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ARCHIVŮM MATHEMATICUM (BRNO) 
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SYSTEMS OF EQUATIONS DEPENDING 
ON CERTAIN IDEALS 

LADISLAV SKULA, Brno 
(Received January 24, 1984) 

Abstract. This paper deals with the special system of equations over the Galois field Z(/) 
(/ prime) depending on the certain ideals 3(^") of the group ring of a cyclic group of order / — 1 
over Z(/). If 30^) is the Stickelberger ideal modulo /, then we get a system of equations in certain 
sense equivalent to the Kummer's system of equations. 

Keywords: Kummer's system of equations, Stickelberger ideal, the first case of Fermat's last 
theorem, Mirimanoff polynomials, group ring of a cyclic group over the Galois field. 

0. Introduction 

The main reason of this paper is the study of the Kummer's system of equations 
(K) (Section 6) used for the solution of the first case of Fermat's last theorem 
([2], [1], [6]). In this section the system of equations (S) over the field Z(/) of 
congruence classes modulo / is presented by means of the Stickelberger ideal 
3"(/) modulo / and it is shown that an element x e Z(/), x # - 1 is a solution of the 
system (K) if and only if x is a solution of the system (S) (Theorem 6.6). 

This article refers to the paper [8] where the systems of equations (Af) and (L) 
are considered. The system (M) is defined by means of the Mirimanoff polynomials 
q>i(t) and Af/r/mawo^transformated the Kummer's system into the system (M) ([5]). 

The system (L) is defined by means of the Le Lidec polynomials and Le Lidec 
showed the relation between these polynomials and the Mirimanoff polynomials 
([3], [4]). This implies the relation between the solutions of (M) and (L). 

The system (S) considered as a system of congruences) has been introduced 
in [8], but it was completed by the congruence 4>i-i(f) s 0(ttiod/). Under this 
assumption the relation between the solutions of (S) and (L) was shown here. 

In this paper the system of equations of the more general form depending on the 
ideals of the subring 5R*~(/) of certain group ring 9t(/) are studied. A bound for the 
number of solutions of such system is presented (Theorem 5.5). 
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The important notion in this field is a special automorphism F of the vector 
space 9?(/). The ideals of the ring 9t(/) are studied which are generated by the 
images of the ideals of 9t~(/) at this automorphism F (Theorem 3.7). 

1. Notation and Basic Assertions 

In this paper we designate by 
/ a prime *_ 5 
Z(/) the field of congruence classes modulo / 
0, 1 e Z(/) the cosets modulo / containing integers 0, 1, thus an integer n can 

be considered an element of Z(/) 
G a multiplicative cyclic group of order / — 1 
s a generator of G, hence G = {1 = s°, s9s

2
9 ..., s1"2} 

J - 2 

£ St = £ St for suitable symbols 5, 
i i-=o 

r a primitive root modulo / 
ind x index of x relative to the primitive root r of I 
r, the integer 0 < r{ < /, r{ = r'(mod /) for integer i ^ 0, r/"*1 = 

s 1 (mod /) for integer i < 0 
«(/) = Z(/) [G] = {£ dp*: at e Z(/)} the group ring of G over Z(/), here for an 

i 

integer j we define ai = at where 0 g i ^ / — 2, i == j (mod / — 1) 

<x(0 * £ fl/e Z(/) [r] for a = £ a ^ e «(/) 
< i 

9T(.) = Jae 9.(.): a = £ a^, a, + fl _!•!_ = 0 for 0 g i g ^-j^\ 

fi = {« - E V e * ( / ) : £ a«(i odd) - £ a,(i even)} 
i «-=0 i-»0 

3f (0 - {« = £ a/ e 9T(/): £ a,r,r = 0} for an integer O ^ T ^ I - 2 . 
i i 

For an integer v (/ { v) we denote by v the integer 0 < K / , V . » S 1 (mod /). 
For a = £ a,*1 e «(/) put 

