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O. T. GEGELIA, Tbilisi 

(Received December 20,1981) 

1. Statement of the Existence and Uniqueness Theorems 

Boundary value problems of periodic type for w-th order ordinary differential 
equations and systems have been attracting attention of specialists for a long time 
and are being studied in many research works (see e.g. [1 - 7 ] and the references 
mentioned there in). However they still remain insufficiently investigated for 
essentially nonlinear differential equations, i.e. equations which can't be interpreted 
as small perturbations of linear equations. In the present paper an attempt is 
made to make up this defficiency, to a certain extent, for odd order ordinary 
differential equations. 

Suppose that n is a natural integer, 0 < co < +oo, R is the set of real 
numbers, aik, bik e R (i9 k = 1, ..., 2n + 1) and / : [0, co] x R -> R is a continuous 
function. Consider the problem of finding 2n -f 1 times continuously differentiable 
function u which satisfies the differential equation 

(1.1) f/2"+1) =/(r,w) 

on [0, co] and the boundary conditions 
2n + l 

(1.2) £ la^-'XO) + M (*'1 }(»)] = 0 (fc = 1 2n + 1). 
1=1 

The special cases of (1.2) are e.g. the periodic boundary conditions 

(1.3) M ( , - 1 ) (0) = u^'Kco) (i = 1, ..., 2* + 1) 

and the Valine — Poussin type boundary conditions 

(1.4) ^ - " (O) - 0 (i = 1, ..., m), u^-^co) -= 0 (k == 1, ..., 2n + 1' - m)f 

where me {1, ..., 2n + 1}. 
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For each <-e{-l; 1} let 

tJbx y^+u -t, .... -a.+i) = « S (--)*" 1("--+---"- ~ y?-+a-*3'-) + 
*=T 

+ ( - l ) " y ( ^ + 1 - ' - + * > • 

We shall prove the following theorems. 

Theorem 1.1. Let a e { — 1; 1}, 

> 0 when Wy i , •••>y2»+i; *i> •••> Z2»+i) > 0 
2я + l 

(1.5) Z 
1=1 

2n+l 
£ {*ikУk+ Ъikzk) 

ft«l 

awf /et the inequality 

(1.6) f(f, x) sign (ax) ^ h(x) 

be fulfilled on the set [0, o>] x R where h : R-* Risa continuous function and 

(1.7) liminfh(x)>0. 
|x|-» + oo 

Then the problem (1.1), (1.2) has at least one solution. 

Theorem 1.2. Suppose that a e {— 1; 1}, the condition (1.5) is satisfied and 

(1.8) [f(t, x) - f(f, >>)] sign \a(x - y)~\ > 0 for x # y. 

The/i the problem (1.1), (1.2) has at most one solution. 

Theorem 1.3. Suppose that ae {-1; 1}, the condition (1.5) is satisfied and the 
inequalities (1.6) and (1.8) h<?W on rhe set [0, coi] x jR where h : i£ -» 1? is a continuous 
function satisfying (1.7). Then the problem (1.1), (1.2) has exactly one solution. 

Corollary 1.1. Let the inequality (1.6) hold on the set [0, coJxR where ae 
e { — 1; 1}, h:R -+ R is a. continuous function satisfying the condition (1.7). Then 
the problem (1.1), (1.3) has at least one solution. If, in addition, the condition (1.8) 
is fulfilled, then this solution is unique. 

1 , <--i 

Corollary 1.2. Let a e {-1; 1}, m = n + —[1 - (-1)" * ]? a n d [et the 

inequality (1.6) hold on the set [0, co] x R where h : R -+ R is a continuous function 
satisfying (1.7). Then the problem (1.1), (1.4) has at least one solution. II, in 
addition, the condition (1.8) is fulfilled, then this solution is unique. 
, As an example consider the differential equation 

(1.9) u<2«+t> = ff J i - J — s i g n w + c, 
l + | n | r 
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where <r e { - 1 ; 1}, A > 0, r ^ 0 and c e R. The function 

|x|A 

f(t, x) = a sign x + c 
i +1 x r 

evidently, satisfies the inequality (1.6) with 

h(x) = -~^--\cl 
i + i*r 

and (1.7) is valid if and only if 

(1.10) either X > r, or X = r and | c | < 1. 

