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ARCHIVŮM MATHEMATICUM (BRNO) 
Vol. 22, No. 2(1986), 75-92 

ON A VECTOR MULTIPOINT BOUNDARY 
VALUE PROBLEM 

VALTER SEDA 
(Received December 7, 1984) 

Abstract. Existence and uniqueness of the solution to a multipoint boundary value problem for 
nth-order nonlinear differential systems is proved by using the estimates for derivatives of the scalar 
functions and by introducing admissible system of functions with respect to the Green function. 
The theory of positive linear operators gives that the obtained result is the best in a certain sense. 

Key words. Vector multipoint boundary value problem, generalized Banach space, Green function, 
admissible system of functions, associated system of constants, Lipschitz condition, ordered Banach 
space with positive cone, positive eigenvalue. 

MS Classification. 34 B 10, 34 B 15, 34 B 27. 

In the paper a multipoint boundary value problem for n-th order nonlinear 
differential systems is studied. It is shown how the facts and methods from the 
scalar case can be applied to the vector one. Existence theorems for De la Valine 
Poussin problem are obtained by means of the estimates for derivatives of scalar 
functions or by introducing admissible system of functions with respect to the 
Green function. Here the theory of positive linear operators is applied. The obtained 
results extend and generalize some theorems proved by R. P. Agarwal and J. Vos-
mansky in [2]. 

In the paper the following vector multipoint boundary value problem 

(1) *<">=/(;,*,*', ...,x("-1>), 

(2) * ( l ~ 1 } (0) ** *'.J» / = 1, ...,ry, j = 1,2, ...,m 

will be considered where 
n . > 2 , 2 < m ^ « , l ^ r̂  are natural numbers such that ̂  -f- r2 4- ... -f rm = n, 

..QQ < a _ t < uuu < tm = b < oo are real numbers, aitJ e Rd are vectors, d ^ 1 
and throughout the whole paper we assume that 

fe C(D, Rd) where D = [a, b] x Rd x Rd x ... x Rd. 

n times 
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The scalar case (d == 1) has been thoroughly studied. See the monograph [7] 
by I. T. Kiguradze, [4] by S. R. Bernfeld and V. Laksmikantham. As to the vector 
case (d > 1), there are substantially less papers devoted to problem (1), (2). Among 
them the paper [2] written by R. P. Agarwal, J. Vosmansky attracted the attention. 
The ideas from that paper are deepened and developed here. 

P R E L I M I N A R I E S 

If x = (xx, ..., xd)
T is a column vector, then we denote | x \ = (| xx \, ..., | xd \)

T. 
A partial ordering in Rd can be introduced by the relation: 

If x = (xv, ..., xd)
T, y = (yx, ..., yd)

T belong to Rd, then 
x^y iff Xj<Lyj for j = 1, ..., d. 

Further we denote ud = (1, ..., 1)T e Rd. 
The set of all real dxd matrices will be denoted as Mdxd. Similarly as in the 

case of vectors, if L = (/fJ), then \L\ = (| liS |), ij = 1, ..., d. Further L _ L 
iff lu ^ Jij for ij = 1, ..., d and L = (lu), L = (Jy). Ud (0d) will mean the matrix 
from Mdxd9 all elements of which are 1 (0). Ed will denote the unit matrix. As 
usual, the spectral radius Q(L) of the matrix L e Mdxdq(L) = max | kt \ where l{ 

are all eigenvalues of L. l 

POUSSIN CONSTANTS 

The first result is based on the following estimates for scalar functions. 
If x e Cn([>, 6], R) satisfies 

(20 x«-lKtj) = 0, i = 1, . . . , 0 , j = 1, 2, ..., m, 

then there exist positive numbers Cn>fc, k = 0, 1, ..., n — 1, such that 

(3) | xik\t) | = Cn,fc(b - a)n~k max | x(n)(f) |, a = * = b, k = 0 ,1 , . . . , n - 1. 
aZtgb 

The constants Cn>k have been determined by several authors. E. g. G. A. Bessmert-
nych, A. Ju. Levin in [6] found that 

(4) c.,o=(W",ir1' C".*= (n \vn ' * = - . - . » - - • 
n!n \n "" 'C)! n 

G. A. Bessmertnych in [5] has proved: 
Let / = min {rx, rm} > 1. Then 
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y i - * - l 
(n - k - 1)" 

(5) C B t ^ ( n - f c ) ! ( « - f c ) -
fc-/ + l 

( n - f c ) ! ( n - / + l) 

fc = 0,1,.... í - 1, 

fc = /,/ + 1, ...,n. 

R. P. Agarwal in [1] derived: 
Let / = min {rx, rm). Then 

(6) c м = 

kn- -ir "'(/- - fc)'"* 

(« -fc)!(n-fc)"-* ' 

fc-/ + l 

l (n--fc)! ( n - -/ + !) ' 

fc = 0, 1, . . . , / - 1, 

fc = /,/ + !,.. ., n - 1. 

