Archivum Mathematicum

Ivan Kopeček

A type of continuous projections

Archivum Mathematicum, Vol. 19 (1983), No. 4, 209--214
Persistent URL: http://dml.cz/dmlcz/107175

Terms of use:

© Masaryk University, 1983
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A TYPE OF CONTINUOUS PROJECTIONS

IVAN KOPECEK, Brno
(Received November 26, 1981)

1. Introduction

Let S be a nonempty set and $V \subseteq S$. A mapping $E: S \rightarrow V$ satisfying $E(S)=V$ and $E^{2}=E$ is said to be projection from S onto V. If S is a topological space, V a subspace of S and E a continuous mapping, then E is called continuous projection. Continuous projections in function spaces can be viewed as approximations of given functions in function subspaces. For instance, the orthogonal projection onto a closed subspace V of a Banach space is the best approximation with respect to V (see, e.g., [2]).

In practice we can comparatively easily solve problems of linear approximations. In this paper we show that a type of operators defined by means of linear approximations are continuous projections. This can be used for parameters estimation. We present the following examples in which f denotes a given function (experimental data) to be fitted by a function g using the least squares method (i.e., $\int_{\alpha}^{\beta}(f-g)^{2}=\min$)

1. $g=\frac{1}{a x^{2}+b x+c}$; An approximation of the exact solution can be obtained solving the problem

$$
f_{1}=\frac{1}{f}, \quad g_{1}=a x^{2}+b x+c
$$

which is linear with respect to the parameters a, b, c.
2. $g=d e^{b x}$;

$$
f_{1}=\ln f, \quad g_{1}=b x+\ln a
$$

3. $g=a e^{b x}+c$;

$$
f_{2}=\frac{\mathrm{d} f}{\mathrm{~d} x}, \quad g_{2}=b y-d
$$

Solving of this problem determines $b^{0} \neq 0, d^{0}$. We put $b^{0} c^{0}=d^{0}$ and solve the problem

$$
f_{1}=f, \quad g_{1}=a e^{b^{0} x}+c^{0}
$$

Solving of this linear problem determines a^{0}. From the main theorem of this paper follows that the mapping

$$
f \mapsto a^{0} e^{b^{0} x}+c^{0}
$$

is a continuous projection in a space of sufficiently smooth functions.
Parameters estimations of such types were used in optimization programs package OPTIPACK [3] which was developed in Institute of Physical Metallurgy Computing Department of Czechoslovak Academy of Sciences.

Let R be a normed space, $V \leqq S \subseteq R$. Then a mapping E from S onto V is a continuous projection from S onto V iff for every $z \in V$ the following condition holds

$$
\lim _{\|y-z\| \rightarrow 0}\|E(y)-z\|=0
$$

i.e., for every $\varepsilon>0$ there exists $\delta>0$ such that for $y \in S$ satisfying $\|y-z\|<\delta$ it holds $\|E(y)-z\|<\varepsilon$.

2. Preliminary Lemmas

Notations. Throughout the following text we shall use the symbol R for a normed linear space over the field T of all real numbers. The norm in R is denoted by $\|$.$\| .$ Further we shall consider the norm [.] in T^{n} defined by

$$
\left[\left(a_{1}, \ldots, a_{n}\right)\right]=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
$$

For $y_{1}, \ldots, y_{n}, y_{0} \in R$ and $\delta>0$ we put

$$
\left\langle y_{1}, \ldots, y_{n}, y_{0}, \delta\right\rangle=\left\{\left(a_{1}, \ldots, a_{n}\right) \in T^{n} ;\left\|a_{1} y_{1}+\ldots+a_{n} y_{n}+y_{0}\right\|<\delta\right\}
$$

Lemma 1. $\left\langle y_{1}, \ldots, y_{n}, 0, \delta\right\rangle$ is a convex subset of T^{n} which is bounded iff y_{1}, \ldots, y_{n} are linearly independent.