By Theorem 1.3, if (1.5) and (1.10) hold, then the problem (1.9), (1.2) is uniquely 
solvable. 

In particular, the condition (1.10) is sufficient for the unique solvability of the 
problem (1.9), (1.3). On the other hand, if X = r and | c | ^ 1 then the problem 
(1.9), (1.3) has no solutions since an arbitrary solution of the equation (1.9) 
satisfies the inequality 

|u(2"+1)(f)| > 1 | l i ( f ) | A , > 0 for 0 < t < co. 
i + K0lA " " 

Hence, if X = r then the condition | c | < 1 is necessary for the unique solvability 
of the problem (1.9), (1.3). This example shows that the condition (1.7) is essential 
in theorems 1.1 and 1.3 and cannot be omitted. 

In the paper of A. V. Kibenko and A. Kipnis [6] it is stated that the problem 

um = f(t, u); t / ' -^O) = u^'Kco) (i = 1, 2, 3) 

is uniquely solvable if / has a continuous partial derivative with respect to the 

second variable satisfying the inequality a g a ' ^ b where 0 < a < b < 

< +oo. It is clear that this result is a consequence of Corollary 1.1. 

2. Some Auxiliary Results 

Consider the differential equation 

(2.1) H<2B+1> » p(t) u + q(t9 u, u\ ..., w<2n)), 

where p : [0, co] -* R and q : [0, coi] x R2n -» R are continuous functions. 

Lemma 2.1. Suppose that a e { — 1; 1}, the condition (1.5) is satisfied, 

(2.2) ap(t) ^ 0 for 0 ^ t g. co, p(t) $ 0 
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and 

(2.3) mp{\q(t,xx,...9x2n+1)\ :0 £ t £ co, ( ^ i , . . . , ^ ^ ^ 1 } < +00. 

Then the problem (2.1), (1.2) has at least one solution. 
Proof. By one of the theorems of Conti [2] for the proof of Lemma 2.1 it is 

sufficient to show that the linear differential equation 

(2.4) w(2w+1) =p(t)u 

under the boundary conditions (1.2) has only zero solution. 
Let u be an arbitrary solution of the problem (2.4), (1.2). Then 

il*M0),..., w(2rt)(0); u(co)9..., u
(2">(o>)) = a J u{2n+l\t)u(t)dt = 

0 

= (7jK0«2(0dt. 
0 

On the other hand, by (1.2) and (1.5) we have 

^(w(0), ..., W
(2w>(0); u(co\ ..., w(2w)(a))) g 0. 

Thus 

oţp(t)u2(t)dtѓO. 
0 

Consequently, in view of (2.2), u(t) = 0. This completes the proof. 
In the sequel we have to consider boundary value problems of periodic type 

for differential inequalities 

(2.5) g(u(t)) £ ui2n+l\t) sign (au(t)) £ g(u(t)) for 0 £ t £ co 

where g : R -* R and g : R -4 R are continuous functions. Under a solution of (2.5) 
we understand a 2n + 1 times continuously differentiable function u : [0, ©] -» R 
satisfying this inequality in all points of the segment [0, o>]. 

Lemma 2,2. Suppose that a e { — 1; 1}, the condition (1.5) is satisfied and there 
exist numbers 5 > 0 and r0 > 0 swcft f/*a* 

(2.6) g(x) > S for \x\ > r0. 

Then any solution u of the problem (2.5), (1.2) satisfies the inequality 

(2.7) I u(t) I g r* /or 0 gj £ « 

(2.8) r* = 2rt <D2B+1 + r0(4n + 2)2n+2 (l + I±\ 

and 
rx == max {| g(x) | + I g(x) | : | x | £ r0 }. 
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Proof. By (1.2) apd (1.5) 

a J«(2"+1>(0«(0dt = i^(»(0) «(2">(0); «(o),....«(2">(a>)) <, 0. 
0 

Hence by multiplying the inequality (2.5) by | u(t) \ and integrating it on [0, < 
obtain 