For their meaning we shall call C„tk Poussin constants. Thus the following defini
tion will be of use. 

Definition 1. Any nonnegative constants C„tk, k = 0, 1, ..., n - 1, such that 
for all functions x e Cn([a, b~\, R) satisfying (2") the estimates (3) hold will be 
called Poussin constants. 

Further we shall use the concept of a generalized norm ([4], pp. 225 — 228). 
If Kis a real vector space, then the generalized norm for Eis a mapping || . ||G : 2?-» 
-> Rd denoted by 

CO ttxWo-^x),...,^))7, 
such that 

(a) | | x | | G = 0, that is a/*) = Oforf = 1, ...,d, xeE; 
(b) | | x | | G = 0 i f r ^ = 0; 
(c) l k x | | G = | c | \\x\\G,ceR9xeE; 
(d) Ux + y\\G£\\x\\G + \\y\\G,x,yeE. 

The couple (E, || . | |)G is then called a generalized normed space. The topology 
in this space is given in the following way. For each xeE, and £ > 0, let Bs(x) = 
= {yeE : || y - x ||G < £ud}. Then {BJx) : xeE9 £ > 0} forms a basis for 
a topology on E. The same topology can be induced by the norm || . || which is 
defined in this way. 

If || x \\G is given by (7), then 

(8) H a: || = max(a 1 (x) , ...9ad(x)), xeE. 

|| . || has all properties of the norm. Since the topology of the normed space 
(E, || . ||) is given by the basis of neighbourhoods Vg(x) = {y e E : \\ y - x \\ < £}, 
xeE, £ > 0, and Vg(x) = Be(x), both (7) and (8) define the same topology on E 
and in this sense they are equivalent. From the topological point of view there is 
no need for introducing the generalized norm. Yet we have more flexibility when 
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working with generalized spaces. This is clear in the case of Contraction mapping 
theorem ([2], p. 2) which will be stated as 

Lemma 1. Let (E9 \\ . ||G) be a generalized Banach space and let T : E -• E be 
such that for all x9yeE and for some positive integer p 

\\T*x-T*y\\G<,L\\x-y\\G9 

where Le Mdxd is a nonnegative matrix with Q(L) < 1 and Tp is the p-th iterate 
of T. Then T has a unique fixed point. 

Theorem 1. Let for all(t9 u09 ul9 ..., un.1)9 (t9 v0, vl9 ..., v„-i) e D the function f 
satisfy Lipschitz condition 

(9) \f(t,u09ul9 . . . ,un_1) -f(t9v09vl9 ...9vn.1)\ ^ 
n - l 

.= Z Lk I "* - Vk I, 
ft = 0 

where Lke Mdxd are nonnegative matrices. Let Cn>k9 k = 0, 1, . . . , « — 1, be 
Poussin constants. Let 

(10) (K'E LfiUb - a)"-k) < 1. 
*--o 

Then there exists a unique solution to (1), (2) for all aitie Rd
9 i = 1, ..., rj9 

j = 1,2, ..., m. 

Proof. First we transform the problem (1), (2) to a simpler one. Let w be the 
unique solution of (2), 
(1') x(n) = 0. 

Then x is a solution to (1), (2) iff the function y(t) = x(t) - w(t)9 a ^ t ^ b9 is 
a solution to boundary value problem 

(11) y(n) =f(>,y + w(0,y + w'(0, .. . ,y (n-1} + w(""l)(0) s 
= ^ , y , y ' , . . . , / " " n ) , 

(2W) y » ^ ) ( t . ) - = 0 , / = 1, . . . , r ; , f= l , 2 , . . . , m . 

The function g e C(D9 R
d) and it satisfies Lipschitz condition (9). We shall show 

that problem (11), (2"') has a unique solution. 
Denote for any x 6 C ( [ d , J ] , Rd)9 x(t) = (xx(t)9 ...9xd(t))

T, a ^ t ^ b9 

max | x(t) | = (max | xt(t)\9..., max | xd(t) \)
T. 

a£t£b a£t£b *£t£b 

Let St = {x e CH([a9 b\ Rd) : x satisfies (2')} where 

(2') * ( | - 1 } (0 ) = 0, i = 1, ...,rj9j = 1,2, ...,/w. 

