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OSCILLATION OF A FORCED NONLINEAR 
DIFFERENTIAL EQUATION 

MAGDALENA VBNCKOVA, Bratislava 
(Received February 20,1981) 

The paper is concerned with oscillatory character of solutions of the differential 
equation 

(1) L(y) (x) + g(x, y, y\ ..., / - " ) = /(*), 

where 
(2) L(y)(x) = 0 

is a linear differential equation of the n-th order (n g 2), disconjugate on / = 
= [0, oo), g is a continuous function on (0, oo) x Rn and/is a continuous function 
on (0, oo). In the paper, theorems from paper (1) on oscillatory character of the 
second order differential equation are extended to the equation (1). Throughout 
the paper we shall suppose that every solution of the equation (1) exists on some 
interval [x0, oo) c 7° = (0, oo) and by the oscillatory solution will be understood 
any solution (1), which vanishes on every interval (a9 oo) c [x0roo) at least 
once. Denote 

L(y) (x) = /">(*) + />!(*) y - 1 ^ ) + ... + PH(x)y(x), 

where pv, ... 9pn are continuous functions on /. 
Supposing the differential equation L(y) (x) = 0 is disconjugate on / we get 

that the differential operator L can be factorized on 7° = (0, oo) onto a product 
of n first order operators, that means L(y) is the n-th quasi-derivative of the func
tion y (2, Lemma 6, p. 93 and Theorem 2, p. 91). Regarding it, in the first part 
of the paper, we shall deal with the equation 

O) 400 (*)«/(*) 
on the interval 7°, where Ln(y) is the n-th quasi-derivative of the function y. 

Let n ^ 2 be a natural number, a0i ax, ..., an be continuous and positive func
tions on the interval 7°. Throughout the whole paper we shall use this hypothese 
and consider only the real functions. Then we shall call the expression L((y) 
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(/ = 0, 1, ..., n), where 

Lo(y) (x) = a0(x) y(x), Lt(y) (x) = at(x) (Lt_ ,(y) (x))', xel°, i = 1, 2, ..., n 

the i-th quasi-derivative of the function y on 1°. Besides we suppose that the func
tion y defined on 1° is such that the expressions Lxy, ^^L{y are well defined 
on 1°. We denote by M f(/) the set of all functions having the i-th quasi-derivative 
continuous on an interval / c 7°. 

Consider now the functions yt, y2, ..., yn defined on 1° x 1° by the relation 

(4) yt(x, x0) = 
a0(x) ' 

1 X 4 ti-i 1 ti-2 ti J 

yi{x'Xo)=-^x)l T^^ l^i^ i'-l^Tij^---6^ 
(i = 2, ...,n, x, x0el°). 

The following Lemma shows their importance. 

Lemma 1. Let x0 el°, ie {1, ..., n}. Then the function yi(.,x0) is the solution 
of the initial-value problem 
(5) L{y)(x) = 09 

L0(y)(x0) = 0,Ll(y)(xo) = 0, ...,L;_2(.>0(*o) = 0,L ; - 1(y)(x o) = I-

Proof: It follows from the substitution of (4) into (5). 
Consider now the nonhomogeneous differential equation (3). Writing the equa

tion in the form of a differential system and applying well-known facts to theories 
that system we get the statements: 

I. For every x0 e 1° and every point (y0, y'0, ..., y^'^ e Rn there exists exactly 
one solution y of the equation (3), which fulfils the initial conditions 

L0(y) (*o) = yo 

£i(y) (*o) = yo 

^ - i ( y ) ( ^ o ) = y o n - 1 ) 

II. Solutions yx, y2, ..., y» given by the relation (4) and by Lemma 1 satisfying (5) 
are linearly independent. 

Further the following theorem holds. 