(2.9) J g(u(0)Iu(t)\dt^<r]ui2n+ l\t)u(t)dt £ 0. 
O 0 

Set 
/ = {/ 6 [0, ca] : | u(t) | £ r0} 

then in view of (2.5), (2.6) and (2.9) we get 

(2.10) | « (2n+ l\t) | £ | g(«(0) I + I g(u(t)) | _£ r, for 16 /, 

(2.11) <-H(2B+ l\t) «(0 > 0 for t e [0, co] \ /, 

(2.12) | «(01 < y g(«(0) I u(t) | for te [0, © ] \ / , 

(2.13) f g(«(0) I «(01 dt £ J g(«(0) I «(0 I dt £ r. r0<*> 
[O.co]\/ / 

and 
(2.14) a J w(2n+1)(0M(0d^(TjW

(2n+1)(0w(0dr. 
[0,co]\/ / 

It follows from (2.10), (2.11) and (2.14) that 

(2.15) J|M(2B+1)(0|dr-= J |t/(2n+1)(0|dr +J |n ( 2 n + 1 ) (0 |drg 
0 [0,co]\/ J 

^—a J u{2n+lXt)u(t)dt + rt(o£ 
rO [0,co]\/ 

^ _L J ui2n+1\t)u(t)dt + rtco £ J | «(2n+1)(01 dt + rxco £ 2rxw 
ro / / 

and from (2.12), (2.13) we have 

(2.16) J | M ( 0 | d ^ J | u ( 0 | d r + J \u(t)\dt^ 
0 / [0,c»]\Z 

^r0<o + -jr J g(u(t))\u(t)\dt^Cto)9 
0 tO,co]\/ 

where 

Let 
=Ч i +*> 

co . ,. л л ч 
ӣi = 4n + 2 ' * ï я в Ь - . ^ n + г), 



and let the numbers t, e [a2 |-i» a2<] (i = 1, ..., 2n + 1) be chosen so that 

| u(tt) | = min {I u(0 1 : 02*-i -= ' = a2i) (i = 1, ..., 2n + 1). 

Obviously 

(2.17) *l+1 - tt gt a2i+1 - a2, = ^ 2 (i « 1, ..., 2u + 1). 

On the other hand, in view of (2.16) we have 

4n 4- 2 au 

(2.18) | u(f,) | g-^-f— J |«(0idf = (4n + 2)C1 (i = 1, ..., n). 
« ' « 2 f - l 

Î et u0 be the Lagrange interpolating polynomial which is equal to u(tt) 
(i = 1, ...,2/i + 1) in the points of interpolation tt (/=1, ..., 2n + 1), i. e. 

u ^-"r ( ^ ^ l ) - 0 - ^ l ) q - ^ l ) - 0 " ^ + l ) . . ,„ 
o W ~ ,t-i (r, - *i) . . . (r, - r ^ X ' , - * , + i ) - (', - r2B+1)

 M W * 

Let 
KO - «(0 - «o(0. 

Then 
(2.19) tff.) = 0 (i = 1,...,2« + 1) 
and 

(2.20) t;(2"+1>(0 = ui2n+i)(t). 

By (2.19) and the Roll theorem there exist points sk e [0, co] (k = 1, ..., 2/i + 1) 
such that 

(2.21) ^ - " f a O - O (A:- 1, ...,2/i + 1). 

Because of (2.15), (2.20) and (2.21) we have 

\vi2tt)(t)\S J |u ( 2 B + 1 )(0|dr = 2r1Q> 
o 

and 
11>(*~1}(0 I g 2r1ct>2"+2-* (k = 1, ..., 2n + 1). 

Hence 

| u(t) | = | t?(t) + «o(̂ ) I S 2r1a>2»+1 + | w0(0 I for 0 £ t g o>. 

On the other hand, in view of (2.17) and (2.18) 

1 u0(01 = (2n + 1) / 2 _ \ 2 B ( 4 n + 2) Cx g (4a + 2)2w+2C1. 

"4/T+T 

Consequently, the estimate (2.7) is true. This completes the proof. 
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3. Proof of the Existence and Uniqueness Theorems 

Consider the differential equation 

(3.1) w(2n+1> = f(t,u9u'9. ..,w(2">) 

with the continuous right-hand side/: [0, co] x R2n+i -* R. Instead of Theorem 1.1 
we shall prove the following more general one. 

Theorem 3.1. Suppose that a e { - 1 ; 1} the condition (1.5) holds and the inequality 

(3.2) h(xt) g f(t9 xt, ..., x2n+1) sign (axx) £ fl(xt) 

is fulfilled on the set [0, oi] xR2n+1 where the functions h:R-+ R and h:R-+R 
are continuous and satisfy the condition (1.7). Then the problem (3.1), (1.2) has at 
least one solution. 

