Archivum Mathematicum

Josef Niederle

Conditions for trivial principal tolerances

Archivum Mathematicum, Vol. 19 (1983), No. 3, 145--152
Persistent URL: http://dml.cz/dmlcz/107168

Terms of use:

© Masaryk University, 1983
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

CONDITIONS FOR TRIVIAL PRINCIPAL TOLERANCES

JOSEF NIEDERLE, Brno

(Received December 5, 1980)

Definitions. By a tolerance on an algebra \mathfrak{A} is meant a compatible reflexive and symmetric relation on \mathfrak{A}, i.e. a subalgebra of $\mathfrak{A} \times \mathfrak{A}$ with a reflexive and symmetric relation on $|\mathfrak{A}|$ as its support.

By a principal tolerance $T(a, b)$ on an algebra \mathfrak{A} is meant the least tolerance on \mathfrak{A} containing $[a, b] \in|\mathfrak{A}| \times|\mathfrak{A}|$.

An algebra \mathfrak{A} is said to have trivial principal tolerances if every principal tolerance on \mathfrak{A} is a congruence.

A class of algebras \mathscr{V} is said to have trivial principal tolerances if every algebra from \mathscr{V} has trivial principal tolerances.

Lemma 1. Let \mathfrak{A} be an algebra, $a, b, x, y \in|\mathfrak{A}|$. There holds $[x, y] \in T(a, b)$ iff there exist a natural number n, an $(n+2)$-ary polynomial f on \mathfrak{H} and elements $c_{1}, \ldots, c_{n} \in|\mathfrak{H}|$ such that

$$
\begin{aligned}
& x=f\left(a, b, c_{1}, \ldots, c_{n}\right) \\
& y=f\left(b, a, c_{1}, \ldots, c_{n}\right)
\end{aligned}
$$

Proof will be omitted, cf. [1].
Lemma 2. Let φ be a homomorphism of an algebra \mathfrak{A} onto an algebra \mathfrak{B}. Then $T(\varphi a, \varphi b)=(\varphi \times \varphi) T(a, b)$.

Proof. Let $[x, y] \in(\varphi \times \varphi) T(a, b)$. Then there exist elements $v, w \in|\mathfrak{A}|$ such that $[v, w] \in T(a, b)$ and $x=\varphi v, y=\varphi w$. By the lemma 1, there exist an $(n+2)$-ary polynomial f and elements $c_{1}, \ldots, c_{n} \in|\mathfrak{H}|$ such that $v=f\left(a, b, c_{1}, \ldots, c_{n}\right)$, $w=f\left(b, a, c_{1}, \ldots, c_{n}\right)$. Then

$$
\begin{aligned}
& x=\varphi v=\varphi f\left(a, b, c_{1}, \ldots, c_{n}\right)=f\left(\varphi a, \varphi b, \varphi c_{1}, \ldots, \varphi c_{n}\right) \\
& y=\varphi w=\varphi f\left(b, a, c_{1}, \ldots, c_{n}\right)=f\left(\varphi b, \varphi a, \varphi c_{1}, \ldots, \varphi c_{n}\right)
\end{aligned}
$$

so that it holds $[x, y] \in T(\varphi a, \varphi b)$. We have obtained $(\varphi \times \varphi) T(a, b) \subseteq T(\varphi a, \varphi b)$.

Clearly $[\varphi a, \varphi b] \in(\varphi \times \varphi) T(a, b)$. Since $(\varphi \times \varphi) T(a, b)$ is reflexive, as φ is onto, and symmetric, and as a homomorphic image of a subalgebra of $\mathfrak{A} \times \mathfrak{A}$ a subalgebra of $\mathfrak{B} \times \mathfrak{B}$, so a tolerance on \mathfrak{B}, it follows $T(\varphi a, \varphi b) \subseteq(\varphi \times \varphi) T(a, b)$. Consequently $T(\varphi a, \varphi b)=(\varphi \times \varphi) T(a, b)$. Q.E.D.