j 
1-1 

F(a)=£a_Jndvf?sv. 
v=-l 

Clearly, 
Fis an automorphism of the vector space (9t(/), +) over Z(/). 
For 0 # Af £ 9t(/) we denote by &(M) the ideal of the ring 9t(/) generated by 

the set F(M). 
Obviously, 
1.1. The ring 91(1) is isomorphic to the quotiont ring Z(l)[t]l(tl~x - 1). This 

isomorphism is induced by the mapping 
24 



SYSTEMS OF EQUATIONS DEPENDING ON CERTAIN IDEALS 

<p(t) -» <p(s) 
for <p(t) 6 Z(/) [f] and <p(s) e 9t(/). 

1.2. 9T(/) = »( / ) ( l -*""-"*), 

fl - »(/) (1 + s). 

Proof. The first assertion is obvious. 
a) Let a = £ a,s' e £. Put 

i 

x, = o, - a,.., + a,_2 - ... + ( - l ) 'a 0 (0 = i = / - 3), 

* l - 2 = 0 , 

/? = Y,Ve3K/). 
i 

Then j8(l + s) = £ V + I V + 1 = Z V , where 
i i i 

Cj = xt + JC,..! for 1 g j? <; / - 2 

c 0 = * 0 + Xl - 2 • „ 

One has ct = aj5 hence /?(1 + s) = a. 
b) Let a = j8(l + s) for a j9 = £ V € 9t(/). 

i 
1-2 

Then one has a = J8(l + s) = £ fcjs* + £ bj-js1 + 6,_2, hence 
i i-=l 

a. = 6, + ftj.j for 1 = / = / - 2 

#0 = *0 + * ! - 2 -
This follows 

1 - 2 

£ at(i odd) = at + a3 + .. + a,_2 = £ &i, 
i=0 i 
1-2 
£ ajO even) = a0 + a2 + ••• + *i-3 = Z bi-
i = 0 I 

Thusaefi. 

1.3. ^(«""(/)) = fi. 

Proof. Since 1 - s * e 9t~(/) and F\l - 5 - ) = 1 + 5, one has fi s= 

£ ^(9r(/)). For 0 = 1/ = i Z - 1 put 

/ 1-1 \ x i ~ L 

aM = s"U - s 2 ) = s ^ s" ~ 

The set ja, : 0 ^ w g — -—> is a system of group generators of the group 

(*"(/), +), hence 
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JҶ9Г(0) = ^{Lu: 0 = u = -Ц--}) • 
Since 

^ 0 0 = r«sr"u + rus'"r-ueB, 
one has ^(9T(/ ) ) £ £. 

1.4. /fO = T = / - 3 is even, then 

3r(0 = »"(/)-
Proof. For a = £ a^s1 e »"(/) we have 

» 
f - 3 1-3 

2 2 

Z f l-r .r = Zf l.r.T + Z f l i+ i - i , V. ' - - w ^ 0 . 

a ( ^ ) ' 

2. Ideals of the Ring »( / ) 

2.1. Proposition. Let I be a nonzero ideal of the ring »(/) and M be a set of gene­
rators of I. Then 

I = (s- a,) ... 0 - ak) 9l(/), 

where al9 ..., ak are all distinct nonzero solutions of the following system of equations 
over Z(l): 

a(0 = 0 for (xe M}) 

Proof. I. Let g(t) be the greatest common divisor of the polynomial a(r) (a e M) 
in Z(/) [t] and let ga(t) e Z(/) [f] , ga(0 g(0 = «(0 for each a e M. 

For each Pel there exist ba(t) e Z(/) [f] such that jS = Ib a (s ) . a(a e M), hence 

/? = g(s) Xba(s) ga(s) (a e M) e g(s) . »(/) . 
Thus 

/ s g(s) »(/) . 

Since there exist Aa(f) e Z(/) [f] such that g(r) = IAa(f) a(t) (a e M), one has 

g(s) = 2Aa(s) a(a e M) e I. 
This implies 

*(s) . »(/) £ /, 
hence 

(1) / = *fr) . »(/) . 

