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ON ASSOCIATIVE DEVELOPABLE SURFACES 
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Abstract. Under some regularity assumptions all developable surfaces of associative binary operation 
on the positive real line are found. 
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Our chief concern in this paper is to find, under some regularity assumptions, 
which associative operations z = F(x, y) on the positive real line have developable 
surfaces. 

Let F be a two-place function from [0, oo) x [0, co) into [0, oo) satisfying the 
following conditions for all x, y and z in [0, co): 

(i) F(x, 0) = x; 
(ii) Fis reducible; 

(iii) F(x,y) = F(y,x); 
(iw) F(x,F(y,z)) = F(F(x,v),z); 
(v) Fis continuous. 

This class of topological semigroups have been characterized in [1] where the 
following representation is showed: there exist a continuous strictly increasing 
function/from [0, oo) into [0, oo) with/(0) = 0 such that 

(1) F(x,y)=f-\f(x)+f(y)), 

for all x, y in [0, oo). The function fis called an additive generator of F and it is 
unique up to a multiplicative constant. Our aim is to find functions of type (1) 
which have developable surfaces, i.e., where the Gauss curvature vanishes. 

Theorem. Let F be a binary operation on [0, oo) representable in the form (1) 
where the additive generator fis such thatf andf" exist and are continuous functions 
on (0, co) withfn(x) 4= 0 for all x > 0. Then the surface z = F(x, y) is developable 
if and only if there exists a positive constant K such that 

(2) F(x,y) = (xK + yK)1<K. 
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Proof. It is immediate to show that the function given by (2) satisfies all the 
conditions required in the theorem and has a developable surface. Conversely, 
let us assume that Fas given by (1) has a developable surface. In view of the con
ditions of differentiability assumed on the additive generatorfit follows that Fhas 
continuous partial derivatives of order 2 which are given by the following ex
pressions 

d2F(x, y) f"(x) f'(x)2f"(F(x, y)) 
(2) 

(3) 

(4) 

ÕX2 f(F(x,y)) f(F(x,y))3 

ð2F(x, y) f"(y) f'(y)2f"(F(x, y)) 
ðy2 f (F(x, y)) f'(F(x, y))3 

ð2F(,y) -f'(x)f'(y)f"(F(x,y)) 
Sxdy f'(F(x,y)f 

If F have a developable surface then its Gauss curvature must be zero, i.e. 

tK\ d2p(x'y) d2p^ y) - fd2F(x,y)\2_ n 
l ) dx2 " dy2 V dxdy J'"' 
for all JC, y. Substitution of (2), (3) and (4) in (5) yields, after appropiate simplifica
tions : 

f"ix)f"(y)f'(F(x,y))2 -f"(x)f'(y)2f"(F(x,y)) - f"(y)f'(x)2f"(F(x,y)) = 0 

or, equivalently, 
(6) /'(F(x, y))2 _ £___ + l_xf 

f"(F(x,y)) f"(y) f"(x)' 

Define the function g from (0, oo) into R by 

TcrW 
g(z) = 

'/"(/" Ҷ-)) 
Since f*1,/' andf" are assumed to be continuous andf/7 does not vanish in any 
point of (0, oo) the function g is continuous and, moreover, using (6) we can show 
the following: 

g W + g ( 3 > ) = / ' ( / " 1 ( X ) ) 2 + / , ( / " 1 ( > ' ) ) 2 = g W g W f"(r\x)) + /"(/-'(.)) 
• = f'(F(r\x),r\y)))2 _ f'(r\x + y))2 _ + 

f"(F(f-\x), r\y))) f"(rl(x + y)) 

i.e. g is a continuous solution of Cauchy functional equation (see [1]) and con
sequently g must be of the form 

g(z) = c . Z, 
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where c is an arbitrary constant. Thus 

,'(/~W 

and this yields the ordinary differential equation 

(7) f(x)2 = cf"(x).f(x). 

Obviously c + 0 because /cannot be constant. If c == 1 the general solution of (7) 
is given by f(x) = eAx+B, which cannot satisfy the requirement /(0) = 0, or 
f(x) = 0. Thus in the case c =t= 0, 1 we obtain that the solution of (7) must verify 

-^ i c - 1 
/(JC) c = ( A x + 5 ) . 

c 
c - 1 

Since/(0) = 0 we can conclude that necessarily B = 0 and > 0. Whence 
K = —C—r > 0 a n d / ( x ) 

c — 1 -(Я-
i.e., 

F ( x j ) = / " 1 ( / ( x ) +/(y)) = (** + j ^ ) 1 ^ . 

The theorem is proved. 
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