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SYSTEMS OF EQUATIONS DEPENDING
ON CERTAIN IDEALS

LADISLAV SKULA, Brno
(Received January 24, 1984)

Abstract. This paper deals with the special system of equations over the Galois field Z())
(I prime) depending on the certain ideals J(7) of the group ring of a cyclic group of order / — 1
over Z(I). If J(F") is the Stickelberger ideal modulo /, then we get a system of equations in certain
sense equivalent to the Kummer’s system of equations.

Key words: Kummer’s system of equations, Stickelberger ideal, the first case of Fermat’s last
theorem, Mirimanoff polynomials, group ring of a cyclic group over the Galois field.

0. Introduction

The main reason of this paper is the study of the Kummer’s system of equations
(K) (Section 6) used for the solution of the first case of Fermat’s last theorem
([2], [1], [6D). In this section the system of equations (S) over the field Z(/) of
congruence classes modulo / is presented by means of the Stickelberger ideal
37 (I) modulo / and it is shown that an element 7 € Z(/), T # —1 is a solution of the
system (K) if and only if 7 is a solution of the system (S) (Theorem 6.6).

This article refers to the paper [8] where the systems of equations (M) and (L)
are considered. The system (M) is defined by means of the Mirimanoff polynomials
¢ (1) and Mirimanoff transformated the Kummer’s system into the system (M) IsD.

The system (L) is defined by means of the Le Lidec polynomials and Le Lidec
showed the relation between these polynomials and the Mirimanoff polynomials
([3], [4]). This implies the relation between the solutions of (M) and (L).

The system (S) considered as a system of congruences) has been introduced
in [8], but it was completed by the congruence ¢;_,(t) = 0 (mod /). Under this
assumption the relation between the solutions of (S) and (L) was shown here.

In this paper the system of equations of the more general form depending on the
ideals of the subring R ~(/) of certain group ring R(/) are studied. A bound for the
number of solutions of such system is presented (Theorem 5.5).
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The important ‘notion in this field is a special automorphism F of the vector
space R(/). The ideals of the ring R(/) are studied which are generated by the
images of the ideals of R~(/) at this automorphism F (Theorem 3.7).

1. Notation and Basic. Assertions

In this papér we designate by
) a prime = 5
) the field of congruence classes modulo /
0,1eZ() the cosets modulo / containing integers 0, 1, thus an integer n can
be considered an element of Z(])
G a multiplicative cyclic group of order / — 1
s a generator of G, hence G = {1 = 59, 5,52, ..., s' "%}

-2
Y 6,=Y 5, for suitable symbols 5,
i i=0

r a primitive root modulo /
ind x index of x relative to the primitive root r of /
r; the integer 0 < r; </, r; = r'(mod /) for integer i = 0, rr~! =

= 1 (mod /) for integer i < 0
R() = ZW) [G] = {3 ass' : a; € Z(I)} the group ring of G over Z(l), here for an
i
integer j we define a; = a; where 0 i </~ 2,i=j(mod/ — 1)
at) =Y at'eZ()[1] fora = ¥ a;s'e R()
i i
R D= {aem(l): a=Y as’, a; + a -1 = 0for0<Zix< _1:2__2}
- -t

2

L={a=Y as'e ﬂ(l):liza,(i odd) = 'i:zai(i even)}
i i=0 i=0

Ir() ={a=Y as'eR™(I): Y a;r;r = 0} for an integer 0 ST=I1-2
i i

For an integer v (/ }v) we denote by » the integer 0 < » </, v.» =1 (mod [).
For a = Y a;s' € R(!) put
i

1-1
F(@) =Y a_jpq,7s"

v=1
Clearly,
Fis an automorphism of the vector space (R(l), +) over Z(I).'
For 8 # M < R()) we denote by F(M) the ideal of the ring R(/) generated by
the set F(M). ‘
Obviously,

1.1. The ring R(l) is isomorphic to the quotiont ring Z(I) [t]/it'~* = 1). This
isomorphism is induced by the mapping
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o(1) = o(s)
Jor o(t) € Z() [t] and o(s) € R().