II. Let g(f) = A(/) (f - a1)
fcl ... (t - %)**. fb, where al9 .-.,ak are nonzero 

mutually different elements from Z(/), bl9 . . . , 6 k positive integers, 6 non-negative 

*)• If this system has no nonzero solution, then / -= dl(l). 
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integer and h(t) an irreducible polynomial of degree ^ 2 over Z(/) or h(t) = 1. 
(The case k -= 0 is also considered.) 

For each integer x (1 ^ x g / — 1) there exists an integer yx such that 

A(x). yx . (x - 1) (x - 2).. . [x - (x - 1)] [x - (x + 1)] ..." [x - (/ - 1)] s 
= l(mod/). 

Put 

f(t) = X (̂  - 1)0 - 2)... [r - (x - 1)] [r - (x + i ) ] . . . [* - (I - 1)]. y;. 
J C = 1 

Then for each integer z (1 ^ z ^ / — 1) one has 

•* (z ) . / ( z ) s l (mdd / ) , -
hence 

Aw./cosia'-^-i) 
and according to 1.1 
(2) h(s)./Cs)=L 

III. We construct for each integer 0 ^ a ^ / - 1 a polynomial /fl(0 6 Z(/) [t] 
in a similar way as the polynomial/in II such that 

/ , ( * ) ( * - „ ) s l(mod/) 

for each integer z, 1 ^ z <; / — 1, z # a. 
Thus 

fa(z) (z - a)2 = (z-a) (mod l) 

for each integer z, 1 ^ z _ / — 1, hence 

fa(t)(t-a)2 = (t-a)(t'±l -I). 
Using 1.1 one obtains 

(3) /.(*) (s - a)2 = ^ - a. 

The proof now follows from (1), (2) and (3). 

2.2. Definition. For K £ Z(/), 0 # K put 

/(AT) = «(/). n(j - a) (a e *0 
(7(0) = »(/)). 

Obviously, /(AT) w a« idea/ o/ /he ri/i£ 5R(/). 

2.3. Proposition. .Each /dea/ 7 of the ring 9»(/) has the form 

I = /(*), 
where AT £ «(/), 0 # K. 

IfK £ SR(/), Z, £ <R(/), 0 # AT U L and I(K) = I(L), then K = L. 
Proof. According to Proposition 2.1 each ideal / o f the ring 5R(/) has the given 

form. ({0} = 7(Z(/) - {0}).) 
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Let Kc JR(/), L s 5R(/), O ^ u L , ^ ? - 0 # L and 7(K) = 7(L). 
Then there exists a e 5R(/) such that 

Ti(s ~ a)(aeK) = <xll(s - £) (beL). 

According to Proposition 1.1 there exists a polynomial f(t) e Z(l) [f] such that 

n(f - a)(aeK) = a(OII(* - b)(beL) + f(t)(tl~x - 1). 

Substituting t = beL one obtains or each beL 

Il(b - a) (a e K) = 0, 

hence 6 6 K and then L £ K. Substituting t = 0 e K we get K £ L. 
If K = 0 and L 5* 0, then there exist a 6 «(/) and/(f) e Z(/) [t] such that 

,1 = a(/)n(t - b)(beL) +f(t)(tl~l - 1). 

Substituting t = b e L we get 1 = 0 , which is a contradiction. 
This completes the proof. 

3. The Ideals 30^) 

Further, we denote by T the set 

T = {1 = T = / - 2, Todd}. 
For ^ £ T put 

1-3 
2 

3(^") = n 3 r ( 0 ( T e ^ ) = {a = £ ^s'e9T(/): X ^ i r = 0 for each Te^"} 

(30)-*"(/)). 
The number of elements of the set ,fT is denoted by *V(/), thus *>(/) = card &• 

For L e J put 

i 

3.1. Proposition. 3(T) = {0}. 
1 - 3 

2 
Proof. Let a = £ ^ s ' e 3(T). Then £ atriT = 0 for each odd J, 1 ^ T ^ 

i i=-0 

<: / - 2. Since D =* det (r IT)(o = 1 g i - ^ - 1 , l ^ r g l - 2 , Todd) is the 

Vandermonde determinant, we have D ={= 0 (mod /), which implies 0$ = 0 for each 
/ - 3 

0 % i;_ —r—, hence a = 0. 

