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A TYPE OF CONTINUOUS PROJECTIONS 

IVAN KOPEČEK, Brno 
(Receivcd Novcmber 26, 1981) 

1. Introduction 

Let S be a nonempty set and V g S. A mapping E : S -* V satisfying E(S) = V 
and E2 = E is said to be projection from S onto V. If S is a topological space, 
V a subspace of S and E a continuous mapping, then E is called continuous 
projection. Continuous projections in function spaces can be viewed as approxima
tions of given functions in function subspaces. For instance, the orthogonal 
projection onto a closed subspace V of a Banach space is the best approximation 
with respect to V (see, e.g., [2]). 

In practice we can comparatively easily solve problems of linear approximations. 
In this paper we show that a type of operators defined by means of linear approxima
tions are continuous projections. This can be used for parameters estimation. 
We present the following examples in which / denotes a given function 
(experimental data) to be fitted by a function g using the least squares method 

(ie.J(/-g)2 = min) 
a 

1. g = — ; An approximation of the exact solution can be obtained 
ax + bx + c 

solving the problem 

/ i = j , gi = ax2 + bx + c, 

which is linear with respect to the parameters a, b9 c. 

2. g = aebx; 
/i = In/, gt = bx + In a 

3. g = aebx + c; 

r df u A 
Si - -jjrj, g2 = by - d. 
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Solving of this problem determines h° ^ 0, d°. We put b°c° = d° and solve the 
problem 

/ i - / gi-ae^ + c*. 

Solving of this linear problem determines a0. From the main theorem of this 
paper follows that the mapping 

f^a°^°x + c° 

is a continuous projection in a space of sufficiently smooth functions. 
Parameters estimations of such types were used in optimization programs 

package OPTIPACK [3] which was developed in Institute of Physical Metallurgy 
Computing Department of Czechoslovak Academy of Sciences. 
* Let J? be a normed space, K s i s i Then a mapping E from S onto V is 

a continuous projection from S onto V iff for every z e V the following condition 
holds 

lim | | £ O 0 - z | | ~ O 
l l y -« l l -o 

i.e., for every e > 0 there exists 8 > 0 such that for y e S satisfying || y - z || < 8 
it holds || E(y) - z || < e. 

2. Preliminary Lemmas 

Notations. Throughout the following text we shall use the symbol R for a normed 
linear space over the field T of all real numbers. The norm in R is denoted by || . ||. 
Further we shall consider the norm [.] in Tn defined by 

l(al9 . . . , 0 ] = max {| ^ |, . . . , K | } . 

For yt,..., yn9 y0 e R and 8 > 0 we put 

<yif—ym>yo,i> = {(<*i> -,an)eTm; \\ a^ + ... + anyn + yQ || < 5}. 

Lemma 1. (jl9 ...9yn909 5} is a convex subset of Tn which is bounded iff 
yt, ..., yn are linearly independent. 

Notation. For the sake of simplicity we shall use the following notation: 

supXy!, ...9yn9y095> = sup {[*]; xe (yl9 ...9yn9 y098>}. 

If V is a finite-dimensional subspace of JR and x e R9 we denote 

Qv(x)~mm\\y--x\\. 

Lemma 2. Let yt,..., yH be linearly independent elements in JR. Then for every 
e > 0 there exists 8 > 0 such that 

supO^, ...,?„,0,*> <«. 

210 



Lemma 3. Let yi9 ..., y„ be linearly independent elements from R, At, ..., AneR 
and 3 > 0. Let us denote 

At =. (yt + Ai9 ...,yn + An9A0iS}, 
A2 * <y i , . . . ,y„,0,<5>. 

Then for every e > 0 there exists a > 0 such that || zlf || < a for every i (1 <S 
^ i :g w) implies 

sup A! — sup A2 < s. 

Proof. Suppose that there exists s0 > 0 such that for every a > 0 from || A{ |) <j 
g or (1 ^ / g n) it follows 

sup At — sup A2 ^ e0. 
Let us denote: 

efc = fo
ri + 2 

sfc = sup A2 + sk 

for k = 1, .. . ,« + 1. 
By our assumptions for every a > 0 there exists (aj, ..., a°n) e Ai such that 

(1) [ « , . . . ,<)] ~ sup ,42 > eB+1 

Let us denote Vt the linear subspace generated by the set {yt, ...,yn} — {y<}. 
Then it holds QYi(shy^ § 5. Clearly, there exists s = sm satisfying 

(2) QviiSmyd > <5 

for every i (1 ^ i ;g n). 
Then from (1) it follows 

[(affi, . . . ,<)] - sup A2 > eM V a > 0 
and hence 

(3) J/[(oJf . . . ,<) ] - (sup A2 + 0 / [ W . - . O ] > 1. „ 

We put 
g = min {eK40yi), ..., gKn(*y»)}-

In view of (2) we have Q > S. Let us choose x such that 

0 < x < Q - 5. 

Now we put a « man (x/3, x/3-ns). Let || J j || < a (1 <J / <J «) and let (a*, ..., <Q e 
6 A^ satisfying (1). Further we put 

K~sli(a*u...,a*)l 
Then it holds 
(4) Ka* S ^ 
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for every i (1 g i <* n) and in view of (3) 

(5) K < i. 