-1
1.2. R-() = RU) (1' - sT),
2 =ROA + 9).

Proof. The first assertion is obvious.

a) Let a = ) a,s' € £. Put
i

Xi=a,—a_y +a_;— ... +(=D'ay ©0=i=zl-13),
X-, =0,

B =Y xs'eRqQ).
i
Then (1 +s) = Y xs' + ¥ xs'*' = ¥ ¢;s', where
i i i

c,-=x,+x,_1 f0r1§i§1—'2
Co = Xo +x'_2..

One has ¢; = a;, hence (1 + s) = a.
b) Let « = B(1 + s) fora B =Y b;s' e R().
i

-2
Then one has a = f(1 +5) = Y. bs' + Y. b;_;s' + b;—,, hence
i i=1

a,-=b;+b,_.1 f0f1§i§1—2
Ao = bo + bl—l'

This follows

1-2 .

Z a‘(i Odd) = ay + as + L+ y-y = 2 b‘,

i=o0 .
1-2 !
Y a(ieven)=ap+a; + ... + a_3 =Y. b;.

- [

i=0
Thus a e L.
13. FR () = 8. .
. Lt -1
Proof. Since 1 — s 2 e R (/) and F(l —-5 2 ) =1+4s5, one has 8

S FR (). For0 s u< 23

put

1-1 gadt
oz,,=s"(1-—s2)=s"—s 2,

The set {a, 025 u gl-_—g-} is a system of group generators of the group

2
(R™(), +), hence
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FR () = .9'({0:,,: 0<u %_})

F()=rs"“+rs "“eB,

IIA

Since

one has F(R~ (1)) < L.
14.If0 S T <1 — 3 is even, then

3r) =R"(D).
Proof. For a = Y a;s'e R™(I) we have

-3 1-3

2 2
Yarg=Yarqg+Y Gy, -1, =0
i i=0 izo  —— (i+—2)T

2. Ideals of the Ring R(/)

2.1. Proposition. Let I be a nonzero ideal of the ring R(l) and M be a set of gene-

rators of I. Then .
I=(—ay)...(s — a) R,

where a,, ..., a, are all distinct nonzero solutions of the following system of equations
over Z(l):
' a(t) =0  forae M.')

Proof. I. Let g(¢) be the greatest common divisor of the polynomial a(t) (¢« € M)
in Z() [t] and let g,(t) € Z(I) [t], g,(t) g(t) = a(¢t) for each x € M.

For each B € I there exist b,(t) € Z(I) [¢] such that B = Zb,(s) . a(x € M), hence

B = g(s) Zby(s) g(5) (2 € M) € () . R(I).
Thus
I = g(s) RD).

Since there exist h,(t) € Z(I) [t] such that g(t) = Zh,(t) a(t) (x € M), one has
g(s) = Zhs) a(xe M) e I

| This implies
g() - R < 1,
hence
1 I = g(s). RA).

IL Let g(t) = h(t) (t — ay)" ... (t — @)™ .t°, where a,,...,a, are nonzero
mutually different elements from Z(/), b,, ..., b, positive integers, b non-negative

1) If this system has no nonzero solution, then I = R(/).
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integer and A(t) an irreducible polynomial of degree = 2 over Z(/) or h(t) = 1.
(The case k = 0 is also considered.)
For each integer x (1 < x </ — 1) there exists an integer y, such that

A(x) .y, (x — D(x —2).. [x—x—-l)][x—(x+l)] [x—(l—l)]E
: l(mod ). ‘
Put

-1
f@) = Zl(t -Dt-2)..t--DI[t=+D]...[t =@ ~-1)]. y;
Then for each integer z (1 £ z £/ — 1) one has-

Ch(z). f(z) = 1(mod ), -
hence T

). F(1) = 1¢0-1 = 1) |

and according to 1.1
©) h(s) . f(s) =1 B

III. We construct for each integer 0 < a</—-1a polgrnorhial fi) e Z{) [¢]
in a similar way as the polynomial fin II such that

fi2)(z —a) = 1(mod])

for each integer z, 1 £z <[ =1,z # a.

