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REGULARITY OF ALGEBRAS WITH APPLICATIONS 
TO CONGRUENCE CLASS GEOMETRY 

JAROMfR DUDA,Brno 
(Received August 20, 1981) 

1. Introduction 

The concept of regular congruence relation was introduced in A. I. Mafcev [11] 
as follows: A congruence 0 on an algebra 2t -= <̂ 4, F> is said to be regular if it is 
uniquely determined by any of its classes [a] 0, ae A. Regular algebras, i.e. 
algebras with regular congruences only, were investigated by H. A. Thurston[16]; 
varieties of regular algebras were studied in B. Cs&kany [2, 3], G. Gratzer [9], 
R. Wille [20] and J. Hagemann [10]. Some recent results on this topic can be found 
in I. Chajda [1] and also in [5, 6]. Geometrical properties of regularity were 
discussed in H. Werner and R. Wille [19], R. Wille [20] and in A. Pasini [13, 14, 
15]. 

The organization of the material is as follows. Firstly, the concept of regularity 
is introduced in a more precise form and, simultaneously, some useful characteriza
tions of this concept are derived. Secondly, we show the relationship between 
regular algebras and the parallelism of congruence class geometries. Finally, 
some applications for varieties of regular, weakly regular and subregular algebras 
are achieved in section 4. 

2. Regularity in universal algebra: Regular elements, regular congruences and regular 
algebras 

Let 21 =- <_4, F> be an algebra and let S £ A, R s A x A be arbitrary subsets. 
Then the symbol 

0(R) denotes the smallest congruence on 21 containing R; 
©[£] denotes the smallest congruence on 91 collapsing S, i.e. ©[5] -= 0(SxS). 
Now, consider the equality W =- 0[[a] W] for ae A, We Con 21. Using the 

universal quantifier V, the following three concepts may be easily introduced. 

Definition 1. Let 21 = <,4, F> be an algebra. Then 
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(i) An element aeA is said to be regular if W = ®[[a] W] holds for every 
W e Con W; 

(ii) A congruence relation W e Con 31 is said to be regular ifW=* 0[[a] W] holds 
for every aeA; 

(iii) 31 is called regular ifW = 0[[a] W] holds for every aeA, We Con 31. 
For illustration we present the following three 

Examples, (i) Let 31 be an implicative semilattice, i.e. a meet-semilattice with 1 
and with the (binary) operation of relative pseudocomplementation a •* b = 
= max {xeA; x A a ^b}, see, e.g. [12] or [4]. Then it is well-known that the 
distinguished nullary operation 1 is a regular element. 

(ii) Consider the lattice 31 represented by the following diagram 

Then it is easily seen that the congruence relation {{0, c}, {a, d}, {b, 1}} is regular 
and, on the contrary, {{0, c}, {a, d, b, 1}} is not regular, see 

•••c 

Obviously, mA = {(a, a}; aeA} as well as iA = Ax A are regular congruences 
on any algebra 31 = (A, F>. 

(iii) Many algebras "from the life", e.g. quasigroups and hence also groups, 
rings, modules, Boolean algebras, etc. are regular. 

Theorem 1. Let 31 = (A9 F} be an algebra. Then for any element aeA and for 
any congruences W9 Wi9 iel, the following three conditions hold: 

(1) W m 0[[a] ¥] if and only ifW^ 0({a}x S) for some subset S £ A. 

200 



(2) W = ©[[a] W] and W is compact (in the congruence lattice Con 91) if and 
only if W = 0({a] x F)for some finite subset F £ A. 

(3) V ¥i = <9[M V ^i] whenever Wt = 0[[a] ^ ( ] /o r <wrj; / e /. 
i e l i e l 

Proof. (1) Suppose V = <9[[a] !P]. Since <9[[a] **] == <9({a} x [a] !P) the 
subset S = [a] !P has the desired property: W = <9({d} x S). 

Conversely, let W = <9({a}xS) for some S g A. Then ¥ = 0({a}x5) s 
2 {a]xS and, consequently, [a] Wx[a]W^ {a} xS. In summary, 0[[a] *P] = 
=: ®(M ^ x [a] !P) a 0({a} x 8 ) = *F. The inverse inclusion is trivial concluding 
W = 0[[a] n 

(2) It is well-known (and trivial) that a congruence is compact in the congruence 
lattice if and only if it is finitely generated. Combining this fact with the preceding 
part (1) we immediately get (2). 

