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TWO-POINT BOUNDARY VALUE PROBLEMS
FOR SECOND ORDER SYSTEMS
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(Received May 10, 1982)

In this paper we shall considér

O X = fxx)
together with _

2 x@ =4, x(b)=
or . '

3) ' x(a) = A, x'(b) =B
or _

©) x(@ =4, x(b)=

where f'e C([a, b] x R"x R", R"), and prove the followmg

Theorem. Let for all (t, uy, vy), (, uy, v;) € [@, b] X R" x R" the function f satzsfy
Lipschitz condition
(%) [ f(t, uy,00) — f(t Uz, 0) | S Lo luy —up | + Ly | vy — v,

(component — wise) where L, and Ly are nxn nonnegative matrices. Then, there
exists a unique solution (a) of (1), (2) provided

(6) a(;l-z— Lo(b — a)? + 1742 Lb - a)) <1
or |

™ o e(—‘%—Lo(b -a)’ + %L;(b - a)) <1
or

®) L (‘/3\/3 Lo(b - a)2+-;—L1(b—a))<' 1

-

1) This paper was done while the authors were visiting at the Ismuto Matemltxco "Uhsse Dini”,
Universita deg]n Studi, Firenze. -



(B) of (1), (3) (or (4)) provided

©) g(—“; Lo(b — a)? + 2 Ly(b — a)) <1
T n

or

10) g(-;_ Lob - 0)* + S Ly(b - a)) <1

In (6)—(10), ¢(P) denotes the spectral radius of the nonnegative matrix P.
Several known results are deduced or compared as following remarks. An
undecided case is mentioned in the last. ,
The proof needs the following particular case of more general (Kantorovich [6],
Schréder [8]) Contraction mapping:

Lemma 1. Let F be a generalized Banach space (| . |l = R, see [4]) and let
T : E - E be such that for all x, y € E and for some positive integer k

I T — T g s Kl x =yl
where K is nxn nonnegative matrix with o(K) < 1. Then, T has a unique fixed
point x*,
- The homogenous boundary value problem

x" =0; x(a) = 0, x(d) =0
“has G(t, s) as the Green’s function, where

¢-nNG-a _(bt)_(sa)— 9, assstsh,

L= asissse,

We shall need some estimates related to G(t, s) which are collected in

G(t,s) = —

Lemma 2. The following hold;

(b

0 5 1G(t,5)|ds = —(t —a)(b-0=(1) 3 —5— %(t), Vi) =

n(t—-a)
(b-a)’

b
@ fleg )l ds =

= sin

JRPRY 2 a2
e = 00 s E2 L a0,

. nt—a)  alb-2t+a) n(t — a)’
V)= [(b—) "o-a T poa (b—a)]’




(i) 92(0) S >0,

2 (h — 2
ws(:)=[%(b_a)_%(z a) (b - 1) ]

®—ay
b
@) 16, )1 9x(5)ds S o (b ~ a)? 0,00,
b 2
@ [16(t, ) ¥y(s)ds = (” D ),

]

(vi) J1G(t,5)|py(s)ds = f(b — a) ¢4(0),
b

(vii) [1G(t, s)|¥x(s)ds < %— (b = a)yy(1),

b
Vi) 16t )1 04(5)ds S (b — @) (o),

b 3 —
@) [16dt, 9| pu(s)ds < ﬁ\/—l b - a)? 0:(0),

(b a)2

b
@ J16Lt,5) | ¥y()ds = ¥a(1),

b

(i) [1Gi(t, )| @als)ds < —3—(b — Q) 0,0,
b

&ii) [1G(t,5)| ¥y(s)ds < % (b — &) ¥y,

L4 4
(xiid) [1G(t,5)1¥3(5) ds S = (b — @) (0.

Proof. The proof involves some elementary computations.

The homogenous boundary value problem
x" =0, x(a) = 0, x'(b) =0
has g(t, 5s) as the Green’s function, where '

_Js—a), a§s§t§b,
g(t’s)-.{(t—a), astfssh
Lemma 3. The following hold: »

] .
B fleald=F(-0@-1-a)=pOS 50—

a0 = smz—(‘b———‘%

-



JRpRY)

b
(i) Jlgts)lds=(b—1)=p,(1) <

(iii) I | g(t, 8)| py(s)ds < *—-(b - a)’ py(1),
4b — a)’
TC

(iv) ‘I | 8(t, 8)| q4(s) ds = q,(),

b
® [1809)p0)ds s l(b — a) pa(9),
i) Ilg(t a0 ds s 2D g ),
(vii) ! | g(t, 5)| py(s)ds < ~(b —a) p(1),
4(b — a)?
n?

(viii) I | 8(t,5) | qy(s)ds = 22(1),

(ix) ! I g(t, )| pa(s)ds < —2-(b — a) pA(1), : s e -

b
® flat 9l ds < ?-(l’—;—“l (0.