Then St is a real vector space and define the generalized norm on St by 
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II x || i = max I xin\t) I for each x e St. 
a£t£b 

The properties of the generalized norm can be easily checked. E.g. || x\\t == 0 
implies that x is a solution to (V), (2') and hence x = 0. St is a complete generalized 
space and thus a generalized Banach space. In fact if {xp} is a Cauchy sequence, 
then there is a function y e C([a, 6], Rd) such that xin) converge uniformly to y 
on [a, f]. The problem x(n> == y(t), (2'), has a unique solution x e S j and 
l im| |x p - x l l i = 0 . 
p-t-ao 

Define the mapping Tt : Sx -* Sj as follows: If }> e Sx, let T ^ be the solution x 
to boundary value problem (2'), 

xw = g(*,y(t),y'(t)9 ...tV^Kt)). 

Then by (9), for any two functions y,ze S, we have 

(12) | (Tiy)
in\t) - (r-z)<->(0 I ̂  " l i t I y(fc)(0 - z(*>(0 |, a ^ t£ b. 

*=-o 

Denote the j-th coordinate of the function y and z, respectively, by ^. and zj9 

respectively. As by (3) 

I yf\t) - z(k\t) \* Cnk(b - a)n~k max | yf(t) - zf{t) \ 
a£t£b 

it follows that 

(13) I yik)(t) - zik)(t) | g Cn>k(b - a)n-k || y - z ||lB 

(12) and (13) imply that 

I (Tiy)
in\t) - (Ttz)(">(0 | z^Lfi^b - <0B"* II y - 2 Hi 

fc = 0 * 

and 

II Txy - Ttz |U ̂  YLfi^b - a)"" || >> - z ||.. 
*=o 

In view of the assumption (10), Lemma 1 yields the existence of a unique fixed 
point of 7\ in St. This means that the problem (11), (2'") as well as the problem (1), 
(2) has a unique solution. 

A D M I S S I B L E SYSTEM OF F U N C T I O N S 
AND ASSOCIATED SYSTEM OF CONSTANTS 

Another approach to solving the problem (1), (2) is based on the notion of an 
admissible system with respect to the Green function. 
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Let G be the Green function of the scalar problem 

(V) x(B> = 0, 

(2') x«-l\tj) = 0, / = 1, ..., rj,j = 1, 2, .... w. 

Then the functions 

* dJG(t, s) 
(14) #/r) = J 

a 

are continuous in [a, fr] 

ÕtJ às, a = í ^ b,j = 0, 1, . . . , n - 1 

Definition 2. The system of nonnegative continuous scalar functions *€j in 
\a, b\ j = 0, 1, ..., n — 1, is called admissible (with respect to the Green 
function G) if there exist positive constants kj, j = 0, 1, ..., n — 1, such that 

(15) <*>//) = kftjit), a = ř = 6, j = 0, 1, . . . , « - 1. 

With respect to boundedness of the functions *€j, j = 0, 1, ...,n — 1, there 
exist positive constants kltj, IJ = 0, 1, ..., n — 1, such that 

(16) J 
дJG(t, s) 

ÕtJ <Si(s) ás = tču<gj(t), ašt^b, l,j = 0,1, ..., n - 1. 

Let kl$J = inf£,j, /,/ = 0, 1, ..., n — 1. Then (16) is also true for kltJ, I, 
/ = 0, 1, '...,/* - 1.' 

Denote 
(17) K! = max(/: , t 0 ,k M , . . . ,/ : , ,„. !) ,/ = 0, 1, ...,n - 1. 
Hence 

6 ' dJG(t, s) 
(18) J 

ôtJ %(s)ás = J_,íř/í). o = t = í>, /,; = 0, 1, ..., n - 1. 

By definition of K,, for a constant .K, < K, the inequality (18) cannot hold for all 
te [a, b],j = 0, 1, ..., n — 1. The constants KjJ = 0, 1, ..., n — 1, will be called 
the associated system of constants to the admissible system *€jj = 0, 1, ..., n — 1. 
Hence, the following definition will be of use. 

Definition 3. The system of smallest nonnegative constants KjJ = 0, 1, ..., n — 1, 
such that (18) are true for all t e \a, b"\, IJ = 0, 1, ..., n - 1, will be called associat
ed system of constants to the admissible system <Sj9 j = 0, 1, ..., n — 1. 

Its meaning is explained in the following theorem. 

Theorem 2. Let *€j, j = 0, 1, ..., n — 1, be an admissible system and Kj9 j = 
= 0, 1, ..., n — 1, the associated system of constants to that system. Let the func
tion f satisfy Lipschitz condition (9) with nonnegative matrices LkeMdxd9 k = 
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= 0, 1, . . . , « - 1. Then for any aitJeRd

y i = 1, ..., rj9 j = 1, 2, ..., m, there 
exists a unique solution to (1), (2) provided 

(19) 0 ( " ~ X k L t ) < l . 
*-o 

Proof. The problem (1), (2) is equivalent to the equation 
b 

x ( 0 = w(0 + J G(f, s)f[s, x(s), x'(s), ..., x 0 1 - 1 ^)] ds, a £ t£ 5, 
a 

where w : [a, b] -> Kd is the unique solution to (V), (2). Now we define the 
operator T on S = C "*([>> * ] , * d ) by 