(3) By Theorem 1(1), for any iel, there is a subset S{ g A satisfying Wt = 
= 0({a] x S^. We claim that V <9(M x S() = 0({a] x U $i)- Clearly, it suffices 

l e t iel 

to verify the inclusion V <9(M x St) 2 <9({a} x U 5 i ) : s i n c e M x l J S | = 

= U ({* } x Sf) c U ©({«} x Sf) £ V <9({<*} x SI)", also 0({a} x U £*) E 
. 6 / i e l i € l i e l 

g V 0({«}xSi) is true. So we have V ^i = ©({a} x U S.) and thus, by 

Theorem 1(1), V Vi = ©[[a] V ^ J - This completes the proof. 
iel iel 

Corollary 1.(1) Regular congruences are closed with respect to arbitrary suprema. 
(2) Any congruence W is regular whenever the principal congruences 0(af b)y 

<a, by 6 Wf are regular. 
Proof. (1) Follows directly from Theorem 1 (3). 
(2) Combining Theorem 1 (3) with the well-known fact that W = V {©(«> b); 

<a, by e W] we immediately get the desired result. 
Remark. Part (t) of the preceding Corollary 1 gives rise to a problem: Are regular 

congruences closed under arbitrary infima, i.e. under arbitrary intersections? 
The following example answers this question in the negative. Let 21 be an 

implicative semilattice represented by the diagram 
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Then it is easily seen that {{0, a}9 {b, c9 1}} and {{0, *}, {a9 c, 1}} 

are regular congruences, however, their intersection {{0}, {a}9 {b}9 {c9 \}\ 

1 1 

a > 

o * 
is not regular. 

Now, we state the main theorem of this section. 

Theorem 2. (I) For any algebra 91 -= <-4,F> the following three conditions are 
equivalent: 

(i) 91 is regular; 
(ii) Every principal congruence on 91 is regular; 
(iii) For any elements a9b9c€ A9 there exists a finite subset f g A such that 

0(b,c)~0({a}xF). 
(2) For any element a of an algebra 91 = (A, F>, the jotfawng tfir.ee conditions; 

are equivalent: 
(i) a is regular; 
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(ii) a is regular with rdspect to principal congruences on 91, i.e. 0(b9 c) = 
= 0[[a] &(b9 c)] holds for any elements b9ce A; 

(iii) For any elements b9c€ A9 there exists a finite subset F £ A such that 
G(b9c) = 0({a}xF). 

Proof. (I) (i)=>(ii) is trivial. The equivalence (ii)o(iii) follows immediately 
from Theorem 1 (2). (ii) => (i) is a direct consequence of Corollary 1 (2). 

(2) The proof goes along the same line as that of part (1) and is therefore omitted. 

3. Application: Regular algebras and parallelism of R. Wille 

The basic results concerning congruence class geometries were given by R. Wflle 
in [20]. Further investigations of this topic were realized by H. Werner [18], 
H. Werner and R. Wille [19] and by A. Pasini, see [13, 14, 15] and references 
there. 

For the purposes of this paper we recall the definition from [18; pp. 118 — 119]: 
A pair (A9II) is called a congruence class geometry if the mapping II: A x 2A -• 2A 

satisfies the following four axioms: 
(n 1) il(jc| 0) = {*} 
(ii 2) n(x i n(y i M)) s n(x \ M) 
(II3)yeIl(x\x9y) 
(n 4) n(x | M) = U {nipc \ F); Fis finite subset of M}. 

Having an algebra 91 = <-4, F> the mapping II : A x 2A -• 2A defined via 
II(x | M) = [JC] 0[Af], JC e A> M £ A9 Evidently satisfies the above axioms 
(JI 1), ...,(/7 4) and so (A9H)9 denoted by T(V)f is called a congruence class 
geometry of algebra 91. Further, for any congruence class geometry (A9 IT), there 
is a binary relation it on the set ff"(A9 E) = {/7(JC | M); xeA9M £-4} defined by the 
rule: TinT2 if and only if T2 = II(t2 | Tx) for some (or every )t2 6 T2. It is well-
known, see [18; p. 121] and [20; p. 29] that n satisfies the axioms of the so-called 
weak parallelism, see [20; pp. 14—15] for this concept. Moreover, n is said to be 
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parallelism whenever it is an equivalence relation on &(A9 17). So n is a weak 
parallelism for any congruence class geometry F(9I) and it remains to characterize 
algebras for which n is a parallelism. This problem was solved (under some assump
tions) in [20] and [14]; before giving the full description we need a preliminary 
lemma. 