The homogenous boundary value problem :
x" = 0; x'(a) = 0, x(b) =0
has h(t, s) as the Green’s function, where . . '

g (-1, assstsbh,
h(t,s) = {(b—-s), " asSt<ss£h

Lemma 4. The Sollowing hold:

b .
@) §Iht91ds =56 =0 +1-20) =) S
ab-1
W= . -
(ii) Hh(z s =t - a) = ex() S 2"’ 2 4,0,

d,(l)zytz(B CO&;((::O. R T U SRR S L ’ (o

-—(b - a)? di(t), dl(t) = sin o—=

(iii) all (iii) — (x) of lemma 3, with replacing g to h Pi to c, s g1 to dl, Patocy
and q; to dz .
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Proof of the theorem The problem (l), (2) i§ equlvalent to '

;(t) =A+(B—-A)—= ((; + j'G(t s) f(s, x(s), x(s)) ds.

We define an operator 7 on & = (C(l)[a b], R"), by |
an .. Tx(t) =A+(B - A) (b + ]G(t s) f(s, x(s), X (s))ds L

Ifxe 9’, the gencrahzed norm is deﬁned by

I xle = max(maéx|x(t)| ,max | x'(t) ]),

agtsd

where | x(f) | = (| xl(t) Lo Lxa(0) n'.
For all x(¢), y(t) € &, we have from (11) and lemma 2

| Tx(t) - Ty(t)l = IIG(t S)I[Lolx(S)- )|+ Ly | x'(s) - y(s)l]ds§
- a)2 ’

= (Lo + Ln) I x - Y llg¥i(®)

and :
[(Tx)' (1) = (Ty) ()] = (Lo + Ll) b ) Il x - y llm '/la(t)

Thus, for the operator 72, we find from lemma 2
| T2x(t) — T*y(1)| <.
< f166 s)l[Lo<Lo F L)Ly 4 Lo + L0 ES D pas )]
.. 6o,

Xle—J’llcds<( Lo(b"a)z+iL1(b"a))(Lo+L1)

X[ x =yl (1)

Similarly
| () = (T @) s( Ll =0 + 5 1,6 - ))Lo + L)
| )%= plgWal®. e

Inductively, for a positive integer m we have

(b)

X

| T™(t) — T"y(t)| s(—ly Lo(b — a)* + -‘-’-Z-‘L,(b - 4))7"—1(1‘0 +Ly) (” ) x
T ’ n

xIx=plewa® T me



[(T™) () - (T™Y (0] & (37 L(b - @) + ﬂi, Ly - a))'"" x

b -
o + L) LS x - y o0
Hence for the operator 7™
m ,,, 1 4 "1 b
| T = T" g < (‘;{Lo(b — @)+ Ly~ a)) (Lo + Loi-———x
T

x max (max y/(t), max ¥,()) | x — y llg-
astsh astsh

k
From 6), ( Lo(b — a)* + —4-L1(b - a)) tends to 0 as k tends to infinity and
hence there exists a number m sqch that
1 4 m—1 b
0([‘;5‘ Lo(b — a)* + Pl L - a)] (Lo + LL)'("—“—)"X

x max ( max !Pl(t) max l/lz(t))) <1
astsh

and the conclusion follows from lemma 1. Other parts are proved analogously
using the estimates obtained in the lemmas.

Remark 1. The scalar boundary value problem

12) xC3M = g(t, x)
x®a) = A4;, x®)b)=B; O0Lign-1
where g(¢, x) is continuous anc_l for all (¢, x), (1, yye [a, b] x R
lgt,x) —gt,y) | = klx—y]
has g unique solution provided

a3

-a)’" < 1.

In faqt the problem (12) is equivalent to the system
x:’=x;+l, léién"l

xp = &(t, xy)
x(a) = A, x(b) =

and condition (6) reduces to ¢(4) < 1, where

6



010....0
_ 2001 .0
4=0=2 N
n 000 ....1

k0O ....O0

which is the same as (13).

This result is also proved in ([2], theorem 3.6) using different methods and cover
a particular case of Usmani [9].

Remark 2. If f is independent of x’, then
1. Conditions (6) and (9) are best possible since the uncoupled system

xi + kx; =0, 1<ign
x(@) = x(b) =0

where —kT (b — a@)®> = 1 has infinite number of solutions:
n

x(t) = ¢, sin Jk(t — a),

where c, is arbitrary constant.
Also the system

x;’+x‘+l=o, l§i§n—l
Xn+ kx, =0
x(a) = x(b) =0

where ——’-;T (b — a)®*" = 1 has infinite number of solutions:
n .
x(t) = k¢ V" sin k2"t — a),

where c, is arbitrary constant.

2. Theorem 3.2 obtained in [1] can be improved to: If condition (6) is satisfied
then, there exist a solution (unique solution) of (1) satisfying the periodic boudary
conditions

x(a) = x(b)
x'(a) = x'(b)
if and only if there exists some p (unique p) for which
x'(b,p) — x'(a,p) =0
where x(¢, p) is the solution of (1) satisfying x(a) = x(b) = p.

Remark 3. Condition (6) is the natural generalization of the result obtained
by Lettenmeyer [7] for scalar problems and non-comparable with (7) or (8).
Finding best possible results here similar to obtained in [3] remains undecided.
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Remark 4. It will be desirable to find similar results for mﬁmte systems considered
in [5], [10] and references therein.

The authors are grateful to Prof. Roberto Conti for providing the facxhtles
here.
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