Thus

: £.2) (z — a)* = (z — a) (mod /)
for each integer z, 1 >§ z £ 1 -1, hence

L@ -a?=0t—-a)@ ! -1).

Using 1.1 one obtains .
3) , () —ai=s5-a

The proof now follows from (1), (2) and (3).

2.2. Definition. For K = Z(!), 0 ¢ K put

I(K) = R(). II(s — a) (ae K)
U(9) = R()).

Obviously, I(K) is an ideal of the ring R(]).

2.3. Proposition. Each ideal I of the ring R() has the form

| I=1(k),

where K = R(l), 0 ¢ K.

IfKs R(), L R(), 0¢ KU L and I(K) = I(L), then K = L.

Proof. According to Proposition 2.1 each ideal I of the. ring ‘.R(l) has the given
form. ({0} = I(Z() - {0}))
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Let K< R()), L= R(), 0¢ KU L, K+ 6 # L and I(K) = I(L).
Then there exists a € R(I) such that
I(s — a) (@€ K) = all(s — b) (b e L).
According to Proposition 1.1 there exists a polynomial f(t) e Z(I) [¢] such that
T — a) (@€ K) = a(t) TI(t — b) (be L) + f() ("1 — 1).
Substituting ¢+ = b e L one obtains or each be L
I — a)(ae K) =0

hence b e K and then L < K. Substituting t = ae K we get K < L.
If K =0 and L # 0, then there exist « € R(!) and f(s) € Z(!) [¢] such that

1 =a)TI( - B)(bel) + ()" - 1).
Substituting ¢ = b e L we get 1 = 0, which is a contradiction.
This completes the proof.

3. The Ideals J(9)

Further, we denote by T the set

T={12T<1!-2 Todd}.
For 7 = T put

-

w

r,, = 0 for each Teﬂ'}

"Mnl

I =N3IrD)(TeT) = {a= Z as'e R (1)

SO =%0).
The number of elements of the set J is denoted by i 5(/), thus i ,() = card J-
For L eJ put
o = Zi r_uste R().

3.1. Proposition. J(T) = {0}.
' -3

2 .
Proof. Let a = ) a;s'e€ J(T). Then Y a;yr =0 for each 0odd 7, 1 S T <
i - i=0

<1 - 2. Since D=det(rir)(0§i§ti—:1, 1T -2, Todd) is tﬁe

Vandermonde determinant, we have D #% 0 (mod ), which implies a; = 0 for each

_0§_i§l— , hence & = 0.

The Proposition is proved.
For the same reason we get
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3.2. Lemma. The elements o, (L € T) are linearly independent over the field Z(l).

.3.3. Proposition. Let 7 =T, 7 # T. Then the system S = {¢,: LeT — I}
forms a basis of the vector space J(T) over the field Z(l).

Proof. According to 3.2 the elements from S are linearly independent over Z(/).

Since for Te J and Le T — J the integer T L is even and / — 1 does not

- 3 l 3
divide T — L, we have Z roghir = Z rir-ry = 0 (mod/), thus S = J(J).
i=0
The space o solutions of the followmg system of equations
-3

2
Za,rﬂ-=0 (Tef)
i=0

with unknowns a; over Z(l) has dimension !

forms a basis of J(J) over Z(/).

il #() = card S. Hence S

. -1 _
3.4. Corollary. card 3(7) =1 2 7 for each 7 < T.
3.5. Corollary. The ideal F(J(7T)) of the ring R(l) is generated by elements F(a;)

(LeT — 7).
3.6. Proposition. For each Le T
F(aL) — Z VL 1 s’ = Z 1sv-l)

v=1 v
Proof.Letl Sv<=/-1,i= —indv,aq; =r_; . Thenv=r_janda_; 4,7 =
. -1
=r_ifi =r_jgp-q = v*7 ! (mod /). Hence F(oy) = ¥ vv71s" = ) vE~ 15",

v—1
3.7. Theorem. Let 7 < T. Then

FQT) = (s — ay) ... (s — a) R(),
where a, , ..., a, are all distinct solutions of the following system of equations over Z(l):
Zv" =0 (LeT-9).