Proposition. An algebra \mathfrak{A} satisfies (i) and (ii) iff it satisfies (iii).
(i) \mathfrak{A} has trivial principal tolerances
(ii) every principal congruences S, T on \mathfrak{A} satisfy $S T S=T S T$
(iii) every principal tolerances S, T on \mathfrak{A} satisfy $S T S=T S T$

Proof. Obviously (i) and (ii) implies (iii). Let (iii) hold, let T be a principal tolerance on \mathfrak{A}. Since Δ is a principal tolerance on \mathfrak{A}, it follows $T=\Delta T \Delta=$ $=\boldsymbol{T} \Delta \boldsymbol{T}=\boldsymbol{T} \boldsymbol{T}$. Thus \boldsymbol{T} is a congruence. There holds (i). But (i) and (iii) implies (i) immediately. Q.E.D.

This proposition describes completely relations among the conditions (i), (i) and (iii). It will be illustrated in the following examples.

Example 1. Let \mathscr{V} be the variety of all monounary algebras that satisfy identity $f f x=x$. Every \mathscr{V}-free algebra satisfies (i), but if it has at least two generators it does not satisfy (ii) and (iii):

Obviously $T(a, b)=\{[a, b],[b, a],[f a, f b],[f b, f a]\} \cup \Delta$.

1. $f a=b$

In this case $T(a, b)=\{[a, b],[b, a]\} \cup \Delta$. It is a congruence.
2. $f a \neq b$

In this case $f b \neq a$, because $f b=a$ would imply $f a=f f b=b$, and obviously $f a \neq a, f b \neq b$. So $T(a, b)$ is a congruence.

Let a, b be two distinct free generators of a \mathscr{V}-free algebra. We have $[b, f b] \in$ $\in T(a, b) T(a, f a) T(a, b)$, but $[b, f b] \notin T(a, f a) T(a, b) T(a, f a)$.

Example 2. A simple algebra which is not tolerance simple satisfies (ii) but it does not satisfy (i) and (iii). An example of such an algebra is the following modular lattice.

Theorem 1. Let \mathscr{V} be a class of algebras and let \mathscr{F} be a subclass of \mathscr{V} such that $\mathscr{V}=\mathbf{H} \mathscr{F}$. The following conditions are equivalent:
(A) \mathscr{V} has trivial principal tolerances
(B) every algebra $\mathfrak{9}$ from \mathscr{F} satisfies (i) and (ii)
(C) every algebra \mathfrak{H} from \mathscr{F} satisfies (iii)
(D) every algebra $\mathfrak{\mathfrak { H }}$ from \mathscr{V} satisfies (iii)

