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A REMARK TO A MULTIPOINT BOUNDARY 
VALUE PROBLEM 

VALTER SEDA 

(Received January 8, 1986) 

d'G 
Abstract. For each p -= 0, 1,..., n — 1, some properties of the p-th derivative - — - of the 

Green function G for a scalar multipoint boundary value problem are established. By meant 
of them the d^p-positivity of a positive linear operator Ap is proved. 

Key words. Green function, multipoint boundary value problem, positive linear operator. 
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In the paper some properties of the Green function G = G(t9 s) for the scalar 
De la Valine Poussin problem are investigated which involve that a positive linear 

epG(t9 s) 
etp 

p = 0,1,..., n - 1. This fact has important consequences for the existence theory 
on nonlinear vector multipoint boundary value problem as it*is shown in [4]. 

Consider the Green function G = G(t9 s)9 a ^ t9 s ^ b9 for the scalar multipoint 
boundary value problem 

(1) JC("> = 0, 

ь 
Operator ApX(t) = j x(s) ds is ^-positive where #p(/) = A9(\) (t)9 

(2) x(i-1>(/i) = 0, / = l,...,ry, j= l,2,...,m, 

where n g 2, 2 ^ m ^ n9 1 ^ r, are natural numbers such that rt + r2 + ... + 
+ rm = n9 and -oo < a = tx < ... < tm = b < oo are real numbers. 

(t —s)*~l 

Since the Cauchy function u = u(t9 s) for (1) has the form u(tf s) = ~ --— 
(n - 1)! 

3 '- l t t( f^ = (^rJ

 9 ^ U ^ , i = i , 2 , . . . , n9 by [1], p. 137, and hence 
etJ 

(compare with [3], p. 376) 
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(3) G(t, s) = -

* ri 

t ^ 5 , t k ^ S ^ t k + l , 

- I ~°W (' iV ' ' = s(fc ='-.-.'»--). i_- jk- i . i_ .__i {n — j)i 

where vjX, I — 1,2, ...,m, j = 1 , . . . , r_, is the solution of (1) satisfying the con­
ditions 

vj\"l\tk) = 0, for each k # 1, i = l , . . . , r* , k = 1,2, ...,m, 
vjl^Vi) = <5./.> i = 15 •••- r/. 5j£ is the delta Kronecker symbol. 
Further we shall consider the Banach space E = C(\a, b\, R) with the sup-norm 

|| . ||, partially ordered by the relation JC ^ y iff x(t) ___ y(i) for all f e \a, b\. Then 
(_fT, g ) is an ordered Banach space with positive cone P = {xeE: x(t) ^ 0, 
a ___ t _§_ 6}. P is normal and generating (compare with [4]). 

For each p e {0, 1 , . . . , n — 1} let us define the operator Ap : E -+ E by 

d'Gtf, s) 
(4) V(0 = í õtp 

x(s)ds, aйtйb,xєE. 

Ap is a positive, completely continuous linear operator. Then the function 

(5) *,(<) = Í 
* ' ôpG(t, s) 

дt" 
às, aśtšb, 

belongs to P and the operator Ap is #p-bounded from above, since on basis of (4) 
for each xeP 

(6) Apx(t) g || x || <Pp(t), a^t^b. 

The most important properties of the Green function G have been summoned 
Up in Lemma 1, [3], p. 375. For convenience we mention here the following ones: 

dl~xG 
1. — — - , i =• 1,..., n — 1, is continuous in \a, b\ x [a, b\. 

2. is continuous in the triangles a^t^s^b, a^s^t^b. Further, 
din'1 

d^'G^s) .. d'-'G^s) , lim 
f-м+ őí" 

— lim 
f - > j - ðt n - 1 

= 1 

for each s,a < s < b. 
3. For each s, a < s < b, the function G(., s) satisfies (1) in \a9 s) u (s, b\ and 

the boundary conditions (2). 
4. The sign of G is determined by the inequality 

G(t, s) (t - *_)"(/ - t2)
r2... (t - tj'" _> 0, a £ f, 5 ^ i 

and 

G(t,s) * 0 for/* < / < /*+_, a < s < b9 k = l , . . . , m - 1. 
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The meaning of the Green function is given by the statement 
5. IffeE, then the function 

y(t) = jG(f,s)/(s)ds, a^t^b, 
a 

is the unique solution of the problem (2), y(n) = f(t). 
Further properties of the function G are given in the following lemma. 