Proof The theorem follows from 3.5,3.6 and 2.1 for 7 # T.If 9 =T, we
understand under a solution of the given system each element from Z([). According
to 3.1 F(J(T) = {0} = R() II(s — a) (a € Z()). The theorem is proved.

3.8. Remark. The coset —1 is a solution of ¥ vE~1t* = 0 for each Le T, hence

by 3.7 F(JIIN< (s + 1)R(I) = 8 for each I < T, which is in accordance
with 1.3.

1) 0¢-! = 1 by definition.
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-1
From 2.3 and from the relation R~(l) = (s_Z_— 1) R(I) we get
3.9. Proposition. Each ideal 1~ of the ring R™(l) is of the form I~ = J(T) =
=R DI — rr)(TeT), where T < T.

4. Some Special Cases
4.1. Definition. For _2 < i £ — 1 the polynomials
o) = li(—l)”"vi"tv
are called the Mirimanoff polynomials and

@1) = (t + )'7iP(1) (mod 1),

where P(t) are certain polynomials over the ring of integers divisible by ¢t — ¢2
for each odd i.
Especially for i = 3, 5,7,9 we have
Py(t) =t — t?,
Py(t) = (t — t%) . u(t),
Po(t) = (t = 1%) . v(1),
Po(t) = (t — 1%) . w(0),
where
u =u(t) =1t>—10t + 1, .
o(t) = t* — 56t + 246t* — 56t + 1,
= w(t) = t® — 246t° + 4,047t* — 11,5721> + 4,047t* — 2461 + 1.

T <
I

(S. [1] Nr. 41 and 42.)
For these polynomials u, v, w the following assertion holds:

4.2. Proposition. (a) For | = S there does not exist aﬁy integer t such that
u(r) = 0 (mod l),
v(t) = 0 (mod /).
(b) For 1 = 7 there does not exist any integer t such that
o u(t) = 0 (mod /),
w(t) = 0 (mod /).

(c) For Il = 7 there does not exist any integer t such that
v(r) = 0 (mod ),
w(t) = 0 (mod /).
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Proof. Put
a=oft) =t> — 46t + 1,
B = B(t) = t* — 236t + 1,686t + 5,524t + 57,601,
y = p(t) = 138¢3 — 33,283¢% + 938,188¢ + 312,977,
o = d(t) = 138t — 7,063

a=a(t) =t?
b = b(t) = 99¢ — 10,
¢ = c(t) = 231,329t — 52,406t + 889 = 7.33,047t% — 52,406t + 7.127.

Then we get by calculation
1) v = ux — 216a,
(2 w = up + 5,760b,
(3) yv — éw = 360c.
Assume that / 2 7 and 7 is an integer such that

v(tr) = 0(mod]l),
w(t) = 0 (mod [).

If t =1(mod/), then 0 = v(1) =136 = 23 . 17 (mod /) and 0 = w(l) =
= —3,968 = 27,31 (mod/). If t = —1 (mod/), then 0= v(—1) = 360 =
= 23,32 .5(mod!/). Thus T = +1 (mod /).

Obviously / }t and there exists an integer » such that

t.%x = 1(mod]l).
Then t £ » (mod /) and

v(x) = 0 (mod /),

w(%) = 0 (mod /)
and according to (3) : '
¢(t) = 0(mod ),
¢(x) = 0 (mod ).

If I = 7, then ¢(t) = 3¢ (mod /), hence T = 0 (mod /), which is a contradiction.

If I =127, then c(t) = t(62¢ + 45) (mod /), hence 62t + 45 = 0 (mod /) and
62% + 45 = (mod /). This follows t = x» (mod /), therefore © = +1 (mod /), which
is a contradiction. ‘

If //33,047, we obtain a contradiction in a similar way.