Proof. $A \Rightarrow D$: Let \mathscr{V} have trivial principal tolerances. Let $S=\Theta(a, b)$, $T=\Theta(c, d)$ be arbitrary principal tolerances i.e. principal congruences on \mathfrak{A}. We have $\mathbf{H} \mathscr{V}=\mathbf{H} H \mathscr{F}=\mathbf{H} \mathscr{F}=\mathscr{V}$, thus $\left.\mathscr{A}\right|_{\boldsymbol{T}}$ is an algebra from \mathscr{V}. Denote by φ the quotient homomorphism of \mathfrak{A} onto $\left.\mathfrak{A}\right|_{T}$. By the lemma $2, T(\varphi a, \varphi b)=$ $=(\varphi \times \varphi) T(a, b)$. Let $[x, y] \in S T S$, so there exists elements v, w such that $[x, v] \in S$, $[v, w] \in T$ and $[w, y] \in S$. Then $\varphi v=\varphi w$ and it holds $[\varphi x, \varphi v] \in T(\varphi a, \varphi b)$, $[\varphi v, \varphi y] \in T(\varphi a, \varphi b)$. Since $\left.\mathfrak{A}\right|_{T}$ is an algebra from \mathscr{V} and so it has trivial principal tolerances, we have $[\varphi x, \varphi y] \in T(\varphi a, \varphi b)$. It means that there exist elements $x_{1}, y_{1} \in|\mathfrak{H}|$ such that $\left[x, x_{1}\right] \in T,\left[y, y_{1}\right] \in T$ and $\left[x_{1}, y_{1}\right] \in S$, and so $[x, y] \in T S T$. We have obtained $S T S \subseteq T S T$ for arbitrary principal tolerances S, T on \mathfrak{A}. Thus $S T S \subseteq T S T \subseteq S T S$ holes for arbitrary principal tolerances on \mathfrak{M}.
$\boldsymbol{D} \Rightarrow \boldsymbol{C}$ is obvious.
$\boldsymbol{C} \Rightarrow \boldsymbol{B}$: follows from the Proposition.
$\boldsymbol{B} \Rightarrow \boldsymbol{A}$: Let every algebra \mathfrak{N} from \mathscr{F} satisfy (i) and (ii). Let \mathfrak{B} be an arbitrary algebra from \mathscr{V}. Since $\mathscr{V}=\mathbf{H} \mathscr{F}$, there exists an algebra \mathfrak{A} from \mathscr{F} and a homomorphism φ of \mathfrak{A} onto \mathfrak{B}. Let $a, b, x, y, z \in|\mathfrak{B}|$ be such that $[x, y] \in T(a, b)$ and $[y, z] \in T(a, b)$. Choose $g_{a} \in \varphi^{-1} a$ and $g_{b} \in \varphi^{-1} b$. Then, by the lemma 2, $T(a, b)=$ $=(\varphi \times \varphi) T\left(g_{a}, g_{b}\right)$. Thus there exist elements $g_{x}, g_{y}, h_{y}, h_{z} \in|\mathfrak{M}|$ such that $\left[g_{x}, g_{y}\right] \in T\left(g_{a}, g_{b}\right),\left[h_{y}, h_{z}\right] \in T\left(g_{a}, g_{b}\right)$ and $\varphi g_{x}=x, \varphi g_{y}=\varphi h_{y}=y, \varphi h_{z}=z$. By the assumption, $T\left(g_{a}, g_{b}\right)$ is a congruence. So if $g_{y}=h_{y}$, then $\left[g_{x}, h_{z}\right] \in$ $\in T\left(g_{a}, g_{b}\right)$ and consequently $[x, z] \in T(a, b)$. If $g_{y} \neq h_{y}$, denote $S=T\left(g_{y}, h_{y}\right)$ and $T=T\left(g_{a}, g_{b}\right)$. We have $\left[g_{x}, h_{z}\right] \in T S T$. By the assumption, there exist elements $g_{1}, g_{2} \in|\mathfrak{A}|$ such that $\left[g_{x}, g_{1}\right] \in S,\left[g_{1}, g_{2}\right] \in T$ and $\left[g_{2}, h_{z}\right] \in S$. Since $S \subset$ $\subseteq \operatorname{Ker} \varphi$, it holds $\varphi g_{x}=\varphi g_{1}$ and $\varphi g_{2}=\varphi h_{z}$. Hence $[x, z]=\left[\varphi g_{x}, \varphi h_{z}\right]=$
$=\left[\varphi g_{1}, \varphi g_{2}\right] \in(\varphi \times \varphi) T=T(a, b)$. We have obtained that $T(a, b)$ is a congruence. Q.E.D.

Theorem 2. Let \mathscr{V} be a variet v of algebras. The following conditions are equivalent:
(A) \boldsymbol{V} has trivial principal tolerances,
(B) every \mathscr{V}-free algebra \mathfrak{A} satisfies (i) and (ii),
(C) every \mathscr{V}-free algebra \mathfrak{A} satisfies (iii),
(D) every algebra \mathfrak{A} from \mathscr{V} satisfies (iii),
(E) for every natural number n, every $(n+2)$-ary polynomials f_{1}, g, f_{2} and every n-ary polynomials s, t, u, v such that
$f_{1}\left(s\left(x_{1}, \ldots, x_{n}\right), t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=g\left(u\left(x_{1}, \ldots, x_{n}\right), v\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$, $f_{2}\left(t\left(x_{1}, \ldots, x_{n}\right), s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=g\left(v\left(x_{1}, \ldots, x_{n}\right), u\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$,
holds in \mathscr{V} there exist $(n+2)$-ary polynomials g_{1}, f, g_{2} such that
$f_{1}\left(t\left(x_{1}, \ldots, x_{n}\right), s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=g_{1}\left(u\left(x_{1}, \ldots, x_{n}\right), v\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$, $f\left(s\left(x_{1}, \ldots, x_{n}\right), t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=g_{1}\left(v\left(x_{1}, \ldots, x_{n}\right), u\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$, $f\left(t\left(x_{1}, \ldots, x_{n}\right), s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=g_{2}\left(u\left(x_{1}, \ldots, x_{n}\right), v\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$, $f_{2}\left(s\left(x_{1}, \ldots, x_{n}\right), t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=g_{2}\left(v\left(x_{1}, \ldots, x_{n}\right), u\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$ holds in \mathscr{V}.