Lemma 1. (1) For any subset S of an algebra 91 = <A, F>, the following two 
conditions are equivalent: 

(i) 0[S] is regular; 
(ii) II(x | II(y | S)) = n(x \ S) holds for every x9yeA. 
(2) For any element a of an algebra 91 = <A, F>, the following three conditions 

are equivalent: 
(i) a is regular; 

(ii) n(x | II(a | S)) = II(x \ S) holds for every x e A9 S g A; 
(iii) II(x | Fl(a | JC, z)) = Tl(x \x9z) (= [x9 z] the line of the geometry F(9l) 

generated by elements x9 z) holds for every x9ze A; 
(iv) z e JJ(x | II(a\ x9 z)) holds for every x9ze A. 
Proof. (1) (i) =-> (ii). Clearly, n(x | n(y \ S)) = [x] 0[[y] 0[S]] = [x] 0[S] = 

= II(x | S) follows immediately fromthe regularity of 0[S]. 
(ii) => (i). By hypothesis, the equality [x] 0[[y] 0[S]] = [x] 0[S] holds for 

any elements x9ye A. Consequently, 0[[y] 0[S]] = 0[S] is true for any ye A 
proving the regularity of 0[S]. 

(2) The implications (i) => (ii) => (iii) => (iv) are straightforward; (iv) => (i) easily 
follows from Theorem 2 (2). 

Now, we are ready to prove the main result of this section. 

Theorem 3. For any algebra 91 = (A9F}9 the following seven conditions are 
equivalent: 

(1) 91 is regular; 
(2) n is a quasiordering on the set &T(*$£); 
(3) n is a parallelism, i.e. n is an equivalence on c^T(9(); 
(4) TxnT2 if and only if0[Tt] = 0[T2] holds for any Tl9 T2 e.Tr(9l); 
(5) n(x | II(y | S)) = D(x \ S) holds for every x9 yeA9 S g A; 
(6) II(x | II(y | u9 v)) = II(x \ u9 v) holds for every x9 y9 u9veA; 
(7) z € II(x | II(y | x9 z)) holds for every x,y,ze A. 
Proof. The proof goes along the following diagram: -

(3) . , 

(1)=»(5). It follows immediately from the regularity of 0[S] . Implications 
(5)=*. (6) -» (7) are trivial. 
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(7) => (1). Combining hypothesis with Lemma 1 (2), we get that every element 
ye A is regular. This proves the regularity of 9t. . , 

(5) => (4). It suffices to verify that TxnT2 implies 0[Tt] = 0[T2J. So let T2 = 
= U(t2 | Ti) and suppose (5). Then for any xeA, [x] 0[T2] = II(x \ T2) = 
= n(x | tt(t2 | Tx)) = n(x | 7\) = [x] 0[TX]. Since element xe A was chosen 
arbitrarily, we get 0[T2] = 0[TX] which was to be proved. 

(4) -=> (3). Immediate.^ 
(3)-=> (2). Trivial. r 

(2)=>(1). Let Te$T(yi) and let r,seA. Defining S = JT(s | T) and i* = 
= i7(r | S) we have TnS and S7ii?. Then, by hypothesis, also TnR is true, i.e. 
R = JT(r | F). In summary, the equality I7(r | T) = 27(r | I7(s | T)J holds for any 
r, s e A and thus, by Lemma 1 (1), 0[T] is regular for any Te ST(SSi). 

Take a congruence *F e Con 91. Then, as was already proved, 0[[a] W] is 
regular for any element a e A. Further, [a] W x [a] W g <9[[a] W] £ W and thus 
also U ( M y x H "0 -i U ©[[*] 1 S V which yields !P = U ©[[«] V since 

aeA ae.4 ae.4 
U ( M ? x [ a ] <P) = W. Consequently, W = V # [ M ^]> i-e- ^ is a supremum 

ae.4 fle.4 

of regular congruences 0[[a] W], ae A. Corollary 1 (1) completes the proof. 

Remark. Theorem 3 sufficiently describes those algebras for which the Weak 
parallelism n is a parallelism. Moreover, this result can be strengthened in the 
following way: 

(i) One can easily verify that all the above results on regularity hold true for 
partial algebras, too (since only the fact that any congruence lattice is an algebraic 
lattice is used). 

(ii) It is well-known* see [18; p. 121], that any congruence class geometry 
(A, 17) is affine coordinatizedby a suitable partial algebra 91 = (A, F}; i.e. (A, It) = 
= T(9l) for some partial algebra 91 = (A, F>. 

Combining these two facts we get that congruence class geometries with 
parallelism are affine coordinatized exactly by regular partial algebras. Simultane
ously, these congruence class geometries are definable by axioms (II1), (II3), 
(II4) and by any of the equivalent conditions (5), (6) or (7) from Theorem 3. 

4. Application: Regular, weakly regular and subregular varieties and their Malcev 
characterizations 

In this section we apply the results on regularity, see section 2, to varieties of 
regular algebras (briefly: regular varieties), to varieties of weakly regular algebras 
(briefly: weakly regular varieties) and to varieties of subregular algebras (briefly: 
subregular varieties). 