The Proposition is proved. 
For the same reason we get 
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3.2. Lemma. The elements <xL (L e T) are linearly independent over the field Z(/). 

3.3. Proposition. Let f £ T, 9~ *- T. Then the system 5 = { a L : I e T - / } 
forms a basis of the vector space 30^) over the field Z(/). 

Proof. According to 3.2 the elements from S are linearly independent over Z(/). 
Since for TeF and L e T - F the integer T — L is even and / - 1 does not 

. - 3 1 -3 
2 2 

divide T - L, we have J) r_lXriT = £ r,(T_L) s 0 (mod /), thus S c: 3(iT). 
i - 0 i-0 

The space o solutions of the following system of equations 
1 - 3 

_ a , r ( r = 0 (TejT) 
*-o 

with unknowns at over Z(/) has dimension — ir(l) = card S. Hence S 

forms a basis of 3C^) o v e r z (0-

3.4. Corollary, card 3(<r) = r*~~x*m for each y c T. 

3.5. Corollary. 7%e /dea/ ^ ( 3 ( ^ ) ) 0/t/re r//ig 9t(/) /s generated by elements F(<xL) 
( L e T - n 

3.6. Proposition. For eacA Z e T 

i7(aL)=EvL-V=XvL"1^1) 
V = * l V 

Proof. Let 1 ^ v :g / — 1,1 = — ind v, aj = r_fL. Then v = r_,and a-iadvv = 

= r-iLri = r -«_-o = v-~x (mod/). Hence F(a_) = £ v L "V = £ v L -V. 
t > - i 0 

3.7. Theorem. I ^ ^ £ T. Then 

-*(3(*0) = (s - «i) - (s - «*) «(0, 

where al,...,ak are all distinct solutions of the following system of equations over Z(/): 

£ v L - V = 0 ( L e T - ^ ) . 
V 

Proof. The theorem follows from 3.5, 3.6 and 2.1 for F # T. If 9T = T, we 
understand under a solution of the given system each element from Z(/). According 
to 3.1 ^(3(T)) = {0} = »(/) n(s - a) (a e Z(/)). The theorem is proved. 

3.8. Remark. The coset - 1 is a solution of £ vL~xtv = 0 for each L e T, hence 

by 3.7 &(3(#~)) c (s + 1) 9l(/) = £ for each J g T , which is in accordance 
with 1.3. 

i) ry-1 « 1 by definition. 
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From 2.3 and from the relation «"(/) = is""2"-- l) 5R(/) we get 

3.9. Proposition. Each ideal I" of the ring 9t"(/) is of the form I~ = 3(/T) = 
= 9T (/) n(s - rT) (Tef\ where ^ = T. 

4. Some Special Cases 

4.1. Definition. For 2 = i = / - 1 the polynomials 

^(0 = ZVDV"V-V 
v = l 

are called the Mirimanoff polynomials and 

^(O^e + n'-'I^tHmod/), 
where P,(0 are certain polynomials over the ring of integers divisible by t — t2 

for each odd /. 
Especially for i = 3, 5, 7, 9 we have 

P3(0 = t - t2, 

P5(0 = (t - t2) . u(t), 

P7(0 = (t - t2) • »(/), 
P9(t) = (t- t2) . w{t), 

where 
u = u(t) = t2 - 10* + 1, 

v = V(t) = t4 - 56r3 + 246f2 - 56t + 1, 

w = w(0 = t6 - 246f5 + 4,047f4 - ll,572f3 + 4,047f2 - 246f + 1. 