Let /211 and [1127.33,047. Then c(t) = 7.33,047(t — 1) (¢t — %) (mod /),
which implies ‘ '

7.33,047 = 7.127 (mod I),
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hence //2® . 5.823, thus / = 823. Then

e(t) = 66t + 266t + 66 (mod 1),
=2.(331 + 1331 + 33).

The discriminant of c(t) is congruent to 165 = 3.5.11 modulo 823 and we have

165
for the Legendre symbol (823)

()~ () () (5) - (5)(5) (%) - G) )

= —1.

This completes the proof of (c).

Using (1) and (2) we can prove (a) and (b).

The proposition is proved. '

For Le T, L # 1 we have

-1 .
Yolvlr =Y ot — 7 L(mod ) = —@(—) -t + 1 =
v ’ v=1
= =1 =P (=)=t + 1=t =)' A + )y () =71 + 1,

—P(—1)
(1 +1¢)

4.3. Proposition. Let Le T, L # 1 and let © be an integer. Then
Z v*"17* = 0 (mod /),

where y,(t) is the polynomial over, the ring of integers. Therefore

if and only lf‘t = 41 (mod!) or
y1(z) = 0(mod ).

Now we give the form of the ideal & (3(.7' )) for i ,(I) =0,1,2.
For i4(l) = 0 one has

FQIN=U+)RD =g,

since =60 and F(JIT) =FR 1) =2 = (1 +s)R(J) according to 1.3
and 1.2, ‘
For i, () =1 we get

4.4. Theorem. If I = {1}, then
FQ@) = FQ D) = (s + D (s — D) RQO).
IfF = (T}, where Te T — {1} we have
FOIN =FSs)) =+ DRO  for 127
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and
FQIN=FF5ON=6+DE+2)(@E+3)RWD for =5

Proof. For = {1} the proposition follows from 3.7 and 4.3 according to
yi(t) = 1.

Since ys(t) = u(—t) and y,(t) = v(—t), the congruence -y,(t) = 0 (mod 7) has
no solution and ‘the congruences y4(t) = 0 (mod /), y,(t) = 0 (mod /) has also
no solution for / 2 11 by 4.2. This completes the proof according to 3.7 and 4.3.

For i 4(/) = 2 we obtain in a similar way from 3.7, 4.3 and 4.2:

4.5. Theorem. Let I < T and i4(l) = 2. Then it holds

(@) I =5=F(37)) = {0},

b 127,1eT=>F(JIT) =6+1)E -1 RAI,

@I=71¢FT ={3,5D=>2FQFI)N=6+D@E+2)(+3)G+4.
(s + 5) RO,

@I1z11,1¢T =F(J(T)) = (s + 1) R().

5. Special System of Equations Depending on J(7)

5.1. Definition. For o = Y a;s' € R(/) put
i

-1
fa(t) = gla —in‘d v’jtv € Z(l) [t]

5.2. Theorem. For 7 < T the system of equations (over the field Z(l))
(1) fo(t) = 0,0 e J(T)

is equivalent to the system of equations (over Z(l))

-1
Q@ Yo" =0,LeT - T.Y
v=1

Proof. Let I be the ideal of the ring R(/) generated by the set {f,(s) : x € J(I)}.
Then I = #(J(J)) and according to 2.1

I=(s —ay)..(s — a) R,

where a,, ..., a;, are all distinct nonzero solutions of the system (1). Then the
theorem follows from 3.7 and 2.3.

5.3. Definition. Put
R¥() = {a =Yas'eR():ao=ay, a; = a,_,(Z Sis -1—2-:—1—)} .

1) It means that 7 € Z(!) is a solution of (1) if and only if it is a solution of (2). If 9 = T then
each v € Z(l) is a solution of (1) and (2) by definition.
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5.4. Proposition. Let 1 S n <1 -2, m =[—%—(1-—n - 1)] and f = (s — b,).

.(s = by)...(s — b,), where b, ...,b, are distinct nonzero elements from Z(l).

Then
" for n even,

card [R() . B n R* (D] = {lm+1 - for n odd.