Proof. Since every algebra from \mathscr{V} is a homomorphic image of a \mathscr{V}-free algebra, we have $\boldsymbol{A} \Rightarrow \boldsymbol{D} \Rightarrow \boldsymbol{C} \Rightarrow \boldsymbol{B} \Rightarrow \boldsymbol{A}$ by theorem 1.
$\boldsymbol{C} \Rightarrow \boldsymbol{E}$: Suppose \boldsymbol{C}. Let $f_{1}, g, f_{2}, s, t, u, v$ be polynomials satisfying the first two identities. Then $\left[f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}), f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right] \in T(s(\boldsymbol{x}), t(\boldsymbol{x})) T(u(\boldsymbol{x}), v(\boldsymbol{x}))$ $T(s(x), t(x))$, where \boldsymbol{x} denotes x_{1}, \ldots, x_{n}. It is true also for the \mathscr{V}-free algebra over n free generators, so applying C and lemma 1 we obtain polynomials g_{1}, f, g_{2} in request.
$\boldsymbol{E} \Rightarrow \boldsymbol{C}$: Suppose \boldsymbol{E}. Let \mathfrak{A} be a \mathscr{V}-free algebra, $a, b, c, d, x, y \in|\mathfrak{A}|,[x, y] \in$ $\in T(a, b) T(c, d) T(a, b)$. By the lemma 1 , there exist natural numbers m_{p}, m_{q}, m_{r} and an m_{p}-ary polynomial h_{p}, an m_{q}-ary polynomial h_{q}, an m_{r}-ary polynomial h_{r}, elements $p_{1}, \ldots, p_{m_{p}}, q_{1}, \ldots, q_{m_{q}}, r_{1}, \ldots, r_{m_{r}}$ such that

$$
\begin{aligned}
& h_{p}\left(a, b, p_{1}, \ldots, p_{m_{p}}\right)=x \\
& h_{p}\left(b, a, p_{1}, \ldots, p_{m_{p}}\right)=h_{q}\left(c, d, q_{1}, \ldots, q_{m_{q}}\right), \\
& h_{r}\left(a, b, r_{1}, \ldots, r_{m_{r}}\right)=h_{q}\left(d, c, q_{1}, \ldots, q_{m_{q}}\right), \\
& h_{r}\left(b, a, r_{1}, \ldots, r_{m_{r}}\right)=y .
\end{aligned}
$$

There exists a finite set of free generators of \mathfrak{A}, denote it $\left\{x_{1}, \ldots, x_{n}\right\}$, such that $a, b, c, d, p_{1}, \ldots, p_{m_{p}}, q_{1}, \ldots, q_{m_{q}}, r_{1}, \ldots, r_{m_{r}}$ are elements of the subalgebra \mathfrak{B} of \mathfrak{A} generated by $\left\{x_{1}, \ldots, x_{n}\right\}$, which is itself a \mathscr{V}-free algebra with the set of
free generators $\left\{x_{1}, \ldots, x_{n}\right\}$. Thus there exist n-ary polynomials s, t, u, v such that

$$
\begin{aligned}
& a=t\left(x_{1}, \ldots, x_{n}\right), \\
& b=s\left(x_{1}, \ldots, x_{n}\right), \\
& c=u\left(x_{1}, \ldots, x_{n}\right), \\
& d=v\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

and $(n+2)$-ary polynomials f_{1}, g, f_{2} such that

$$
\begin{aligned}
& h_{p}\left(w, z, p_{1}, \ldots, p_{m_{p}}\right)=f_{1}\left(w, z, x_{1}, \ldots, x_{n}\right), \\
& h_{q}\left(w, z, q_{1}, \ldots, q_{m_{q}}\right)=g\left(w, z, x_{1}, \ldots, x_{n}\right), \\
& h_{r}\left(w, z, r_{1}, \ldots, r_{m_{r}}\right)=f_{2}\left(w, z, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

holds for abitrary elements $w, z \in|\mathfrak{B}|$. Now we substitute a, b, c, d for w, z and then $t(\boldsymbol{x}), s(\boldsymbol{x}), u(\boldsymbol{x}), v(\boldsymbol{x})$ for a, b, c, d. We obtain the first two expresions from \boldsymbol{E} and

$$
\begin{aligned}
& f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})=\boldsymbol{x} \\
& f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})=y
\end{aligned}
$$