(20) Tx(0 = w(f) + J G(f, s)/[s,x (s), x'(s), ..., x ^ 1 ^ ) ] ds, a g t = b. 
a 

Clearly T : S -+ S. 
The space S will be provided by the generalized norm 

| |x | | = max(max|x(OI,..., max | x ( n "°(0l), 
a£t£b «<.*<.& 

whereby max (xl9 ..., xn) for xx, ..., xn e Rd is defined componentwise, i.e. 
if xf = (xH, ...,x a £) r, z = 1, ...,«, then max (x l 5 ..., x„) = ( max x u , ..., 

I--1 n 

max xd l)
T. 

i = l n 

Clearly max(x1 ? ..., xn) ^ x̂  for each i = 1, ..., n. 
(S, || . ||) is a generalized Banach space. We shall show that Lemma 1 can be 

applied to the operator T given by (20). To that aim denote 

(21) K = max kj9 
.7 = 0 , 1 f t - l 

where kj9 j = 0, 1, ...,« — 1, are arbitrarily chosen but fixed numbers satisfy
ing (15). 

Let u, ve S and let je {0, 1, ..., n - 1}. Then, on the basis of (20), (9), (15) 
and (21) we obtain the following inequalities. First 

rU )(u)(o-r (»(t)l< 
b 

ś í дJG(ţ, s) 
õtJ (-LJu^-A^Dds^ 

*=o 

fZKVj(t)YLk\\u-v\\, a < f < f e . 
*-=o 

Suppose that for a natural p the inequality 
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\(Tp)iJ)(u)(t)-(T'r)u\v)(t)\^ 

á /.íř/0("z * * L * Y _ 1 1 L * li" - v II. a ^ ř = fc 

is true. Then using (20), (9), (22), (16), (17) we come to the inequalities 

| ( T ' + V ' \ u ) ( 0 - ( r p + l P ( t > ) ( 0 l = 

áif 
õJG(t, s) 

ôtJ 

n - 1 

( £ L ^ í s ) ) [( I ҚA.Y - 1 £ LJI u - v ||] ds = 
I fc = 0 * = 0 * = ° 

= KVj(t) ( £ KkLk)
p Z Lfc II w - v ||, a = t й Ъ. 

fc = 0 fc = 0 

Hence, by induction, we get that (22) is true for all natural p. The inequality (22) 
implies 

|| Tp(u) - Tp(v) || = 

^ K[ max (max<f/f))] ( I W 1 ! M " ~ » II-
j = 0, l , . . . ,n-l agt£b fc = 0 k = 0 

n - 1 

By (19), lim ( £ KkLk)
p~l= 0d and hence there exists a number P0 such that for 

p->oo fc = 0 

all p = P0 

C(X[ max (max tf/*))] ( Z ^* L *) P " " 1 Z X-* II u - r ||) < 1. 
j = 0, l , . . . ,n-l a = ^ f t k = 0 k = 0 

Lemma 1 then implies that the operator T has a unique fixed point in S which 
gives the statement of the theorem. 

Corollary 1. Let the function f satisfy Lipschitz condition (9) with nonnegative 
matrices Lk e Mdxd, k = 0, 1, ..., n — 1. Let 

(23) 
? I dkG(t, s) ck = max J - — 

aštšb a Čt 
ds, k = 0,1,..., n - 1. 

Then for any aitJ e Rd, i = 1, ...>r,, j = 1, 2, ..., w, there exists a unique 
solution of (1), (2) provided 

(24) 
n - 1 

í?(ZcfcLfc)<l. 
fc = 0 

Proof. Clearly the functions &J9 j == 0, 1, ..., n - 1, given by (14), form an 
admissible system of functions. As 

Ф,(-0<Ь й cfij(t), а й t = b, j,l = 0,1, ..., n - 1, (25) } 
a 

ЄJG(t, s) 

ÕtJ 
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the associated system of constants K,, / = 0, 1,..., n — 1 to that admissible system 
of functions fulfils the relation 

Kl = c „ / = 0, 1, ...,* - 1. 
n - l n - 1 

Thus Q( YJ KkLk) ^ Q( Y, ckLk) < 1 and, by Theorem 2, the statement of Corollary 1 
*=o *=o 

follows. 

OPTIMAL VALUES OF THE ASSOCIATED SYSTEM 

OF CONSTANTS 

As we have seen the set of all admissible systems of functions is not ampty 
and in view of Theorem 2 the problem arises what are the best (smallest) constants 
Kk9 k = 0, 1, ..., n — 1, for this set. The answer to this question can be given by 
applying the theory of positive linear operators developed by M. A. Krasnoselskij 
and others. This theory will be taken from the survey paper by H. Amann [3], 
books by M. A. Krasnoselskij and others [8], [9]. 