Proof. . Put M = R().FnR*() and M' = {f.a:ae R(), B.ae R*),
1-2-n .
= Y a;s'}. Obviously, M’ < M. Let w € M. Then there exists a = ) a;s'e
i=0 i

€ R(/) such that = . a e R*(). Put
J@) = (¢ = bpyy) (¢ = bpy3) .. (1 = byy),

where {b,,b;, ..., 0,1} = Z(I) — {0}. Let q(t), r(t)e Z(I) [t], degr < degf =
=]—1-nand
a(t) = f(t) q(t) + r(1).
Then
B.u=pB.f(s).q(s) + B.r(s)

Since f.f(s) =0,one has f.a = B.r(s)e M. Thus M = M.
1-2-n 1-2-n

. Let ¢, = Y, ai's'e R(D), a; = Y aPs'e R(/) and .o, = B.a,. Then
i=0 i=0

0y = Ay,
According to 1.1
B(t) ay(t) = B(1) ax(t) + g(8) (¢'~" = 1),

where g(t) € Z(l) [t]. Since deg B(t) a,(t), deg B(t) @,(t) < I — 2, one obtains g(t) =
= 0 and a,(t) = a,(t), thus «;, = a,.
From I we get then
1-2-n

card M =card{a = Y ‘a;s’'eR() : B.aeR*()}.
i=o0

III. We have B = B, + B;s + ... + B,_s""' + B,s", where Bg, ..., Bu_1, Bn €

I-2-n
€Z(), Bo # 0, B, = 1. Fora = Y x;s'eR() we have f.ax =Y ¢;s' and -
’ i=0 i

cl—2 = xl—Z-uﬂrn
C1-3 = Xi—2-pBu-1 + X1_3_4Bn,

() ¢, = Ix,B;-, (max {0,i — n} Sj < min{l — 2 — n,i}),

¢y =X1Bo + x84,
¢o = XoBo.
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The system
(4) Co — € = 0’

C‘—CI_‘=0, (ZSIS‘I—‘%—I-)

: 1-1 . . .
forms a system of 5 linear equations with unknowns xg, Xy, ..., X;—2—p-
Assume m = 2 and assume that for 2 £ k £ m — 1 we expressed the unknowns
X1, X1—2-psX1—3—p» +++» X1—x—n Dy means of the unknowns x,, x,, X3, ..., X; from
the equations ’ '
co—cy =0,
¢ —c-; =0, Q=2igk).
The unknowns Xxg, X;, ..., X;, X, +; occur in the expression ¢,,; and the un-

Knowns X;_, _p, Xj—3-ps +++s Xj—k—n> X—k—-1-n OCcUr in the expression ¢;_,_,. The
unknown x,_,_, _, has the coefficient 8, =

Hence the unknowns X;, X;_5_,, X;_3-ps -++s Xj_m-n are expressed by means
of x4, X5, X3, ..., X,, from the equations

cg—c¢ =0,
c‘ - c‘_i =0, (2 lSm)

Thus the system (4) cannot have more than / — 1 — n — m free unknowns and

m for n even,

’”1""""’={m+1 for n odd.

This gives the result for m = 2. The case 0 < m < 1 is easy to show.

5.5. Theorem. Let 7 < T. Then for the number n 4(I) of solutions of the system ¢y
dzﬁerent from —1 it holds
2ig () for 1¢7,
nsll) = {Zi,(l) -1 for led.

Proof. Obviously, if 7 is a solution of (2), then t~! is also a solution of (2).