(S. [1] Nr. 41 and 42.) 
For these polynomials w, v, w the following assertion holds: 

4.2. Proposition, (a) For / = 5 fhere does not exist any integer x such that 

u(x) = 0 (mod /), 
I>(T) = 0 (mod /). 

(b) For 1^1 there does not exist any integer x such that 

u(x) = 0 (mod /), 
w(x) = 0(mod7). 

(c) For / = 7 there does not exist any integer x such that 

v(x) = 0 (mod /), 
w(x) = 0 (mod 1)1 
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Proof. Put 
a = a(/) = t2 - 46/ + 1, 
P = p(t) = /* - 236/3 + 1,686/2 + 5,524/ + 57,601, 

y = y(t) = 138/3 - 33,283/2 + 938,188/ + 312,977, 
S = 8(t) = 138/ - 7,063 

and 
a = a(t) = /2, 
b = b(t) = 99/ - 10, 
c = c(/) = 231,329/2 - 52,406/ + 889 = 7.33,047/2 - 52,406/ + 7.127. 

Then we get by calculation 
(1) v = UOL — 216a, 
(2) w = up + 5,760b, 
(3) yv — dw = 360c. 

Assume that / ;> 7 and T is an integer such that 

v(x) = 0 (mod /), 
W(T) = 0 (mod /). 

If T = 1 (mod/), then 0 = v(l) = 136 = 23 . 17 (mod /) and 0 = w(l) 
= -3,968 = 27 . 31 (mod/). If T = - 1 (mod/), then 0 = v ( - l ) = 360 
= 23 . 32 . 5 (mod /). Thus T = +1 (mod /). 

Obviously I \x and there exists an integer x such that 

Then T =£ x (mod /) and 

and according to (3) 

т . x = 1 (mod /). 

v(x) = 0 (mod /), 

w(x) = 0 (mod /) 

c(т) = 0 (mod /), 

c(x) = 0(mod/). 

If / = 7, then c(t) = 3/ (mod /), hence T = 0 (mod /), which is a contradiction. 
If / = 127, then c(t) = /(62/ + 45) (mod/), hence 62T + 45 = 0(mod/) and 

62^ + 45 = (mod /). This follows T = x (mod /), therefore T S ± 1 (mod /), which 
is a contradiction. 

If //33,047, we obtain a contradiction in a similar way. 
Let / ̂  11 and / f 127.33,047. Then c(/) = 7.33,047(/ - T) (/ - x) (mod /), 

which implies ^ 
7.33,047 s 7.127 (mod/), 
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hence //23 . 5.823, thus / = 823. Then 

c(t) = 66t2 + 266t + 66 (mod /), 
= 2 . (33r2 + 133f + 33). 

The discriminant of c(t) is congruent to 165 = 3.5.11 modulo 823 and we have 

for the Legendre symbol (-oyj-): 

\~S23) = \"82Ty\^23'Jv"823'J = \1T) \ 5 j \ l T ) = VT/\T/\TrJ = 

This completes the proof of (c). 
Using (1) and (2) we can prove (a) and (b). 
The proposition is proved. 
For L e T, L * 1 we have 

^vL-itv = Ydv
L'1tv - tl~l + l(mod/) = -<pL(-t)- t'-1 + 1 = 

v v-l 

., _(i _ ty-LpL(-\) -1'-1 + i = /(i - ty-L(i + 0 ^ ( 0 - tl_1 + i, 

—P ( — t) where yL(t) is the polynomial —--^—— over the ring of integers. Therefore 

4.3. Proposition. Let L e T, L ^ 1 and let x be an integer. Then 

£ u L - V = 0(mod/), 

if and only if x = ±1 (mod /) or 

yL(x) = 0 (mod /). 

Nbw we give the form of the ideal &(%(&)) for ir(l) = 0, 1, 2. 
For *>(/) = 0 one has 

^ (3 (^ ) ) = (1 + s ) «(/) = £, 

since P = 0 and ^ ( 3 ( 0 = f ( « ' ( l ) ) = £ = (1 + s) «(/) according to 1.3 
and 1.2. 