Since x_{1}, \ldots, x_{n} are free generators, the first two identities from E hold identically in the variety \mathscr{V}. Thus there exist $(n+2)$-ary polynomials g_{1}, f, g_{2} such that the last four identities from E hold in \mathscr{V}. But then $[x, y] \in T(c, d) T(a, b) T(c, d)$ Q.E.D.

The condition (ii) in B cannot be omitted. There exists a variety which has not trivial principal tolerances even though all free algebras of it have.

Example 3. The variety from example 1 has not trivial principal tolerances: Put $|\mathfrak{A l}|=\{a, b, c\}, f=(a \mapsto a, b \mapsto c, c \mapsto b)$. Obviously $[a, c] \in T(a, b)$, but $[b, c] \notin T(a, b)$.

Example 4. The variety of distributive lattices has trivial principal tolerances (cf. [2]). We confirm that fact by proving the assertion (E).

Let $f_{1}, f_{2}, g, s, t, u, v$ be arbitrary lattice polynomials satisfying the conditions required. Denote by h_{1}, h_{2} the following ($n+2$)-ary lattice polynomials:

$$
\begin{aligned}
& h_{1}(y, z, \boldsymbol{x}) \equiv f_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \vee f_{1}(z, y, \boldsymbol{x}) \vee f_{2}(y, z, \boldsymbol{x}) \vee f_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \\
& h_{2}(y, z, \boldsymbol{x}) \equiv f_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge f_{1}(z, y, \boldsymbol{x}) \wedge f_{2}(y, z, \boldsymbol{x}) \wedge f_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})
\end{aligned}
$$

It is clear that

$$
h_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \leqq h_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \leqq h_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \leqq h_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})
$$

and if we denote

$$
j(y, z, \boldsymbol{x}) \equiv(g(u(\boldsymbol{x}), v(\boldsymbol{x}), \boldsymbol{x}) \wedge g(y, z, \boldsymbol{x})) \vee(g(z, y, \boldsymbol{x}) \wedge g(v(\boldsymbol{x}), u(\boldsymbol{x}), \boldsymbol{x})
$$

then we obtain

$$
h_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})=j(u(\boldsymbol{x}), v(\boldsymbol{x}), \boldsymbol{x})
$$

and

$$
h_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})=j(v(\boldsymbol{x}), u(\boldsymbol{x}), \boldsymbol{x}) .
$$

From the $\vee \wedge$-representation of h_{1} and h_{2} and in view of the above we conclude that there exist n-ary lattice polynomials $a_{1}, a_{2}, b_{1}, b_{2}$ such that

$$
\begin{aligned}
& h_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})=\left(a_{1}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{1}(\boldsymbol{x}), \\
& h_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})=\left(a_{1}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{1}(\boldsymbol{x}), \\
& h_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})=\left(a_{2}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x}), \\
& h_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})=\left(a_{2}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x}),
\end{aligned}
$$

be means of which we can construct the desired polynomials. First we define auxiliary $(n+2)$-ary lattice polynomials k_{1}, k_{2}, l by

$$
\begin{aligned}
k_{1}(y, z, \boldsymbol{x}) & \equiv j(y, z, \boldsymbol{x}) \vee\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(x)\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right), \\
k_{2}(y, z, \boldsymbol{x}) & \equiv j(y, z, \boldsymbol{x}) \wedge\left(\left(\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right),\right. \\
l(y, z, \boldsymbol{x}) & \equiv\left(((s(\boldsymbol{x}) \wedge y) \vee(z \wedge t(\boldsymbol{x}))) \wedge\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right)\right) \vee b_{2}(\boldsymbol{x}) .
\end{aligned}
$$