Notation. For the sake of simplicity we shall use the following notation:

$$
\sup \left\langle y_{1}, \ldots, y_{n}, y_{0}, \delta\right\rangle=\sup \left\{[x] ; x \in\left\langle y_{1}, \ldots, y_{n}, y_{0}, \delta\right\rangle\right\} .
$$

If V is a finite-dimensional subspace of R and $x \in R$, we denote

$$
\varrho_{V}(x)=\min _{y \in V}\|y-x\|
$$

Lemma 2. Let y_{1}, \ldots, y_{n} be linearly independent elements in R. Then for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\sup \left\langle y_{1}, \ldots, y_{n}, 0, \delta\right\rangle<\varepsilon .
$$

Lemma 3. Let y_{1}, \ldots, y_{n} be linearly independent elements from $R, \Delta_{1}, \ldots, \Delta_{n} \in R$ and $\delta>0$. Let us denote

$$
\begin{aligned}
& A_{1}=\left\langle y_{1}+\Delta_{1}, \ldots, y_{n}+\Delta_{n}, \Delta_{0}, \delta\right\rangle \\
& A_{2}=\left\langle y_{1}, \ldots, y_{n}, 0, \delta\right\rangle
\end{aligned}
$$

Then for every $\varepsilon>0$ there exists $\sigma>0$ such that $\left\|\Delta_{i}\right\|<\sigma$ for every $i(1 \leqq$ $\leqq i \leqq n$) implies

$$
\sup A_{1}-\sup A_{2}<\varepsilon
$$

Proof. Suppose that there exists $\varepsilon_{0}>0$ such that for every $\sigma>0$ from $\left\|\Delta_{i}\right\| \leqq$ $\leqq \sigma(1 \leqq i \leqq n)$ it follows

$$
\sup A_{1}-\sup A_{2} \geqq \varepsilon_{0} .
$$

Let us denote:

$$
\begin{gathered}
\varepsilon_{k}=k \frac{\varepsilon_{0}}{n+2} \\
s_{k}=\sup A_{2}+\varepsilon_{k}
\end{gathered}
$$

for $k=1, \ldots, n+1$.
By our assumptions for every $\sigma>0$ there exists $\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right) \in A_{1}$ such that

$$
\begin{equation*}
\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right]-\sup A_{2}>\varepsilon_{n+1} \tag{1}
\end{equation*}
$$

Let us denote V_{i} the linear subspace generated by the set $\left\{y_{1}, \ldots, y_{n}\right\}-\left\{y_{i}\right\}$. Then it holds $\varrho_{V_{t}}\left(s_{k} y_{i}\right) \geqq \delta$. Clearly, there exists $s=s_{m}$ satisfying

$$
\begin{equation*}
\varrho_{V_{i}}\left(s_{m} y_{i}\right)>\delta \tag{2}
\end{equation*}
$$

for every $i(1 \leqq i \leqq n)$.
Then from (1) it follows

$$
\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right]-\sup A_{2}>\varepsilon_{m} \forall \sigma>0
$$

and hence

$$
\begin{equation*}
s /\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right]=\left(\sup A_{2}+\varepsilon_{m}\right) /\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right]>1 \tag{3}
\end{equation*}
$$

We put

$$
\varrho=\min \left\{\varrho_{V_{1}}\left(s y_{1}\right), \ldots, \varrho_{V_{n}}\left(s y_{n}\right)\right\}
$$

In view of (2) we have $\varrho>\delta$. Let us choose x such that

$$
0<x<\varrho-\delta
$$

Now we put $\sigma=\min (x / 3, x / 3 n s)$. Let $\left\|\Delta_{i}\right\|<\sigma(1 \leqq i \leqq n)$ and let $\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right) \in$ $\in A_{1}$ satisfying (1). Further we put

$$
K=s /\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right] .
$$

Then it holds

$$
\begin{equation*}
K a_{i}^{\sigma} \leqq s \tag{4}
\end{equation*}
$$

for every $i(1 \leqq i \leqq n)$ and in view of (3)

$$
\begin{equation*}
K<1 \tag{5}
\end{equation*}
$$

Because of

$$
\left[K a_{1}^{\sigma}, \ldots, K a_{n}^{\sigma}\right]=K\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right]=s
$$

we have

$$
\left\|\sum_{i} K a_{i} y_{i}\right\| \geqq \varrho_{\mathrm{v}_{j}}\left(s y_{j}\right) \geqq \varrho>\delta+x,
$$

wherein $a_{j}=\left[\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right)\right]$.
Hence

$$
\begin{equation*}
\left\|\sum_{i} a_{i}^{\sigma} y_{i}\right\|>\frac{1}{K}(\sigma+x) \tag{6}
\end{equation*}
$$