Lemma 1. Let t0 e [a, 5], s0 e [a, b\ p e {0, 1,..., n - 1}. Then the following 
statements are true. 

1. 

(7) dPG{t°p'
 S) = 0 for all s e [a, fc], 

iff there is an I e {1, 2,..., m) such that 

(8) /0 = tx and 0 = p ^ r, - 1. 

2. If 

( 9 ) dpG(t0,s) = Q ^ aU s .n a s u b i n t e r v a l [ f l l f j j c [a, b"], 
dtp 

then for each k, k = 1, 2,..., m - 1, swcA f/idf (th, tk+1) n (a1? i x ) ^ 0 and 
*o F (**> h + i) 

dPG{*°p'
S) = 0 /0r<. ./se[ . t , . t + 1 ] . 

or 

It"to G ('*, >*+i), (fli, &i) n (( t, r0) # 0 ((*..,&.) n (f0, ( t + 1 ) # 0), tftoi 

5pG(r0,s) őí ' 
= 0 foт all s,tkйsй t0, 

(8,G^P'
S) =0 for alls, t0^s^tk^. 

dpG(t s ) 
3 if 1_°_ --. o/or a// f/rom a subinterval [a2, 62] c fa *]» *hen in case 

dtp 

(a2, b2) n (a, s0) # 0 (w case (a2, 62) n (s0, 6) # 0) 

dpG(t,s0) = ( ) f o r a l l t a £ t £ S 

dtp 

( ™ l ^ = 0forallt,so*t*by 
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4. If m = 2 and t0 e (a, b), then there is no subinterval [ai9 bx] c. [a, ti] such 
that (9) is true. 

Proof. 1. If (8) is true, then (7) holds by the properties 3 and 1 of the Green 
function. Conversely, if (7) is valid, then for all functions y e Cn(\a, ti]9 R) satisfying 
(2) we must have yip}(t0) = 0 which is only so possible when (8) is true. To show 
the last implication we construct in case that (8) is not true a function y e 
e Cn([a, ti]9 R) satisfying (2) for which yip)(t0) # 0. To that aim consider the 
function 

« 
giW = - V e - 'i)r ,c - '*)'2 - c - '"•)"•*, ast = b. 

Since rx + r2 + . . . + rm = n, this function satisfies the boundary value problem 
/ ° = 1, (2). For each /, / = 1, 2 , . . . . m, 

gH'i) = £ (r')[.(t- ttfY'-'WKt-..)" . . . 0 - t.-i)P,"x 

xO-fJ+1)r , t'...(t-tm)""] ( s )(<,) = 
(10) = ri\(t, - /.)"... o, - /._.)"-'('. - fI+i)r,+1 - (u - tj- -* o. 

Two cases may happen. Either g[p)(t0) # 0 and then the proof is done or gip)('o) = 

= 0. In this case we multiply gx by the function 

*a(0 = fo(»o) + ~r~(t - t0) + ... + --£-£--.(.• - t0)', a£t£b, 
1 I pi 

where g2(f0), g2('o)>..., g(
2
p)(t0) will be suitably chosen. We have 

(gi • gi)(p)0o) - t, Q g?->(io) g2
s)(r0). 

If all values g^) = gj(r0) = ... = g(/>(r0) = 0, then t0 = tx for an /, le 
e {1, 2 , . . . , m} and, in view of (10), 0 ^ /? ^ r, - 1, which is (8) and thus, it 
cannot happen. Similarly we come to contradiction with our assumption, when 
p = 0. Hence we can suppose that p ^ 1 and that in the sequence gi(t0), 
gi(*o)> •••»g(iF)(̂ o) at least one term is different from zero, say gfc~k)(t0) # 0. 

Then we choose g2(t) = g2 y° ; (* - / 0 ) \ with g(
2*>(t0) # 0 and hence (gx . £2)

(p> 

(t0) = K J gfrk\t0) g$\t0) # 0. We have found a polynomial y of degree 

n + p at most satisfying (2) and such that y^fo) & 0. This completes the proof 
that (7) and (8) are equivalent each to other. 