Regular varieties were investigated by B. Csdkiny [2, 3]> G. GrStzer [9] and 
and by R. Whille [20]. Some recent results were achieved by J Hagemann [10] 
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and I. Chajda [1]. Part (3) of the following Corollary 2 simplifies the identities 
exhibited in the former papers. 

Corollary 2. For any variety V, the following four conditions are equivalent: 
(1) V is regular; 
(2) For any elements x9 y9 z of an algebra 31 e V, there is a finite subset {pt; 1 S 

<Li<Lm) of 31 such that 0(x9 y) = 0({z} x {pt; 1 g / ^ m}); 
(3) There exist ternary polynomials pl9 ..., pn and 4-ary polynomials rl9 ..., r„ 

such that 
x = rx(x9 y9 z9 z) 
r{(x, y, z, plx, y9 z)) = r ,+ 1(x, y, z9 z) for 1 <i / = n 

* y = rn(x9 y9 z, pn(x9 y9 z)) 
z = Pi(x9 x9 z) for 1 = i 5̂  n; 
(4) (B. Csakany [2]) There exist ternary polynomials pl9 ..., pn such that 
(z = Pi(x9 y9 z)9 1 =" i = «) o x = y. 
Ske tch of proof. (1) => (2) follows immediately from Theorem 2 (1). 
(2) => (3). See [6]. 
(3) => (4) is clear. 
(4) => (1). See B. Csdkany [2], 
For varieties with distinguished miliary operations, say cl9 ..., ck9 the concept 

of regularity was generalized to that of weak regularity as follows: A variety V 
with miliary operations cl9 ...,ck is said to be weakly regular with respect to 
cx, ..., ck if any congruence 0 on an algebra 31 e V is uniquely determined by its 
classes [cf] <9, 1 = i 5J k. 

Weakly regular varieties were investigated by G. Gr£tzer [9], K. Fichtner [7] 
and J. Hagemann [10]. Again the identities from Corollary 3 (3) below simplify 
the former results. Condition (4) is a new criterion. 

For the sake of brevity the following statement is fomulated for varieties with 
one nullary operation c only. 

Corollary 3. For any variety V with nullary operation c9 the following four condi
tions are equivalent: 

(1) V is weakly regular with respect to c; 
(2) For any elements x, y of an algebra 31 e V9 there is a finite subset {q(; 1 <̂  i <J m} 

of 91 such that 0(x, y) = 0({c} x {qt; l = i < m}); 
(3) There exist binary polynomials pl9 . . . , pB and ternary polynomials wt, ..., wn 

such that 
x * wt(x, y,c) 
**(*> y> 4i(x, y)) = Wi+ i(x, y, c) for 1 = / < n 

y = ^ ( x , y, <in(x> y)) 
c as qt(x9 x) f o r i S I S n; ...... 
(4) There exist binary polynomials q i „.#.,« n such that 
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Sketch of proof. (1) => (2) is a direct consequence of Theorem 2 (2). For 
(2) => (3) and (4) => (1), see [6]. (3) => (4) is immediate. 

In [17] J. Timm has introduced the concept of subregular algebra as follows: 
An algebra 91 = <A, F) is called subregular if any congruence 0 on 9t is uniquely 
determined by its classes [b] 0, beB, for every subalgebra © = <JJ, F> of 91. 
A variety V is called subregular provided each algebra 91e F is subregular. 

The following theorem states that also subregular varieties are Malcev definable. 
The proof goes along the same line as those of the preceding two corollaries and 
is therefore omitted. 

Corollary 4. For any variety V, the following four conditions are equivalent: 
(1) V is subregular; 
(2) For any elements x, y of an algebra 91 e V and every subalgebra SB of 91, 

S(x, y) = <9( U ({6J x {ptJ; 1 <£ j <; k})) holds for some elements bt, ... ,bmof% 
i<m 

and for some finite subsets {ptj; 1 51L <£ &} o/9l, 1 <I / <I m; 

(3) There ex/s/ unary polynomials ut, . . . ,w„, ternary polynomials pit ...9pn 

and 4-ary polynomials st, . . . , sn such that 

x = «i(x, y, z, ut(z)) 

st(x, y, z, Pi(x, y, z)) = si+i(x,y, z, ui+l(z)) for 1 <: i < n 

y = sn(x, y, z, pn(x, y, z)) 

»«(*) = Pt(x, x, z) for 1 51 / 51 n; 

(4) There exist unary polynomials ui9 . . . , un and ternary polynomials P i , ...,pn 

such that 

(ut(z) = Pi(x, y,z),l 51 i <; n) o x = j . 
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