Theorem 1. Let x0 e 1° and let the functions yt(., x0) (i = 1, ..., n) be given by the 
relation (4). Let the function f be continuous on 1°. Then the solution of the equa
tion (3), which satisfies the initial conditions 

(6) L0(y)(x0) = y0,Ll(y)(x0) = yo, - . V i W W = yon_1) 
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is of the form 

(1) y(x) = y0yx(x, *o) + yoy2(*> x0) + ... +. y{

0"
l)yn(x9 x0) + 

+ hn(x,t)-{Q-dt, x e / ° 
xo anW 

(The generalized variation of constants formula.) 

Proof. It follows from Lemma 1 that the function y0yiC> *o) + yoy2(-» *o) + 
+ ••• + yonl)yn(^ x0) is the solution of the equation 

(8) L„(y)(x) = Q, 

which satisfies the initial conditions (6). Using the variation of constants formula 
we get that the solution of the equation (3), which satisfies the homogeneous 
conditions corresponding to (6), thus 

(9) L0(y) (x0) = 0, Lx{y) (x0) = 0, ..., Ln^(y) (x0) = 0 

is of the form 

(10) 

where (at a fixed x0) 

Л ) a0(x)l W(t) an(t)ăt' {XЄП' 

W(t) = 

ĹoiУÙ (t, x0) 

Li(Уi) (t, x0) 

L0(y„) (t, x0) 

Li(yn) (/, x 0) 

£„- i (y i ) ( ' , *o) ... Lя-i(y„)(ř, ^o) 
and 

W(x, t) = 

^o(yi) (t, x0) 

Li(Уi) ('> x0) 

L0(yn) (t, x0) 

Lx(yn) (t, x0) 

Ln-г(Уi)(t,x0) ... Ln-2(yn)(/,*0) 

L0(Уi)(x,x0) ... L0(yn)(x9x0) 

(x e 1°, t lies between x0 and x). 
By the relations (4) it follows that W(t) = 1, (f e/°). If te 1° is fixed (and of 

course x0 e 1° is fixed, too) we have 

n n 

W(x, 0 = 1 ^i^o(yi) (x, x0) =-= L0( £ O/y/x, x0)). 
j=xi 1=1 

This means that W(x91) can be written in the form 

W(x, t)"- L0(y) (x) = a0(x) y, 
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where y = y(x) is the solution of the equation (8), which satisfies the initial condi
tions 

L0(y)(t) - 09Lt(y)(t) = 0, ...,Ln„2(y)(t) = 0 , ^ 0 0 ( 0 - 1. 

Because the function yn(x, t) is the solution of the differential equation (8), which 
fulfils at the point t the same initial conditions, the uniqueness theorem implies 
that y(x) = yn(x, t) and thus ' 

Wx9-t) = L0(yn) (x, t) = a0(x) yn(x, t). 

By this we have shown the relation (7). 

Lemma 2. Let > 

xo al(0 4 a2W *o an-l(V 

for an x0el°. Then the functions yt(., x0),y2(., x0), ...,yn(.9 x0) given by the 
relation (4) form such a fundamental system of solutions of the equation (8) that 

(12) l i m / ^ f = 0 , f = l , 2 , . . . , » - l 
X~*O0 yi+1\X9 X0) 

holds. 
Proof. With respect to (11) we get that 

,. yi(x>xo) i- 1 /> 
hm , = lun — — == 0 
*-*00 yi\X9 X0) X-+O0 f 1 

I ^m6ti 

and applying L'Hospital principle 
1 *, 1 d f 

l im £3^*0) = Hm «,(»)i«,(>i) *' „ l im J 1 d(i = ^ 
*-»oo y2\xi xo) *-*oo * *-*oo *o a2\h) 

at(x) 

Thus (12) holds for i = 1,2. Suppose now that 

lim y&*'xo> = o , 1 — 1,2 Jfc(Jk = « - l ) is true. 

Then 
* 1 tk I f*-* ,a 1 

l im >Wi(*.*o) „ lim i "^*T i «-('*-!> i "i ^ftJd/l " dt" 
*-» A(*.*O) »-»? i v i V *l - • .. 