Because of 
[ K f l I , . . . , X f l a - J C [ ( ^ . - - 0 ] - * . 

we have 
\\TiKa(yi\\^QvJ(syj)^Q>5^^ 

wherein a, = [(a£, ...,a*)]. 
Hence 

(6) l l £a fy i l l> - i ' ( ( T + * ) ' 
i A 

Further we obtain 

(7) Iof.4,|| g -i-£xaf MiII ^ x ? s M l " ~ TT• 

Because of || J 0 || ^ — and using (5) we obtain 

III *f 3>i + E^ î + ̂ olU(5 + ̂ ) ^ - 4 " f ^ f > < 5 + f > 5 

contradicting the assumption {a\, ..., an) e At. 

3. Main Theorem 

Theorem. Let Tt be an open subset of Tn, Go> Gt, ..., Gm continuous mappings 
from T" into R, m, n natural numbers satisfying m + n ^ 1 and 

V-{tt>t<K°i> •••.««) + G0(alf . . . ,an);(6!, ..., ftjel-, (fl l, . . . . a J e T j . 
i = t 

Suppose that there exist continuous operators F0iFl9 ..., Fn (F,: JR -> R) satisfying 
m n 

* = 2 ftiGXfli, ..., a,) + G ^ i , . . . , an) =*> F0(x) + 2 ^ i t o = 0 
i = l *-=l 

for every (a t, ..., an) e Tx and for every (Ax, ..., bm) e Tm. Further suppose 
1- {-FIG0}I«I *s linearly independent set for every ye V. 
2. {Gj(a i , . . . , an)}%i 1s linearly independent set for every (ait ...,aH)e Tt. 
Then there exists an open subset S g R satisfying S 2 Fsuch that each operator 

E: S -* V of the form 

E(y) - f 6fGX«?,..., oD + G0(a{,..., aj) 
«=i 
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with the following properties 

a) II F0(y) + £ a\F(y) || - min || F0(y) + £ aJFfy) || 

b) || G0(a?,..., aj) + £ fefGK,..., «D ~ y IK 

= min || G0(a\,..., a>) + £ ft/J/a?,..., aj) - y || 

is a continuous projection from S onto K 
Now we shall prove Lemmas 4, 5, 6, from which the assertion of Theorem 

follows easily. 

Notation. In what follows we shall use the following notation. For an arbitrarily 
chosen ^e i twe put 

y* - my) = £ bfGi(a*19 ..., at) + G0(a*9..., a*)e V 

- W - W ) + ̂ <(y). 
Lemma 4. For every e > 0 there exists 8 > 0 such that || AF£y) || < d (1 ^ / ^ /i) 

implies 
min || F0(y) + £ aJFty) || < 6. 

a, i. 

Proof. The assertion follows easily from the following relation 

. min || F0(y) + I aJFAy) || ^ || F0(y) + £ afF^) || -
at i i % 

= || F0(y*) + JFoOO + E afF^y) + £ af^OO II = || .4F0(y) + 2>,*F,Cy) II-
i i i 

Lemma 5. For every e > 0 there exists 8 > 0 such that 

II y - y* IK <* =* [(a?, ...,«:) - (a?,..., aD] < «. 

Proof. The assertion follows easily from Lemmas 2, 3,4, and from the continuity 
of operators Ft. 

Lemma 6. For every e > 0 there exist 8X > 0, 82 > 0 such that || y* - y || < 82, 
and [(^5, ..., aj) - (a?, ..., a*)] < 8 Implies 

(***) II G0(a{9 ..., aD + £ WGM, ..., a') -,/y || < e. 
t 

Proof. Let us choose St so that {Gj(ai, ...9aH)}Jgml is linearly independent set 
and every w-tuple (a{9 ...,aj) satisfying [(a{9 ...,aj) - (al9 ...,#„)] < 5 belongs 
to 7\. Now the assertion follows easily from the relation 

min || G0(a
y
l9..., a

y
n) + £ bfij(a\9..., aJ) - y.| i 

*i I 

£ II G0(a?,..., aj) + £ tfGjM..... *D - y IK 
J 
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= II G0(fl? at) + Go05, .-•, <) + £ *•<?/«?,.», O + 

+ ZblGj(a>1,...,a>n)-y* + y*-y\\£ 

£ II G0(«
ri. ••••«-) + I W 0 ' aj) II + h-

J 

Proof of Theorem. Let e > 0 be arbitrarily chosen. We chose 81 >Oand<52 > 0 
so that the condition (***) is satisfied. Furhter we choose <53 > 0 in such a way 
that 

II y * - y II < <53 => [ ( * ? , . - , al) - (a*, . . . , * * ) ] < <5i 

(using Lemma 5) and put <5 = min (<52, <53). Then in view of Lemma 6 

\\y*-y\\<S=>\\ E(y) - y* || < e. 

Now we put S = (J <V> where 0y* is point j>* <5-neibourghood constructed as 
y*eV 

above. Then E is a continuous projection from S onto V, and S is an open set 
satisfying S 2 K. 
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