Consider the Banach space E = C([a, b], R) with the supnorm, partially ordered 
by the relation x ^ y iff x(t) = y(t) for all / e [a, ft]. Then (E9 =) is an ordered 
Banach space with positive cone P = {xeE : x(t) = 0, a ;g t g b}. P is normal, 
i.e. every order interval [x, y] = {zeE : x ^ z — y} is bounded, and P is generat
ing, i.e. E = P - P ([3], pp. 625-628). 

Let k e {0, 1, ...,« — 1} and let G be the Green function of the scalar problem 
(1"), (2"). Define the operator Ak : E -> E by 

(26) A*t>-\ **••> 
ÕЃ 

x(s) ds, a •йt ^Ъ, xeE. 

Ak is a positive linear operator and using Ascolli lemma we can easily prove that 
it is completely continuous. If *€k belongs to an admissible system of functions # j9 

j = 0, 1, ..., n - 1, then the operator Ak is ^-bounded from above ([9], p. 78), 
because for any x e P, x 4- 0, there exists a constant c = c(x) > 0 such that 

b 

(27) Akx{t) = J 
дkG(t, s) 

дŕ 
x(s) ds ^ (maxx(t)) Фk(t) g 

aå.t<.Ь 

^ (max x(0) kk<8k(t) = c(x) <gk(t)9 a = t = b. 

At the same time we have shown that Ak is #k-bounded from above. 
Further we need theorems on the estimate of spectral radius of a positive linear 

operator. A part of Theorem 5.3 from [9], p. 85, will be stated here as 

Lemma 2. Let (E1, :_) be an ordered Banach space with positive cone Px which is 
normal and generating. Let A : E^ -> El be a positive linear operator such that there 
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is an element x0 e Px, x0 + 0, and a constant K = 0 with 

Ax0 g Kx0. 

Let A be x0~boundedfrom above or x0 be an inner point of Px. 
Then the spectral radius Q(A) of A satisfies 

Q(A) = K. 

Remark 1. In fact, the lemma has been proved for K > 0, but by a limit process 
we get its validity also in the case K = 0. 

With respect to this lemma, Q(Ak) can be estimated from above where Ak is the 
operator defined by (26), by the relation 

e(Ak) = max 17 J I ^ ^ - x(s) ds\x(t)\ 

for any function x e C([a9 b], R)9 x(t) > 0 in [a, i ] , because such a function is 
an inner point of P. 

Especially, 

(28) Q(Ak) = ck9 

ch being defined by (23). 
Lemma 2 also implies that the following lemma is true. 

Lemma 3. Let ^j9 j = 0, 1, ..., n — 1, be an admissible system of functions and 
let Kj9j = 0, 1, ..., n — I, be the associated system of constants to that admissible 
system. Let Ak be the operator given by (26). Then 

(29) KJ^Q(AJ), f = 0, I , . . . , / ! - 1. 

We shall show that for each k e {0, 1, ..., n — 1} there is an admissible system 
of functions such that the constant Kk from the associated system of constants 
is equal to Q(AH). In the proof we need some theorems on positive linear operators. 
First we state Theorem 5.4 from [9], p. 81, as Lemma 4. 

Lemma 4. Let (El9 ^ ) be an ordered Banach space with positive cone Pt which 
is generating. Let A : Et -> Et be a positive linear operator such that there is an 
element xt e Px, xx ^ 0, and a constant K ^ 0 with 

Axx ^ Kxx. 

Then the spectral radius Q(A) of A satisfies 

Q(A)^K. 

In view of this lemma, Q(AK) > 0 will hold for the operator Ak defined by (26) if 
dkG(t9 s) 

min J 
õtk ds>0, 
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e(A) £ min 17 J I d*G(f's)
 x(s)dsVx(olfor any xeC([a, ft], R),x{t) > 0 

ogrs*L\« \ dt / J 
in [a, ft]. 

Especially, 

(30) e(Ak) S min J ' a*G('' x) 

в < f ^ Ь a ð/» 
ds. 

Part of the famous Krejn-Rutman theorem ([3], p. 632, Theorem 3.1) is 
stated here as Lemma 5. 

Lemma 5. Let (Ex, $>) be an ordered Banach space with positive cone Pt. Let Pt 

be total, i.e. the closure Pi — Pi = Et. Suppose that A : Ex -* E^ is a positive 
linear, completely continuous operator and it has a positive spectral radius Q(A). 
Then Q(A) is an eigenvalue of A with an eigenvector in Pt. 