-o - 1 W - V *o _-W*-2.J «o *o a * - l W 
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As lim a0(x) y^x, x0) = oo ( i - - 2 «) follows from (11), we can use 
X~>oO 

the L'Hospital rule k - 1 times and we get 

lim y»+i(*' *o) « lim f - j - ^ -* oo. 

Thus it holds that lim y&*9 x°\ = 0 (i = 1, 2, ..., w - 1). 
x-»oo yf+l(*> *o) 

Lemma 2 states that the solutions yi(.9x0), ...> yn(., x0) of the equation (8) 
given by the relation (4) form a hierarchic fundamental system. 

Remark. Let x0 e 7° and let y be the solution of the initial problem 

Ln(y)(x) = 1, (*e/<>), 

L0(y)(x0) = 0,Ll(y)(xo) = 0, ...,Irt..iO0(*o) = 0. 

Then y fulfils 
Ln+i(y)(*) = 0, ( X G / ° ) , 

L0(y) (x0) = 0, ii(^) (x0) = 0, ..., L.-iW (*0) = 0, Ln(y) (x0) = 1 

and hence y(x) = y„+i(x, x0). 
The proof follows by differentiating as well as by the uniqueness of the solution 

of the initial-value problem. 
Consider now the differential equation (1). In what follows we shall assume that 

(13) a.eC^^P) 0 = 0,1, . . . ,*) , 

further relations (ll) hold,/is continuous on /°, g is continuous on /° x Rn and it 
enjoys the property 

(14) yig(x,yi, ...,;>,,) = 0 (xel°,(yi>y2>..., jOe.*"-1.). 

Theorem 2 . / / 

(15) ^TOI^0^-^— 
and 

/or eacA ;JC0 > 0 sufficiently large, then every solution y of the differential equation (1) 
is oscillatory. 

Proof: Suppose that y is such a solution of the equation (1) that y > 0 on (a, oo), 
for an a > 0. Choose x0 > a. Then y fulfils Jnitial conditions of the form (6) 
at the point x0. It follows from Theorem J that this solution can be written as 
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y(x) = y0yi(x, x0) + y'0y2(x, x0) + ... + y0
n 1)y„(x, x0) + 

+ 1 yn(x, t) [ - g(t, y,y',..., yln ~' >) + j(0] -L- dt, (x e [x0, oo)) 
.xo an\i) 

and further on the basis of (14) 

y(x) Sy0yi(x, x0) + ... + y0
n "ym(x9 x0) + J yn(x, t)-~~-dt, (xe[x0 , oo)). 

xo an\i) 

Consider the ratio —p~-i— on [x0, oo). Then 
y*(*,*o) 

y(*) £ y ?-(*> X Q) , , / y^x> *o) , , Os-p yn(x,x0) v 

y„(*, x 0 ) ~ ° yn(x,x0) ° yn(x, x0) ' " ° yn(x,x0) 

' 1 ]yn(x,t)4£rdt. Уn(x, x0) J0 " a„(t) 
У(x) 

Using the assumption (15) and on the basis of Lemma 2 we get that lim 
^ ^ - yn(x, x0) 

*= — oo and thus y cannot be positive on (a, oo). In the case that y < 0 we use the 
assumption (16). 

Theorem 3. If f 

* f(0 
(17) lim J ' . dt = — oo for every x0 sufficiently large, 

^ x 0 <*»(0 

(18) lim J dt = +oo for every x0 sufficiently large, 
x-»oo Xo ^ « w 

09) 1 ï , л j(0 ^ 
.v„(̂ , *o) *У ' ű»(0 

< M , 

for each x ^ x0 and every x0 sufficiently large. Then every solution of the equation (1) 
is oscillatory. 