For i>(/) = 1 we get 

4.4. Theorem. Iff = {1}, then 

^(300) - ^(3f(0) - (s + 1) (s - 1) «(/). 

//.£" = {T}, where TeT - {1} we have 

^(3(^)) = ^(3^(0) - (' + 1) «K0 / " / = 7 
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and 
^(3 (^ ) ) = ^(3J.(5)) = (s + 1) (s + 2) (s + 3) »(/) for I - 5. 

Proof. For F = {1} the proposition follows from 3.7 and 4.3 according to 
y3(0 = 1. 

Since y5(t) = u( — t) and yn(t) = v(-t\ the congruence y5(t) s 0 (mod 7) has 
no solution and 'the congruences y5(t) = 0 (mod /), yn(t) s 0 (mod /) has also 
no solution for / _ 11 by 4.2. This completes the proof according to 3.7 and 4.3. 

For *>(/) = 2 we obtain in a similar way from 3.7, 4.3 and 4.2: 

4.5. Theorem. Let F £ T and *>(/) = 2. Then it holds 

(a) I = 5 => *X3Cn) = {0}, 
(b) I = 7, 1 e F => f ( 3 ( f ) ) = (s + 1) (s - 1) «(/), 
(c) / = 7, 1 * ^ ( ^ = {3, 5}) => *"(3(^)) = (s + 1) (s + 2) (s + 3) (s + 4) . 

. (s + 5) «(7), 
(d) I = 11, 1 if => 3F(Z(F)) = C* + 1) «(/). 

5. Special System of Equations Depending on 3C^) 

5.1. Definition. For a = £ afs' e «(/) put 
i 

L(0=Ea-indv^
v6Z(/)[0. 

5.2. Theorem. For 3T c T the system of equations (over the field Z(l)) 
(l)/a(0 = 0,ae3(^) 

is equivalent to the system of equations (over Z(l)) 
i-i 

(2) £ t r L - 1 r = 0 , L e T - 3T.1) 

Proof. Let /be the ideal of the ring 9t(/) generated by the set {fa(s) : a e 3C^)}« 
Then I = ^ (3 (^ ) ) and according to 2.1 

7 = ( s - a 1 ) . . . ( s - a f c ) 9 l ( / ) , 

where al9 ...,ak are all distinct nonzero solutions of the system (1). Then the 
theorem follows from 3.7 and 2.3. 

5.3. Definition. Put 

**(0 = U = Z flis'e «(/): fl0 - «i, «i = « I - I (2 £ * .g ^ - ) \ . 

l) It means that T e Z(/) is a solution of (1) if and only if it is a solution of (2). If S" -= T then 
each T e Z(/) is a solution of (1) and (2) by definition. 
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5.4. Proposition. Let 1 £ ri £ / - 2, m -*- — (/ - n - 1) land P = (s - 6J 

(s — ft2) ... (s — bn)9 where bi9 ...,&-, are distinct nonzero elements from Z(/). 
Then 

for n even, 
for n odd. 

card[«(/)./? o »*(/)] g |JI+ 1 

Proof. I. Put M = «(/) . P n «*(/) and M' = { j ! . a : a e «(/), 0 . a € «*(/), 
l -2 -n 

a = J] 0^'}. Obviously, M' £ Af. Let coeM. Then there exists a = £ fljs1 e 
i = 0 i 

e 9t(/) such that a> = p . a e «*(/). Put 

/ ( 0 = ( ^ - 6 . + i ) a - 6 . + 2 ) - ( ' - 6 i - i ) , 

where {&lfft2, . .- , -Vi} = Z(/) - {0}. Let ?(0, r(t)eZ(/)[t], degr < d e g / = 
= / — 1 — n and 

a(0=/(0<K0+K0. 
Then 

j3.a = 0. / (s) .q(s)+/?.r(s) . 