Further we obtain

$$
\begin{equation*}
\left\|\sum_{i} a_{i}^{\sigma} \Delta_{i}\right\| \leqq \frac{1}{K} \sum_{i} K a_{i}^{\sigma}\left\|\Delta_{i}\right\| \leqq \frac{1}{K} \sum_{i} s\left\|\Delta_{i}\right\| \leqq \frac{1}{K} \frac{\varkappa}{3} . \tag{7}
\end{equation*}
$$

Because of $\left\|\Delta_{0}\right\| \leqq \frac{x}{3}$ and using (5) we obtain

$$
\left\|\sum_{i} a_{i}^{\sigma} y_{i}+\sum_{i} a_{i}^{\sigma} \Delta_{i}+\Delta_{0}\right\| \geqq(\delta+x) \frac{1}{K}-\frac{1}{K} \frac{x}{3}-\frac{x}{3}>\delta+\frac{x}{3}>\delta
$$

contradicting the assumption $\left(a_{1}^{\sigma}, \ldots, a_{n}^{\sigma}\right) \in A_{1}$.

3. Main Theorem

Theorem. Let T_{1} be an open subset of $T^{n}, G_{0}, G_{1}, \ldots, G_{m}$ continuous mappings from T^{n} into R, m, n natural numbers satisfying $m+n \geqq 1$ and

$$
V=\left\{\sum_{i=1}^{m} b_{i} G\left(a_{1}, \ldots, a_{n}\right)+G_{0}\left(a_{1}, \ldots, a_{n}\right) ;\left(b_{1}, \ldots, b_{m}\right) \in T^{m},\left(a_{1}, \ldots, a_{n}\right) \in T_{1}\right\} .
$$

Suppose that there exist continuous operators $F_{0}, F_{1}, \ldots, F_{n}\left(F_{i}: R \rightarrow R\right)$ satisfying

$$
x=\sum_{i=1}^{m} b_{i} G_{i}\left(a_{1}, \ldots, a_{n}\right)+G_{0}\left(a_{1}, \ldots, a_{n}\right) \Rightarrow F_{0}(x)+\sum_{i=1}^{n} a_{i} F_{i}(x)=0
$$

for every $\left(a_{1}, \ldots, a_{n}\right) \in T_{1}$ and for every $\left(b_{1}, \ldots, b_{m}\right) \in T^{m}$. Further suppose

1. $\left\{F_{i}(y)\right\}_{i=1}^{n}$ is linearly independent set for every $y \in V$.
2. $\left\{G_{j}\left(a_{1}, \ldots, a_{n}\right)\right\}_{j=1}^{m}$ is linearly independent set for every $\left(a_{1}, \ldots, a_{n}\right) \in T_{1}$.

Then there exists an open subset $S \subseteq R$ satisfying $S \supseteq V$ such that each operator $E: S \rightarrow V$ of the form

$$
E(y)=\sum_{i=1}^{m} b_{i}^{y} G_{i}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)
$$

with the following properties
a) $\left\|F_{0}(y)+\sum_{i} a_{i}^{y} F(y)\right\|=\min _{a_{i}}\left\|F_{0}(y)+\sum_{i} a_{i} F_{i}(y)\right\|$
b) $\left\|G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{i} b_{i}^{y} G_{i}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-y\right\|=$ $=\min _{b_{j}}\left\|G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{i} b_{j} G_{j}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-y\right\|$
is a continuous projection from S onto V.
Now we shall prove Lemmas 4, 5, 6, from which the assertion of Theorem follows easily.

