i) the sheaf (LF(9li9 ...,9tk;9lk+i), F9xc). This 
sheaf will be called the sheaf of LF-mappings. 

Now we shall give some examples of the most important sheaves of LF-mappings 
over a differential spaces. 

Of course, one of the fundamental sheaf of LF-mappings over a differential 
space is a sheaf of the tangent vector fields on a differential space which we denote 
by*. 

Now, let 9lx, ...,9lk,9lk+i, ke N be the sheaves of C(E/)-modules over a dif
ferential space (M, C) and 

co : 9l,(U)x...x9lk(U)->9lk+i(U), 

Uexc, &(U)-k-linear map. It is not difficult to show that co is an LF-mapping. 
Consequently the triple 

(L^(9li,...,9lk;9lk+i)9F9xc)9 

is a sheaf of LF-mappings on a differential space, where F is a contravariant 
•functor from the category L$(9li9 ..., %; 9lk + i) of (£(U)-modules L^u^^U), ... 
..., 9lk(U); 9lk+i(U)) of £(U)-k-linear mappings into the category TC. This sheaf 
is also denoted by 

J L ^ g i , , . . . , ^ ; ^ ^ ! ) , 

and called the sheaf of smooth tensor fields over a differential space. 
Evidently in the particular case When 911 = 9l2 = ... = 9l& = X we have a sheaf 

L%(£> $lk+1) of C-fc-forms on the differential space with a value in the G-module 
9lfc+1. The sheaf of all exterior form on differential space is denoted usually by 
Ak(X, €). 
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