Since p ./(s) = 0, one has p . a = p . r(s) 6 M\ Thus M = M'. 
Z-2-» / - 2 - n 

II. Let a i = £ a.1^ e *(0> a2 = E flf2V 6 SR(/) and 0 . a i = jS . a2. Then 
i-=0 i = 0 

a l = a 2 -
According to 1.1 

0(Oa
1(O = j5(Oa2(O+^(OO'"1 - i ) , 

where g(t) e Z(/) [f]. Since deg 0(0 ai(0> deg J8(0 a2(0 = / - 2, one obtains g(0 = 
= 0 and at(0 = a2(0, thus at = a2. 

From I we get then 
i - 2 - j i 

card M = card {a = £ a/ e «(/) : j? . a e 9t*(/)}. 
i = 0 

„ и - 1 III. We have P = p0 + Pts + ... + J W 1 + pns
n

9 where j?0, ..., £„_,, pn e 
l-2-n 

e Z(/), p0 ^ 0, /?„ = 1. For a = J xts
l e 9t(/) we have P . a = £ c,s4 and 

i-=0 i 
c J - 2 = Xl-2-nPn* 
cl-3 = Xl-2-nPn-l + Xl-3-nPn> 

(3) c, = Zxjpi-j (max {0, i - «} ^ y ^ min {/ - 2 - n, /}), 

î = *i/*o + xoPi> 
co = *oPo • 
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The System 
(4) c0 - cx = 0, 

C. - C._. = 0, (2 g i ^ Lyi) 

forms a system of —— linear equations with unknowns x0, xt,..., X|_2_B. 

Assume m ^ 2 and assume that for 2 ^ k ^ m — 1 we expressed the unknowns 
x1,xz_2_n,X|_3_ l l, ..., xt-k-n by means of the unknowns x0, x2, x3, ..., xk from 
the equations -

co - ci = 0, 
ct - c,_, = 0, (2 S i ^ k). 

The unknowns x ^ X j , -. . ,x*,xk + 1 occur in the expression cfc+1 and the un­
knowns Xj_2_n, x /_3_ l l, ..., X|_k_n, Xj-fc-^., occur in the expression cl_k„i. The 
unknown xz_fc_!_„ has the coefficient f)n = 1. 

Hence the unknowns ^i ,x /_2_ r l , xz_3_rt, ..., x/_m_n are expressed by means 
of x0 , x2, x3, ..., xm from the equations 

c0 - ct = 0, 

c, — Cj_i = 0, (2 ^ i ^ m). 

Thus the system (4) cannot have more than / — 1 — n — m free unknowns and 

/ — 1 — n — m 
_ Jm for n even, 
"" \m + 1 for n odd. 

This gives the result for m ^ 2. The case 0 ^ m ^ 1 is easy to show. 

5.5. Theorem. Let ST c T. Then for the number n?(l) of solutions of the system (1) 
different from —1 it holds 

for\$Py Í2«>(0 
[2W0 - 1 M0 „ . - , „ . . / o r l e ^ . 

Proof. Obviously, if T is a solution of (2), then T" 1 is also a solution of (2). 
Further — 1 is always a solution of (2) and 1 is a solution of (2) if and only if 
1 ^F. Thus n = n?(l) + 1 is the number of solutions of (1) and n^(l) is even if 
and only if 1 £ 9". 

Let — 1, ax,..., «„_! be the set of solutions of (1) and put /? = (s + 1) (s + at) .... 
... (s +«„_!). According to 3.7 

^ ( 3 ( ^ ) ) - j 5 . 9 l ( / ) 
and obviously 

FQW) __ ̂ ( 3 ( ^ ) ) n «*(/). # 
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From 3.4 we get 
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card &(%?)) = card 3 ( ^ ) = / 2 ^°\ 

hence according to 5.4 

where 
' l - 3 M O 

m -[!<! — 1 ) ] -
for H ^ , 

/ - 1 Пfil) + 1 f . _ 
— ^ 4 for 1 є ^ . 