We have

$$
\begin{aligned}
k_{1}(u(\boldsymbol{x}), v(\boldsymbol{x}), \boldsymbol{x})= & h_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \vee\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right)= \\
= & \left(\left(a_{1}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{1}(\boldsymbol{x})\right) \vee \\
& \left.\vee\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right)\right)= \\
= & \left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{1}(\boldsymbol{x})= \\
= & \left(a_{1}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee\left(a_{2}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{1}(\boldsymbol{x})= \\
= & h_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}), \\
k_{1}(v(\boldsymbol{x}), u(\boldsymbol{x}), \boldsymbol{x})= & h_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \vee\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right)= \\
= & \left(\left(a_{2}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right) \vee \\
& \vee\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right)= \\
= & \left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})=l(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}),
\end{aligned}
$$

$$
\begin{aligned}
k_{2}(u(\boldsymbol{x}), v(\boldsymbol{x}), \boldsymbol{x})= & h_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge \\
& \wedge\left(\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right)= \\
= & \left(\left(\left(a_{1}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{1}(\boldsymbol{x})\right) \wedge\right. \\
& \wedge\left(\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right)= \\
= & \left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})= \\
= & l(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}), \\
k_{2}(v(\boldsymbol{x}), u(\boldsymbol{x}), \boldsymbol{x})= & h_{2}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge\left(\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right)= \\
= & \left(\left(a_{2}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \vee t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right) \wedge \\
& \wedge\left(\left(\left(a_{1}(\boldsymbol{x}) \vee a_{2}(\boldsymbol{x})\right) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})\right)= \\
= & \left(a_{2}(\boldsymbol{x}) \wedge(s(\boldsymbol{x}) \wedge t(\boldsymbol{x}))\right) \vee b_{2}(\boldsymbol{x})= \\
= & h_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) .
\end{aligned}
$$

Now, the polynomials g_{1}, g_{2}, f are as follows:

$$
\begin{aligned}
g_{1}(y, z, \boldsymbol{x}) & \equiv\left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge k_{1}(y, z, \boldsymbol{x})\right) \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge k_{2}(z, y, \boldsymbol{x})\right), \\
g_{2}(y, z, \boldsymbol{x}) & \equiv\left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge k_{2}(y, z, \boldsymbol{x})\right) \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge k_{1}(z, y, \boldsymbol{x})\right), \\
f(y, z, \boldsymbol{x}) & \equiv\left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge l(y, z, \boldsymbol{x})\right) \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge l(z, y, \boldsymbol{x})\right)
\end{aligned}
$$

Indeed, this construction yields

$$
\begin{aligned}
g_{1}(u(\boldsymbol{x}), v(\boldsymbol{x}), \boldsymbol{x})= & \left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge h_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right) \vee \\
& \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge h_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right)= \\
= & f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}), \\
g_{1}(v(\boldsymbol{x}), u(\boldsymbol{x}), \boldsymbol{x})= & \left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge l(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right) \vee \\
& \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge l(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})\right)= \\
= & f(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}), \\
g_{2}(u(\boldsymbol{x}), v(\boldsymbol{x}), \boldsymbol{x})= & \left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge l(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x})\right) \vee \\
& \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge l(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right)= \\
= & f(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}), \\
g_{2}(v(\boldsymbol{x}), u(\boldsymbol{x}), \boldsymbol{x})= & \left(f_{1}(t(\boldsymbol{x}), s(\boldsymbol{x}), \boldsymbol{x}) \wedge h_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right) \vee \\
& \vee\left(f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) \wedge h_{1}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x})\right)= \\
= & f_{2}(s(\boldsymbol{x}), t(\boldsymbol{x}), \boldsymbol{x}) .
\end{aligned}
$$

Noted by the referee. For motivation and some other results see [3], which has appeared in the meantime.

REFERENCES

[1] Niederle, J.: Relative bicomplements and tolerance extension property in distributive lattices. Casopis pést. matem. 103 (1978), 250-254.
[2] Chajda, I., Zelinka, B.: Minimal compatible tolerances on lattices. Czech. Math. J. 27 (1977), 452-459.
[3] Chajda, I.: Recent results and trends in tolerances on algebras and varieties. In: Colloquia Mathematica Societatis János Bolyai 28, North-Holland, Amsterdam 1981.
J. Niederle

Vinični 60, 61500 Brno 15
Czechoslovakia

