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BOUNDEDNESS AND UNBOUNDEDNESS 
OF SOLUTIONS OF AN N-TH ORDER 

DIFFERENTIAL EQUATION 
WITH DELAYED ARGUMENT 

VINCENT SOLTfiS, ANNA HRUBINOVA, KoSice 
(Received February 22, 1983) 

Consider an «-th order differential equation with delayed argument 

(1) Lny + a(t)f(y(g(t))) = b(t), 

with n = 2 and Ln a differential operator 

Lny = an(t)(an.1(t)(...(a1(t)(a0(t)y)J ...)J. 

Suppose that a(t), b(t),g(t), a0(t), ..., an(t) are continuous on (t0, oo) and f(y) 
is continuous on ( — 00, 00). 

We shall prove that certain conditions are necessary and sufficient for all solu
tions of (1) to be bounded. The sufficient conditions for nonoscillatory solutions 
of (1) are different from that given in paper [4]. 

Let us use the following notational conventions: 

(2) (a) L0y = a0(t)y, Lty = a i(r)(X^1jy, i = 1, 2, ..., n; 
(b) h = 1, 

' 1 
h(t>s9 aik, . . . ,a f l)= J —7-r./fc..1(r,s, aik_t, ...,ah)dr 

s aik\
r) 

ik€ {1, ..., n — 1}, \ __\ k z^n ~ \,t,se <J0, 00), s < t; 

(c) Ji(t9s) = -jj-r-Ii(t9s,a1,...,ai); 

(d) Kfa s) - - ^ j - I£t, s, an~.x,..., a,.,). 

It is easy to see that 

/*(*, s, ai|c,..., ah) = J —r-r- /-.-tO, r, aik,..., al2) dr. 
s ah\r) 
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It will be supposed throughout that: 

(3) (a) limg(0 = oo; 
f"*00 

(b) a(t) £ 0, at(t) > 0, for i « 0, 1, ..., n; 
(c) lim Jn~t(t, r0) < oo. 

f->00 

We shall consider those solutions of (1) which exist on (t0, oo). 

Lemma 1. Let at(t) > 0 on <t0, oo). Then there exist constants a, /? such that 

Ji(t,s) ^ocJn~t(t,s), 

Kit, s) £ pKn„t(t, s) for i = 1, ..., n - 2, s < t, s, t e <r0, oo). 

Proof. We have 

j a f* _ _ ! _ r d5i V ds2 1 d5*+* _ 
J ' + " , ' 5 > - a0(0 J *!(«!) I a2(s2) ' " J a i + 1(s J + 1)~ 

^ * 1 j dst '» ds2 y dsf R ds i+1 « ds i+1 1 ^ 
flo(0 * «iO?i) ; «2(s2) *" s afcdll ai+t(si+t) I a i +i(Si+i)J~ 

^^r%V< ( r 's) ' 
s a i+ lV s i+11 

hence 
Ji(t,s) ^ <*iJi+i(t,s) 

and therefore, in particular 
Ji(t,s) ^<*Jn„t(t,s) 

for every / = 1, ..., n — 2. 
The proof of the statement for Kt(t, s) is analogous. This completes the proof 

of Lemma 1. 
Theorem 1. Let conditions (3) be satisfied. Let f(y) be bounded on (.— oo, oo). If 

,A\ i- r a(r)Jn^t(t,r) , 
(4) hm J v - " 1 V ' dr < oo 
and 

(5) liш í Шфlìér < 00 

then every solution of (I) is bounded on <t0, oo). 
Proof. Let Xt) be a solution of (1) defined on <t0, oo). There exists T^ t0 

such that g(t) gg t0 for every t ^ T. n — tuple integration from J to t, where (1) is 

multiplied by —- before each integration, yields 
<*n-f + l ( 0 

# 
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л - 1 

(6) ûo(OЯt) = £ etф9 T9al9...9ai) + 
i » 0 

+ $tn-i(t,r9aì9 ...9aя.t) 
т 

Қr) - fl(r)/(Қg(r))) 
«.(r) 

dr, 

where q for 0 g i <* /* — 1 are constants. 
Owing to Lemma 1 and to the boundedness of f(y), it follows that 

\y(t)\žcJ„-1(t,t0) + 
' J>(-)J,-1(.,r) d r 

r an(r) 

; j «(r)J ,<«,r) 

r ««(r) 

and the statement of the theorem is immediately proved using (3c), (4) and (5). 

Theorem 2. Suppose that, in addition to (4) and (3) 

lim } *>'--«>» * 
.-co «J a»(r) 

= OO. 

T/ien ei;er>> solution of (I) is unbounded on <f0, oo). 
Proof. Let y(t) be an arbitrary solution of (1) defined on <t0, oo). Consider 

T sU t0 such that, for every ?*>r, g(r) J> t0. If XO 1s bounded, then because of the 
continuity off(y) there exists a constant K such that » 

1 a(r)J.-1(t>г)/Q>(g(г)))d г 

т a„(r) T aB(r) 

Together with the hypotheses of the theorem this can be used to prove that the 
right part of (6) is unbounded as t -* oo and so therefore we have y(t). This com
pletes the proof. 

Theorem 3. Let yf(y) > Ofor y # 0. If (3) and (5) hold9 then every nonoscillatory 
solution of (I) is bounded on <t0, oo). 

Proof. Let Xt) be a nonoscillatory solution of (1) defined on <t0, oo) and suppose 
e.g. that Xt) > 0 f° r every t ^ tx. Owing to (3a) there exists T*z tt such that 
y(g(t)) > 0 for every t ^ T. Since y/(y) > 0, f(y(g(t))) > 0 for every t £ T; 
therefore relation (6) yields 

n - l 

a0(t) y(t) g £ £*/*(*, T, a,, . . . , at) + 
1=0 

+ f *( г )---i(*» r » g i»-» đ »-i) < | г 

г û»(r) 

Therefore Xt) 1s bounded. The proof for Xt) < 0 is analogous. This completes 
the proof. 
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Remark 1. The sufficient condition for boundary of nonoscillatory solutions 
of the equation (1) stated in the Theorem 3 does not follow from the condition which 
was stated in the Theorem 1 in [4]. 

Example. Consider the equation 

(7) GV(o)' + - V w > r 1 - T -
t * 

The assumptions of Theorem 3 are satisfied, but assumptions of Theorem 1 from 
the paper [4] are not satisfied. The equation (7) has nonoscillatory solution y(t) = 

= — bounded. 
t 
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