2 2 
i 
"2 

Hence for 1 £ ^_ 

l-1 . / , . . - , . l"1 MO 

and 
M O = 2i>(/). 

For 1 € _T we have 

/ - 1 . / n ^ / - 1 M O + 1 
2 2 ' , 

therefore 
M O = 2i>(/) - l. 

The theorem is proved. 

6. System of Equations Depending on the Stickelberger Ideal 

6.1. Notation. The Stickelberger ideal 3 in the group ring $R = {£ ats
l : a,. 

/-adic integer} of the group C7 over the ring of /-adic integers is the ideal 

3 = { a e » : 3 ^ S , e ^ r . / =/a} 
J 

of the rijig 5R. 

Put 9T = j]T a<s* 6 » : f l ( + «,+izi = ° f o r ° = = ' = ^ -~ - f a n d 3 " = 

«- 3 n R". The Stickelberger ideal 3"(/) modulo I is defined as follows 

3"(/) = {£ «V € »"(/): 3*, e at9 Z V e 3"} 
i 

(the /-adic integers 6, are considered the elements of the cosets at). 
For the sequence of the Bernoulli numbers Bn we use the "even-index" notation. 

tftus 
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B0 = 1, £i = " - j - ! B2 =----, B3 = 0, B4~- - -JQ-J • 

For an odd integer T, 1 = T = / - 4 such that _3 r + 1 s 0(mod/) let A(T) 
be the positive integer such that ,_ .. . v • 

-5|h(T)-ir+i =0( imod/* ( T ) ) ' 

and for integer X > h(T) 
Blx-lT + 1 $ 0(modlx). 

If BT+l =£ 0(mod/), weput h(T) = 0. '• 
For an integer T, 0 = T < / - 1 and a positive integer m put 

%m-= {la^e^- ^a/71-1 ^0(modn} 
i i 

and 
3fo = 9T-

In the paper [7] (Theorem 4.5) it was shown 

6-2. n3,:m(r)(3 = T = / - 2, Todd) = 3 " , 
where 

m(T) = I* ( / ~ * " T) f°r Bl~T = ° ( m ° d °-[0 otherwise. 

let ^ = {3 = r = / - 2 : T odd and J?z_r = 0 (mod /)} s T. The integer /*(/) 
is called the index of irregularity of the prime I and is denoted by /(/). 

It was shown in the paper [9]: 

6.3. card 5"(/) = l~~m. 
From 6.2, 6.3 and 3.4 we can derive 

6.4. Proposition. 3"(0 = 3(«) = ^ 3 r ( 0 (-Te * ) . 
We denote by (S) the following system of equations (over Z(/)) depending on the 

Stickelberger ideal: 

(S) /«(') = 0, a e 3 W = 3"(/). 
We get from 5.5 

6.5. Theorem. For the number n = n^(l) of solutions (in the field Z(/)) of the 
system (S) different from —7 it holds 

" = 2£(/). 

We obtained this inequality in the paper [8] (Theorem 3.5) in another way. 
Kummer ([2], s. also [1] or [6]) used in the considerations on the first case 

ofFermaVs last theorem the system of congruences transformated to the following 
system of equations (over Z(/)): 

3T 
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(Ю -wo-»«-o, (išišt-jiy 
6.6. Theorem. The element % e Z(/), T # — 1, is a solution of the system (K) 

if and only if —t is a solution of the system (S). 
Proof. Let T e Z(/), T # — 1. Obviously, T is a solution of (K) if and only if 

T is a solution (over Z(/)) of the system 

(J) <pt(t) B^i = 0 (3 £ i g / - 2, i odd) 

and r is a solution of (1) if and only if T is a solution of the system 

(2) <p<(0 = 0 (3 S *S I - 2, i odd, / £ <#). 

Further, T is a solution of (2) if and only if — t is a solution of the system 

(3) 5 > £ " V « 0 , L e T - < # . 
» = - i 

Then we obtain the theorem from 5.2 and 6.4. 
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