We also need the definition of a w0-positive operator ([9], p. 77). If (El9 £) is 
an ordered Banach space with positive cone Pl9 A : Et -*> E1 is a linear positive 
operator, and u0ePt,u0 # 0, then we say that A is u0-positive, if for each nonzero 
element xePY there exist constants OL(X) > 0, P(x) > 0 such that 

<x(x) u0 ^ Ax ^ p(x) u0. 

In other words, A is */0-bounded from below as well as w0-bounded from above. 
Lemmas 4, 5 and Theorem 2.11 in [8], p. 80, imply the following lemma on 

existence and uniqueness of the positive eigenvector. 

Lemma 6. Let (Et, ^ ) be an ordered Banach space with positive cone Px. Let PY 

be generating and let A : Et -> Et be a positive linear, completely continuous, 
operator which is u0-positive for an element u0ePl9 u0 4= 0. Then there exists up to 
a multiplicative positive constant a unique eigenvector of A in Pt and that vector 
corresponds to Q(A). 

Proof. As A is t/0-bounded from below, by Lemma 4 the spectral radius Q(A) 
of A is positive. Hence, by Lemma 5, there exists an eigenvector of A belonging 
to P! which corresponds to #04). Now we apply Theorem 2.11 in [8], all assump
tions of which are satisfied. By this theorem the uniqueness follows. 

By Lemma 2.1 (p. 77) as well as by Theorem 2.16 (p. 90) in [8] we come to the 
following statement. 

Lemma 7. Let the assumptions of Lemma 6 be satisfied. Then for every y e Pu 

y + 0, the equation 
Xx — Ax = y 

has exactly one solution xePx if X > Q(A) and no solution in Pt for X ^ Q(A). 
Let k e {0,1, ...,« — 1}. We summon fundamental properties of the operator Ak 

which is defined by (26). E, P, Q(Ak), <Pk have the same meaning as above. We 
remind that P is normal and generating. 
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Lemma 8. Ak : E -+ E is a positive linear, completely continuous operator. 
Further: 

(a) Ak is &k-positive. 
(b) g(Ak) > 0. 
(c) There exists a unique, up to a multiplicative positive constant, eigenfunc-

tion ̂ k of Ak belonging to P. ^k corresponds to g(Ak) and Ak is %\-positive. 
(d) ^ k s 0 is not true on any subinterval of [a, b]. 

Proof. Our considerations will be based on the following property of the 
Green function G for the scalar problem (1"), (2") (see [10], p. 375). It is true that 

(31) g G ( r ° , & ) = 0 for a t0e[a, b] and all s, a g 5 ^ b, je{0,1, ..., n - 1} 
dtJ 

if 
(32) there is an /e {1, 2, ..., m} such that t0 = /,, 0 rgy :g r, — 1. Conversely, 
if (31) is valid, then for all functions ye Cn([a,b], R) satysfying (2*) we must 
have yiJ)(t0) = 0 which is only so possible when (32) is true. Thus (31), (32) are 
equivalent each to other. 

Statement (a). We have already found (see (27)) that Ak is ^-bounded from 
above. Since for each x e P, x ?-= 0, Akx(t) =s 0 does not hold on any subinterval 
[ax, bx] a [a, b], the #fc-boundedness of Ak from below will be shown if to any 
function xeP, x 9-= 0 on any subinterval [aY, bY] <= [a, b] there exists a constant 
a(jc) > 0 such that 

(33) Akx(t) = a(x) $k(t), a^t^b. 

By (14), <Pk(t) = (Ak 1) (0, a S t ^ b. Hence, the equivalence between (31) and (32) 
implies that $k(t0) = 0 iff there exists an le {1, 2, ..., m} such that t0 = tt and 
k g r, - 1. Therefore (34) $k(t) > 0 for all te [a, b], t 4= ts, j = 1, 2, ..., m, 

as well as for, t = tt such that k *_ rt. 
If we show that any point tx with k ^ r- — 1, / = 1, 2, ..., m, there exists a one
sided limit 

lim Akx(t)l$k(t), lim Akx(t)j$k(t) 

and it is different from 0 (it is positive), then (33) is true with a positive constant <x(x) 
and the proof of (a) is complete. 

Suppose 1 ^ / < m, k ^ rg - 1, tt < t. By Taylor's formula for any a <L 3 ^ b 
there exists a T(s), tt < x(s) < t, such that 

dkG(t,s) ^dkG(tt,s) dk+iG(tlys) (t-tt) 
V dtk dt**1 if. 

griG(T(5),5) (t-tt)"-' 

dtTl iri - fc)?-
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and, in view of (31), 

ðkG(t,s) õ"G(т(s),s) (/-/,) П-k 

Õtk дŕ (r,-k)\ ' 
a<:s£b. 