Proof. Due to the condition (1.7) we can choose 5 > 0 and r0 > 1 such that 

(3.3) h(x)> d for | x | £ r0. 

Let 
rx = max {| h(x) | + | h(x) | : 0 g x g a ) } 

and let the number r* be defined by the equality (2.8). 
Put 

for | x | £ r*, 
sign x for | x | > r*, ( Г * Sljţ 

(3.4) ?(*, x t , ..., x2 f l + 1) = f(t9 x(Xi), xl9 .u, x2n+1) - c r ^ i ) 

and consider the differential equation 

(3.5) w(2n+1> = au + <?(*, «, u\ ..., w<2»>). 

By the conditions (3.2), (3.3) and (3.4), 

(3.6) axt + q(t9 xl9 ..., x2n+1) « f(t9 xl9 ..., x2n+1) for | x t | ^ r* 
and 

l ^ x t , . . . , X 2 B + 1 ) | -= | x ( x t ) + /fox(*i) v*2> ...»**,+ i) l ^ 

•̂  r* + | Aftfo)) I + I h(x(xt)) | <£ C0 

where 
C0 « r* + max {| h(x) | + | h(x) | : | x \ £ r*}. 

Consequently the condition (2.3) is satisfied. 
According to Lemma 2.1, the problem (3.5), (1.2) is solvable. Let u be its arbitrary 

solution. 
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'b 

Then 
M<2"+1>(0 sign M O ) - N O - aX(u(t)) + 

+ /(t, xMO), "'(0, - . , *u\t)) sign (oii(0) = I u(t) - Z(W(0) I + 

+ fit, x(u(t))9 u'(t)9 ..., n
(2">(0) sign fo(ii(0)). 

This by the condition (3.2) implies the inequality (2.5) where 

*(*) = I x - Z(x) I + h(x(x))9 g(x) = | x - X(x) | + %(*)). 

Since r0 <J r* we have 

. max {| g(x) | + | g(x) | : | x \ g r0} = max {| A(x) | + | h(x) \ : \ x \ S r0} = rx. 

On the other hand, in view of (3.3) it is clear that the condition (2.6) holds. 
By Lemma 2.2 the function u satisfies (2.7). But it follows from (2.7) and (3.6) 

that u is a solution of the equation (3.1). This completes the proof. 
If f(t9 xl9 ..., x2n+i) = f(t, xx) then (1.6) implies (3.2), where 

h(x) = max {\f(t9 x) | : 0 ^ t <; co}. 

Thus theorem 1.1 is a consequence of Theorem 3.1. 
Proof of Theorem 1.2. Let ux and u2 be arbitrary solutions of the problem 

(1.1), (1.2). Set 
v(t) == ut(t) - u2(0-

Then 

According to (1.2) and (1.5), by multiplying both sides of this equality by av(t) 
and integrating on [0, co] we obtain 

« 1 [/('. «i(0) - / ( ' . "2(0)1 f(0 dr = a \ D<2-+1>(() v(t)dt = 
0 0 

(3.7) = ^(u(0), ..., u(2">(0); u(co)9 ..., u^(co)) £ 0. 

In view of the condition (1.8) 

<W> *i(0) -.AU u2(t))1 v(t) £ 0 for 0 £ t g co. 

Besides, the left-hand side of this inequality is equal to zero only at those points, 
where v(t) «= 0. Hence (3.7) implies 

v(t) = 0, 0 ^ t <> co. 

Therefore the problem (1.1), (1.2) can't have two different solutions. This 
completes the proof. Theorem 1.3 immediately follows from Theorems 1.1 and 1.2. 
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In order to verify the validity of Corollaries 1.1 and 1.2 it is sufficient to 
note that 

2 n + l 

£ | y f - z * | > 0 for ^<-0>i> . . . ,y 2 «+i ;z i> . . . , z 2 l l + i ) > 0 , 
i= l 

and,ifm = п + ^ - [ l - ( - 1 ) " + - ] then 

Z lyil + Z U ř | > o f o r ^ ^ i » •••'y2i,+i;-^i, . . . , z 2 » + i ) > ° -
i = l i = l 
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