Proof: We suppose again that there exists a solution y of the equation (1) 
which is positive on a certain interval (a, oo), a > 0. We choose x0 > a. From 
the equation (1) we get that this solution fulfils the relation 

Xo ««(0 Xo *»(0 
and thus also the inequality 

t . - . W W < ^ - i W ( ^ o ) + J ^ - d f (x ^ x0). 
xo an\l) 

Therefore 
(20) UmLn^(y)(x)^ -oo 
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holds according to (17). Now we choose K > 0 such that M -» K < 0, From (20) 
it follows that there exists xx > x0 such that L„-i(y) (*i) < — K. The solution y 
fulfils at the point xt some initial conditions of the form (6). It follows from 
Theorem 1 that this solution can be written as follows 

y(x) = yoyi(*> *i) + yoy2(*> *i) + ••• + yo""*1^*, *i) + 

+ J yn(x, t)l-g(t9 y(t)9 yf(t)9 ...9/
n'x\t)) +/(0]-57rdl, 

xi anV) 

(x e [xi, oo)) 
and further regarding (14) 

y(x)^y0yi(x,x1y+ ... + y^"x)ym(xfxx) + J y ^ 0 - ~ ~ d r (xe[xA, oo)). 
XI " | | W 

Consider the ratio —, . on [x,, oo). Then 
.v-(x,Xi) , 

y(x) «, 
Уn(x, *i) 

Thus 

< yo * ( * *t> +... + ,ř-->_ť*E__4 + - _ - _ J ^ , ) - % _ < 

= y°Tfrn + --- + y°~l) + M-
yn\x9 xx) 

ilnT f W < _.„.!(>•) („/) + M < - K + M < 0 . 
x-+oo ynV-^J x 1 1 

and y canribt be positive on (a, oo). 

Lemma 3. Let kbe a natural number, K > 0, c be real numbers and let the function 
y e Mk((c, co)) satisfy 

(21) Lk(y) =_ — K on the interval (c9 co) 
or 

(22) Lk(y) = K on the interval (c9 co). 

Let further the relations (11) (for n = k) be fulfilled and let m > 0 ex/sf such fha* 

(23) tf0(x) __ m on the interval (c9 oo). 
Then 

\imy(x) = — oo (lim^(r) = +co). 
3C-+00 . x - > o o 

Proof. Consider only the case (21). Denote 

fi(x)=Lk(y)(x) + K (xe(c9oo)). 
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Then y fulfils the equation 

Lkiy) - -K +A(x), whereby ft(x) ^ 0 on (c, oo). 

Regarding Theorem 1 and Remark following this theorem we can write 

y(x) = y0yt(x, x0) + y'0y2(x, x0) + ... + y^'^y^x, x0) + _ 

+ ]y*(x, t) ~ft(*/l(0 df ^ *>*<*. xo) + - + 

+ yrl\(x,x0) + (-K)Yl^dt = 

• yoyi(x, x0) + ... + /o*_1Vt(x, x0) - Kyk+i(x, x0) = 

= y^(x,x0)(y0
 y>(x>X°\ + ... + yr^J^L _ K\ 

1 Y .V*+l(*,*o) .K*+l(*,Xo) / 
Using Lemma 2 and the assumption (23), leads to the conclusion lim y(x) = — oo. 

X->00 

Theorem 4. Let n be even, let (23) be true and let g have the property: 
(i) To every p > 0 there exists such a pt > 0 that if y^ > fi > 0, then 

g(x,yi,y2, -,yn) > Pi > Ofor all(y2, ...,yn)eR"-1 and if yY < -/? < 0, then 
g(x,yi, ...,y„) < - h <0forall(y2, ...,y„)eA""1. Let 