Hence 
,. T(\\ dkG(t, s) ,.A\l{t\ dkG(t, s ) | , \ l 

= { K ' G ( f " s )
 X(s)ásl]\dr'G^S) Ids 

exists, and by (34), it is finite and different from zero. A similar result follows for 
1 < / <£ tti and for lim Akx(t)/$k(t). 

r e 
statement (b). By (a), there exists a R > 0 such that Ak$k § K$k. On the basis 

of Lemma 4, this implies that Q(Ak) > 0. 

Statement (c). The first part of this statement follows from Lemma 6, all assump
tions of which are satisfied. By (a), for each x e P, x & 0, there exist two constants 
P(x) = <x(x) > 0 such that 

(35) a(x)0k^Akx^P(x)0k. 

Hence, there are fjk ^ ock such that 

ctk$k = AkVk = 0k*k. 

Since A$k = Q(Ak)<€k, we have 

(36) 
Q(Ak)

 k~ в(Ak) 

and thus, with respect to (35), (36), we get that 

«(x)Q(Ak)^ ^ A^ ^ p(x)Q(Ak)r^ 

ßk 

which means that Ak is ^-positive . 

<** 

Statement (d). If Vk(t) = 0 were true on a subinterval of \a> &], then by (36) 
the same would hold for 4>*. But this is in contradiction with (34) which proves (d). 

On the basis of Lemma 8 we prove the following theorem. 

Theorem 3. Let k e {0, 1, . . . , n — 1} and let ^k be a nonnegative eigenfunction 
of the operator Ak. Then the functions 

8jG(t, s) 
(37) ад = Ж) í дtj Vk(s)ds, 

a = / = 6, j = 0, 1, ...,n - 1, 
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form an admissible system of functions with respect to G such that for the associated 
system of constants Kj9j = 0, 1, ..., n — 1, 

(38) Kk = g(Ak) 

is true. 
Proof. The functions Wj determined by (37) are all continuous and non-

negative in [a, b]. Clearlv ^k satisfies (37) foi j = k. 
First we show that the functions # , , j = 0, 1, ..., n — 1, form an admissible 

system of functions with respect to G. In agreement with (26), we define the ope
rator Aj : E -> E by 

(39) Ajx{t)=f 6 G ( t ; 5) I x(s) ds, a š t S b, x e E, j = 0, 1, ..., n - 1. 
dtJ 

By n4), (15), (37) and (39) we have to find such constants kj > 0,j = 0, 1, . . . , « - 1, 
that 

(40) * / 0 = ( ^ l ) ( 0 S ^ - 4 i * » ( 0 , a£t£b. 

But the proof of (40) runs in the same way as the proof of (33). Hence we can 
assert that the existence of ki > 0, j = 0, 1, ...,« — 1, with property (40) is 
guaranteed. 

Finally we prove (38). In virtue of (17), (16) and (37) 

Kk = m a x ( k f c f 0 , k k t l , . . . ,kjt , , , - i) = Q(Ak). 

On other hand, (29) gives an opposite inequality and hence, (38) is true. 

APPLICATION TO SECOND ORDER SYSTEMS 

The obtained results in Theorems 2, 3 will be applied to the vector boundary 
value problem of the second order 

(41) *"=f(f, * ,* ' ) , 

(42) x{a) = aXtV x(b) = aU2. 

Suppose that fe C([a, 6] x R2d, Rd) satisfies the Lipschitz condition 

(43) |f(t, u0, ut) - f ( t , v0, vt) | ^ L0 | u0 - v0 | + Lx \ u^ - vt \ 

where L0,L±eMd*d are nonnegative matrices. 
Let Gj be the Green function for the corresponding scalar homogeneous 

problem 
x" = 0, x(a) = 0, x(b) = 0. 
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Then 

Gi(r,s)= - J 

õGx(t, s) 

(Ь-t)(s-a) 

b-a 
(Ь-s)(t-a) 

дt 

b — a 

s -- a 

b 
9 

a 
s - b 
b 9 

a 

ašsštšb, 

ašt^sšb 

a _ t _ s <, b. 

Consider the functions 
b 

Фo(0 = J I Gi(í, s) | ds, Ф.(ř) = J дGiQ, s) 
Єt 

ds, a _ ( _ Ь. 

Similarly as the functions (14), they form an admissible system of functions with 
respect to G_. By [2], p. 2, 

(44) *o(0 = -j-(f-a)(fc-0> 

* i ( 0 = [(' - a)2 + (b - t)2-],[2(b - a)], fl__r__i. 

The constants c 0, ĉ  determined by (23), are 

i i 
c0 = max ^ 0 (0 = — (í> - a) , č t = max <ř_(0 = — (b - a). 

B_gt_Sf» 8 a _ f _ l -

Hence, similarly as in the proof of Corollary 1, we get that the associated system 
of constants K0, K_ satisfies 

(45) K0új(b-a)\ K^^(b-a). 

