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SOME PROBLEMS OF DIFFERENTIAL
GEOMETRY OF ONE CLASS OF SPACES
OF SUPPORTING ELEMENTS

ABDURASUL SATTAROV®*)
(Received May 10, 1982)

It is known that the space of supporting elements [1] represents-a differentiable
manifold which is a locally-topological product of this differentiable manifold
(base) and a space of values of some differential —geometrical (supporting)
object. It may be regarded in a well-known sense as an associated fiber bundle.
This space belongs to the so called generalized spaces and each concrete definition
of the supporting object gives a specific space with its own geometrical properties.

This paper is concerned with the class of spaces of vector densities ' with an
arbitrary weight p. The spaces represent a particular case of the space of supporting
elements on one hand and generalize the space of linear elements on the other
hand; in the metric case they generalize the Finsler spaces. At the beginning of this
paper we present some fundamental notions of the theory of these spaces, e.g. the
definition of the space, the construction of tangent spaces and their equipments,
the covariant differential and the metric tensor. Then, using the Lie derivative,
we shall examine some variational problems of these spaces.

1. FUNDAMENTAL NOTIONS

To each point of the differentiable manifold X,, n = dim X,, which is the base
space, there is associated the space of values of a contravariant vector density
with an arbitrary weight p. The received manifold is called the space of supporting
vector densities. ' :

Transformations of the base space

xV = X' L, XY

*) The present paper was written during the author’s scientific activity at the Department of
Mathematics, J. E. Purkyné University of Brno, 1982.
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induce transformations

' = AP Gy e =1, ),
where
i 3xi'
fi P
and
4 = det (f%).

Here, (x', u) is called a supporting element and the point x is called its centre.

Constructing the tangent space of supporting elements we will follow the

approach of Bliznikas [2]. For a supporting element (x, ), consider the set of

all differentiable functions f(x, ), defined in a neighbourhood of (x, #),. Then
*

its differentials (df), form a vector space T(x, u)o, whose basis is called a natural

*
coframe. The dual basis of the dual space T(x, u), of T(x, u),, is called a natural
frame.
It is easy to find that the matrices of the corresponding groups of the transforma-

*
tions of spaces T and T have the forms

fi 0) (f : 711’) ,
and o~ respectively,
(A{, B 0o B pectively

Aij' = —d4%" as(A -pflj'.,) f,‘,':’! B:’ = A‘:f:"

where

and
A =woarrh), BB, =4
As to the equipment of these spaces there holds the following Theorem.

*
Theorem. The tangent and cotangent spaces T and T will be equipped invariantly
if and only if there is given a field of objects I'/ on the base X, satisfying the
following transformation formulas:

ri = A"l £y - Aifi.

The objects of an affine connection on spaces of vector densities, imtroduced
by Davies [3], will be denoted by Li,(x, u) and C}i(x, u). Recall that the functions
Lj,(x, u) are homogeneous, of degree zero in u, and C},,(x, u) define a tensor density
of a weight —p, and are homogeneous of degree minus one in u. We note that

*

given a field of objects L}, we also obtain an equipment of the spaces T and T.

The covariant differential of a tensor density T() = T}!:% having the weight ¢
is defined by

q q

L

L L] f
ST = dTS) + LT dx* + CoLT() su*




or,
OT() = T ,dx* + TY,0u*

where
' q
T®  _ aHT® — T®
Uk = Okd () — u) ,L*,u + L*tT(”,
P q

o (i)
k = T(j) | S (J) lc*h“ + C T{j)).

The tensor density 7, ‘B',‘ is called the covariant derivative of the first type, and
Y iy:x is called the covariant derivatives of the second type. In these formulas the
symbol of B. L. Laptev [4] defined by the form

q

* @) () 1 ()
LT = Z LipT gyt Z Li i T§) 1. js = aLuT$),

. 0
and the notations ¢; = —, .i = j— are used.
ox’ ou'
A metric tensor of the considered spaces is defined in [3] by means of a scalar
function L(x, u), positively homogeneous, of degree 1 in u, by the formula

1
gij(x, u) = g* (7 L’)
ij

g = det (glj)‘

where

2. THE LIE DERIVATIVE AND ITS APPLICATIONS

In the considered space the Lie derivative of a tensor T¢) with respect to the
p o pe
vector field v'(x) can be written as follows [5]:
1 4 q
L,TH =v'TH,, + T, Wt = 0%, *Tg))
‘1 P
+ 2000 8’) - 20T, ,Q,*u

where
Qfs = Lfs - L:r

is the tensor of torsion.
Solving variational problems in the considered space we suppose that the
supporting object u' has the same direction as the tangent vector to the curve

x' = xi(t), i.e., u* = Vg? dx', where \/g? is a scalar density of weight p.
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Herewith, we take into account that the variation of the supporting object
arises not only due to the displacement of the point. Then the Lie derivative of the
supporting object will not be, in general, equal to zero; in connection with this fact
we use the so called complete Lie derivative [6], which, for a tensor T((B' can be
written as

2,18 = 2,T( + T 22",
where
Zut = [(nVg?) o o + pvr,]ud

is a Lie dcrivative of the supporting object.
If we examine the first variation with respect to a vector field v = »'(x) of an
integral

M
) s = | L(x, u)dt,
M,
which defines the arc length in the considered space, then
Mz
6,5 = | Z,L(x, u)dt.
M,

Thus, we get the equation of extremals of the form [5]

V) 3" + pAY) + AV + pA%) oI* = 0,
where
T A A
and
fa ¥
LVg

represent the unit vector of the supporting object.

In this way we can also obtain the invariant form of the second variation of the
integral (1) of the arc length. If the extremals coincide with the autoparallels it can
be expressed as follows:

M; — )
3) 83s = b.‘; (gu”fo”,’o - v’”ch.,.,j = \/ gpLotojvlv.jo) ds, .
1

where “0” denotes the index k which is contracted with the unit vector /%, and R, L
are tensors of curvature [4].
Let there be given a hypersurface

xt=x'¢ .Y, W =die, "),

The mean curvature of this hypersurface is defined by

H =

p— g“‘"az,, (@p..=1,..,n=1),
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where
g, ..., 1" Y = g¥Xix!,
and
a.,(t’, ceey t"—l) = I‘(X:‘ + L:‘)

are the first and the second fundamental tensors, respectively.
Here we used the notation
_ -a_xl . ale

b ¢l s =—
o ? 7 rtor’

Xi= Eug"xz-

Now, we consider the variation of the mean curvature of the hypersurface,
assuming that the supporting object has the orientation in the direction of the
normal of the hypersurface.

Then

5,H= % ,H,

but in view of H ,%u' = 0, we have
S, H = L H

and thus we obtain the equation of the extremal displacement for minimal hyper-
surface (i.e. H = 0)

) gPXEX5(0%,  + 0°Ry,,) + 24,0, , + 20%a%al + PE,0° = 0.

Here P is also a tensor of curvature on the considered space [4].

The obtained expressions (2), (3) and (4) generalize the analogous equations
in the Finsler space.

Finally, we note that the results (2), (3) and (4) can also be obtained in the
case when the supporting object is a covector density of weight —p.
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