Notation. In what follows we shall use the following notation. For an arbitrarily chosen $y \in R$ we put

$$
\begin{gathered}
y^{*}=E(y)=\sum_{i} b_{i}^{*} G_{i}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)+G_{0}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right) \in V \\
F_{i}(y)=F_{i}\left(y^{*}\right)+\Delta F_{i}(y)
\end{gathered}
$$

Lemma 4. For every $\varepsilon>0$ there exists $\delta>0$ such that $\left\|\Delta F_{i}(y)\right\|<\delta(1 \leqq i \leqq n)$ implies

$$
\min _{a_{i}}\left\|F_{0}(y)+\sum_{i} a_{i} F_{i}(y)\right\|<\varepsilon .
$$

Proof. The assertion follows easily from the following relation

$$
\begin{gathered}
\cdot \min _{a_{i}}\left\|F_{0}(y)+\sum_{i} a_{i} F_{i}(y)\right\| \leqq\left\|F_{0}(y)+\sum_{i} a_{i}^{*} F_{i}(y)\right\|= \\
=\left\|F_{0}\left(y^{*}\right)+\Delta F_{0}(y)+\sum_{i} a_{i}^{*} F_{i}(y)+\sum_{i} a_{i}^{*} F_{i}(y)\right\|=\left\|\Delta F_{0}(y)+\sum_{i} a_{i}^{*} F_{i}(y)\right\| .
\end{gathered}
$$

Lemma 5. For every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left\|y-y^{*}\right\|<\delta \Rightarrow\left[\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)-\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)\right]<\varepsilon
$$

Proof. The assertion follows easily from Lemmas $2,3,4$, and from the continuity of operators F_{i}.

Lemma 6. For every $\varepsilon>0$ there exist $\delta_{1}>0, \delta_{2}>0$ such that $\left\|y^{*}-y\right\|<\delta_{2}$, and $\left[\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)\right]<\delta$ implies

$$
\begin{equation*}
\left\|G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{i} b_{i}^{y} G_{i}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-y\right\|<\varepsilon \tag{***}
\end{equation*}
$$

Proof. Let us choose δ_{1} so that $\left\{G_{j}\left(a_{1}, \ldots, a_{n}\right)\right\}_{j=1}^{m}$ is linearly independent set and every n-tuple $\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)$ satisfying $\left[\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-\left(a_{1}, \ldots, a_{n}\right)\right]<\delta$ belongs to T_{1}. Now the assertion follows easily from the relation

$$
\begin{aligned}
& \min _{b_{j}}\left\|G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{j} b_{j} G_{j}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-y\right\| \leqq \\
& \leqq\left\|G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{j} b_{j}^{*} G_{j}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-y\right\|=
\end{aligned}
$$

$$
\begin{gathered}
=\| G_{0}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)+G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{j} b_{j}^{*} G_{j}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)+ \\
\quad+\sum_{j} b_{j}^{*} G_{j}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-y^{*}+y^{*}-y \| \leqq \\
\leqq\left\|G_{0}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)+\sum_{j} b_{j} G_{j}\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)\right\|+\delta_{2} .
\end{gathered}
$$

Proof of Theorem. Let $\varepsilon>0$ be arbitrarily chosen. We chose $\delta_{1}>0$ and $\delta_{2}>0$ so that the condition (***) is satisfied. Furhter we choose $\delta_{3}>0$ in such a way that

$$
\left\|y^{*}-y\right\|<\delta_{3} \Rightarrow\left[\left(a_{1}^{y}, \ldots, a_{n}^{y}\right)-\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)\right]<\delta_{1}
$$

(using Lemma 5) and put $\delta=\min \left(\delta_{2}, \delta_{3}\right)$. Then in view of Lemma 6

$$
\left\|y^{*}-y\right\|<\delta \Rightarrow\left\|E(y)-y^{*}\right\|<\varepsilon
$$

Now we put $S=\bigcup_{y^{*} \in V} o_{y^{*}}$, where $o_{y^{*}}$ is point $y^{*} \delta$-neibourghood constructed as above. Then E is a continuous projection from S onto V, and S is an open set satisfying $S \supseteq V$.

REFERENCES

[1] Ljusternik, L. A., Sobolev, V. I.: Elementy funkcionalnogo analiza. Moskva, Nauka 1965.
[2] Meinardus, G.: Approximation of Funkcions: Theory and Numerical Methods, Berlin 1967.
[3] Kučera, J., Hřebíček, J., Lukצ̌an, L., Kopeček, I.: OPTIPACK - uživatelský popis modifikace 1.2., Výzkumná zpráva č. VZ 420/523, ÚFM ČSAV, Brno, 1979.

I. Kopě̌ek
ÚFM ČSAV
61662 Brno, Žizikova 22
Czechoslovakia