Comparing the inequalities (iv), (ix), (vi), (Xi) in [2], p. 3, with (16), we get that 

£o,o = -&{b - a)2, Z01 = £^±(b - a)2. 

* i . o - - - - - ( Ь - a ) . ^ i л - - т ( Ь - в ) 

and 

max(ko,o»^o,i) -*= ^ 3 _} (b - a)2, 
4V'3 

max(^i,o^i,0 = — (b - a). 

Hence, in view of (17), 
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(46) K0й^-ҡ

l-(Ь-a)2, R^Uъ-a). 
4,/3 * 

Because the estimates in (46) are better than the estimates in (45), on the basis 
of Theorem 2 we get condition (8) in [2], p. 1, i.e. if 

(47) Q[~Ţ-(Ь - ")% + f(Ь - a)Lij< 1, 

then the problem (41), (42) has a unique solution for any two vectors ax l9 al 2 e 
e #. . 

Let E, P have the same meaning as above. Consider, now, the operators 
A09At : £ - > £ , which according to (39) are defined as follows: 

b 

^o*(0= f|G1(f,s)|x(s)ds, a^t^b, 
a 

" I 8Gt(t, s) 
Л.x(0 = Í õt x(s)ds, fl| í g Ь. 

As Gx(ty s) :g 0 in [a, b~\ x [a, £], the eigenvalue problem 

A0x = Ax, X 4= 0 

• is equivalent to the problem 

x"= ~x% x(a) = 0, x(6) = 0, 

the eigenvalues of which are 

(b-a)2 

к = 2 _ 2 IЃK 
fc = l,2,..., 

and the corresponding eigenfunctions uniquely determined up to a multiplicative 
constant are 

kn(t — a) 
x*(0 = sin- fc = l,2,... 

b-a ' 

By Lemma 8, Q(A0) = Ai = (b — a)2jn2. The corresponding eigenfunction is 

n(t - a) 
«ířo(0 = sin-

By (33) and (x) in [2], pp. 2-3, 

* i (0 = 

b-a ' a<t<Ъ. 

.2 » 

— í 
(b-a)2ì 

í-^2 !#*)*• 
2 . я(í - a) л(b -2t + a) n(t - a) 

-sin- — + —— -^—-cos-
Ь — д b — a (б-«Y 6 - a ' 
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By Theorem 3, V0, #_ form an admissible system of functions with respect to G\ 
and for the associated system of constants ^ 0 , ^_ 

(b-a)2 

Ko = Q(Л0) = 
n2 

is true. Bv the inequalities (v), (x), (vii), (xii) in [2], p. 3, we get that 

j: _. b-a)2 - _ (b - a)2 

^ 0 , 0 2 9 K-0,1 — * > • 

n n 
= 4 4 
fci.o = — (b - a), £ M = —- (b - a). 

n n 
Hence 

K0 = - 7 (b - a)2, Ki = ±.(b-a). 
n n 

Using these results we get condition (6) in Theorem in [2], p. 1, i.e. 

(48) ( / - I (b - a)2L0 + - 1 (b - a)L. ) < 1, 

which is sufficient for the existence of a unique solution to (41), (42) for any two 
vectors altl9 alt2 e_Rd. 

Consider now the operator A1. By (30), (28) we obtain that the spectral radius 
Q(AX) of Ax satisfies 

(49) 1 ( 6 - a) - min *_(*) £ Q(AX) - max *t{t) - 1 ( 6 - a), 
H a__f__6 «_ir__6 -* 

where 3t is given by (44). By Lemma 8, there is a uniquely determined (up to 
a positive constant) positive eigenfunction #_ of At corresponding to Q(At). 
By (37), we define 

1 * 
#o(0 - —TZ 11 G-(<> s> I ^ l t o * . a£t£b. 

Q(At) a 

Then, by Theorem 3, ^0,?1 form an admissible system of functions whereby 
for the associated system of constants K0, K\ we have KJ = Q(AX). The inequality 
(49) can be improved. By the inequality (xi) in [2], p. 3, as well as by the fact that 

min #_(f) = -T- (b - a) > 0, Lemma 2 implies that Q(AX) ___ -r- (b - a). By (44), 

#! cannot be an eigenfunction of AT_. Hence in (xi) the sign of equality cannot 

hold. Thus the difference — (6 - a)$t - A& = y _S 0, where yeP9y * 0. 

By Lemma 7, Q(AX) < y (* ~ «)• Thus 
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(50) l ( f c - a ) ^ <?(,?.) <y(&-<0 

and we can state the result: 
There exists a constant KJ > 0 such that 

(51) Q(KtL0 + c U 1 ) L 1 ) < l 

is a sufficient condition for the existence of a unique solution to (41), (42) for any 
two vectors altl, alt2 e Rd-

The condition (51) is not contained among conditions (6), (7), (8) of Theorem 
in [2], p. 1. 
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