(ü) lim J - i_(Ц-A/(0)d<-oo 
дc-*oo xo an\l) 

and for every X + 0. 
(iii) Z,e/ fAcre exist a,b > 0 si/cA /Aat 

A . ( x ) - ] ^ ( x , 0 - ^ - d . _ . 0 

**(*) = I ^ O - ^ d f g O 

(iv) hx, A2 Aaue arbitrarily large zero-points, 

(v) 
1 

/or a// x0 > 0 

/ør д// x ^ a, 

/ør я// x^fc, 

Ы*.0Äđ, < M /or all x0 ^ x, 
^ ( x * *o) xo 

then every solution of the equation (1) is oscillatory. 
Proof. Suppose there exists such a solution y of the equation (1) which is not 

oscillatory. Thus let it be positive on the interval (c, oo), for some c > a. In the 
case y < 0 we shall proceed analogically. Regarding the fact that by Theorem 1 
hx is a solution of the differential equation 

£,,(/..)=/(*) 
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we have 

Ln(y - A,) + g(x,y9y', ...,y("~1}) = 0 on (c, oo). 

Because v > 0 on this interval, by (14) g(x,y,y\ .~>yiH~1Y) > 0 and thus 
Ln(y - A,) (x) < 0 for all x > c. It follows from this inequality that the function 
A.-i(y — Ax) is decreasing on (c, oo). If on some subinterval (cl9 oo), ct > c, 
A.-i(y ~ Aj) were negative, then there would exist such a K > 0, that 
A,-i(y - A,) < - K for xe(c2i oo), c2 > cx. According to Lemma 3 y(x) -
— hx(x) < 0 would hold which would together with the assumption (iv) lead to 
a contradiction with the fact that y is positive on (c, oo). Thus Ln„ x(y - ht) (x) > 0 
on (c, oo). We claim that there exists such a c3 > c that 

(24) Lt(y - A,) (x) > 0 

holds for every xe(cz, oo). 
It follows from the inequality L„-i(y - ht)(x) > 0 on (c, oo) that either 

Ln~2(y — ht) (x) > Ki > 0 on some interval (c2, oo), c2 > c or Ln~2(y — A^(x) < 
< 0 on the whole interval (c, oo). According to Lemma 3 the first case leads to (24), 
while in the second case the situation is analogical to that as for Ln(y - AJ < 0, 
but we have lowered the order of the quasi-derivative by 2. Using this procedure 
we come to the alternative: Either some of the quasi-derivatives Ln-2k(y — h[) > 
> K > 0 on some interval (c2, oo), c2 > c and this leads to (24) or the inequalities 
Ln(y - A,) < 0, LH-t(y - ht) > 0, Ln-2(y - ht) < 0, ..., L2(y - AL) < 0, 
Lt(y - AJ > 0 hold on (c, oo). Then (24) is true again. 

Integrating (24) from xt to x where xt > c3 and xt is according to (iv) such that 

(25) y(xt) - Aifo) > 0, 
we get 

<*o(*)y(x) > <*o(Xi)y(xt) + a0(x)H1(x) - a0(x1) ht(xx) £ 

^ ao(x\) (y(xx) - h^xj) 

and thus taking into consideration (23) and (25) 

(26) y(x) > -L*o(*i) L>(*i) - *i(xi)]"» P > 0 for all x > xx. 
m 

The integration of the equation (1) from x2 to x > x2 for an x2 > xt gives that 

L.-.WW - l , t t W - J 8('.X')./(0..;.,-"(»))-/(«)„, 

From (26) and according to (i) the last expression equals or is smaller than 

t..l(^-|/W(!>dl, 
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thus 

L„_.O0 (x) g L„_.O0(x_) - M ---L_(l - ~ Дo)dř. 

Then the condition (ii) implies that 

jirn Ln-1(y)(x)= -co. 
X-+00 

Let K2 > 0 be such that M — K2 < 0. Then there exists such an JC3 > x2 that 
Ln- i(y) (*3) < — -*-i • Further by the same proceeding as in the proof of Theorem 3, 
just xt is replaced by x3 and K by K2 we get that 

to **> <0, 
x->co ynl** ^ 3 ) 

which contradicts the fact that y is positive on (c, 00). This completes the proof 
of Theorem 4. 
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