Further —1 is always a solution of (2) and 1 is a solution of (2) if and only if
1¢ 7. Thus n = ng(l) + 1 is the number of solutions of (1) and n4(l) is even if
and only if 1 ¢ 5.
Let —1,a,, ..., a,_, be the set of solutlons of (MDandput f=(s+1)(s+ay)..-
(s +a,_y). Accordmg to 3.7

FII) = 8. RO

and obviously

F ST € FII)) 0 RHO). B
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From 3.4 we get
-1
card 9’(3(.7’)) = card 3(.7) - IT iy(l)’
hence according to 5.4

-1 m
———ig®) _ . ! for n even,
12 Scard[R() . B n R¥ (D] = {(,,,H for n odd,

where .
C ) ‘ 1_2_3_—'1’2“) “for 1¢7,
m=[—(l—n—1)]= ,
2 I-1 B ng(l) + 1 g
3 3 for ies.
- Hence for 1¢ 7
-1 1-1 ng(l)
_— < = 2T
> ig)s=m+1 3 3
and
ng(l) < 2i5(0).
For 1 € we have
-1 1-1 ng(l) + 1
- - <m= -
2 l."(l)=m 2 2 >

therefore:
ngy(l) £ 2ig() — 1.
The theorem is proved.

6. System of Equations Depending on the Stickelberger Ideal

'6.1. Notation. The Stickelberger ideal 3 in the group ring R = Y as': a
l-adic integer} of the group G over the ring of /-adic integers is the ide:d
S={eeR:30eR,0.),r_is' =la}
of the ripg' R. i

Put R~ -—-{Zaxs'eﬁ:at +a,1-1=0 for 0 Sis 123} and 3~ =
. i 2

=3 nR". The Stickelberger ideal 3~(I) modulo | is defined as follows
S-(I) = {Z aisi € g{_(l): ab, €a;, zb,-si € —:i—}
i

(the l-adic integers b, are considered the elements of the cosets a;).
For the sequence of the Bernoulli numbers B, we use the ‘“‘even-index” notation,

thus
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1 1 1
B0=1,Bl=—5‘, 2=-6—-,B3=0,B4=—-—3-6-4,‘...

For an odd integer T, 1 £ T =/ — 4 such that B,-+1 = 0 (mod I) let h(T)
be the positive integer such that . : : B

B,h(‘r)- 1T+1 =0 (mod lh(T?)
and for integer X > A(T) '
B;x—11+1 * 0 (mod IX).

If By., % 0 (mod /), we put A(T) = 0. '

For an integer T, 0 < T </ — 1 and a positive integer m put-

Frm = {Yas'eR : Y ar' ™" = 0 (mod )}
i i
and
Jro =R,
In the paper [7] (Theorem 4.5) it was shown

62 NIrun3ST<1—-2Todd) =5,
where

0 otherwise.

m(T) = {h(l —1-T) for By_r = 0(mod]).

let # ={3<T<1!-2:Toddand B,_r = 0(mod /)} = T. The intéger iy(l)
is called the index of irregularity of the prime I and is denoted by i(l).
It was shown in the paper [9]:

63.card () = [ 2 T ,

From 6.2, 6.3 and 3.4 we can derive

6.4. Proposition. I3~ () = J(%) = nF; () (T e %).

We denote by (S) the following system of equatzons (over Z(l)) depending on the
Stickelberger ideal:

(s - L) =0, ae3@) =3(0).
We get from 5.5 )
6.5. Theorem. For the number n = ng(l) of solutions (in the ﬁeId Z() of the
system (S) different from —1 it holds
n < 2(0). ‘
We obtained this inequality in the paper [8] (Theorem 3.5) in another way.
Kummer ([2], s. also [1] or [6]) used in the considerations on the first case

of Fermat’s last theorem the system of congruences transformated to the following
system of equations (over Z(l)):
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(K)  Pi_2{t) By =0, (1gi§’—'2'—3—).

6.6. Theorem. The element t € Z(l), t # —1, is a solution of the system (K)
if and only if —t is a solution of the system (S). _
Proof. Let te Z(l), t # —1. Obviously, 7 is a solution of (K) if and only if

7 is a solution (over Z(/)) of the system

1) o(t)B,_;,=00B3=si=s!-2,iodd)
and t is a solution of (1) if and only if 7 is a solution of the system
@ o) =03 <isI—2,iodd,i¢).

Further, 7 is a solution of (2) if and only if —1 is a solution of the system
-1
3 Yo''=0, LeT-a.
v=1

Then we obtain the theorem from 5.2 and 6.4.
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