2. and 3. By (3), —- °* is an analytic function of the variable s in any interval 
dt* 
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[t*>t* + i]> k = l , . . . ,m — 1, such that t0 $ (tk, tk+_) as well as in the intervals 
\tk, /0] and [t0, / k + 1 ] , when t0 e (tk, tk+l). 

Similarly (3) implied that ' ° is analytic in [a, s0l when a < s0 ___ b 
dtp 

as well as in [s0, b] if a _g s0 < b. By the uniqueness theorem for analytic functions, 
the statements 2 and 3 follow. 

4. If m = 2, then there is a k e {1 , . . . , n — 1} such that the conditions (2) have 
the form 

(2') x(i-l)(a) = 0, \ ' = l,...,k, x^-'Kb) = 0 , / = l,...,n - k. 

Suppose that (9) is true. By the statement 2 of this lemma either 

(11) SpG(t0,s) = all s, a < 5 < f0 

dpG(t s) 
or ~— = 0 for all s, t0 <_ s ___ b. Consider only the former case. The latter 

dtp 

* 
would be proceeded in a similar way. By (3), (11) means the equality ]T v^/Ato) x 

(a — s)n~J 

x _ — ^ = 0 in [a, f0], and hence, (11) is equivalent to 

02) ^f)(to) = 0, y = 1 it-

Consider the functions 

(13) uj(t) = (t - a y - 1 ^ - ft)"-', a g t <_ b, j -= 1,.. . , it. 

By the definition, vJt are nontrivial solutions of (1) satisfying the conditions 
# " 1}(*) = 0, / = 1,... , n - fc, ©)i"1}(fl) = du, i = l , . . . , fc. This implies that 
there exist constants ckt0, ck__tl, ck_lt0,..., citk_l9 c_%k_2,..., c l t 0 such that 

f*i(0 = ckt0uk(t), ckt0-~0 
»*-i,i(0 = «*-i(0[c*-i,i(' - a) + c k . l t 0 ] = 

04) = ck_ltluk(t) + c^^oW^^O, ck - 1 .0 * 0 

*>*-2,l(0 = Ck_2t2Uk(t) + CJk-2,1Wfc_,(0 + C f c_2 ,0«*-2(0, C k - 2 f 0 * 0 

»l.l(0 = Cn.iU^O + c1,___«__i(.') + c1>t_3ulk_2(0 + ... + cuou1(t), 
c1(0 # 0 , a _ / _ i . 

By (14), (12) are equivalent to the relations 

(15) «jp)ao) = 0, j=l,...,fc. 

(13) implies that uk(t0) -* 0, u%~l)(t0) * 0 and hence/? # 0, p # n - 1. Similarly 
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the degree of uk_x(t),..., ut(t), respectively, being n - 2 , . . . , n - k, respectively, 
p must be different from n - 2 , . . . , n - k. Since ux(t) = (/ - b)n~k, p ^ n -
— k — \, ...,p ^ \. We have found that there is no t0 e (4, b) for which (15) are 
true and the statement is completely proved. 

Theorem 1. Let p e {0, 1,.. . , n - 1} and let xe P, x 7- 0 in [a, b]. Then 
1. ApX(t) > 0 in (a, b) if m = 2; 
2. -4p:x:(/) = 0 cannot hold in any subinterval [ax, bx] <-= [a, b]for m > 2. 
Proof. The first statement follows from the statement 4 of Lemma 1 and 

epG(t, s) 
nonegativity of the functions x(t), 

õt" 
To prove the second statement let us suppose that there is an interval [a2, b2] c 

<=. [a, b] in which Apx(t) = 0. As the functions x(s), ' 
õtp are nonnegative, 

it follows that for each t0 e [a2, b2] supp x(s) c Sto = is e [a, b] : L^iii - ol. 

epG(t s) Hence there is an interval [at, bt] such that = 0 for each t0 e [a2, b2]9 
etp 

s e [ax, bt]. On basis of the statements 2 and 3 of Lemma 1 there exists an interval 
[tk> tk+1]9 k 6 {1, . . . , n - 1}, such that either 

(iб) = 0 for tk ѓ a й tk+í, a g s ś t ѓ b, 
epG(t,s) _ 

etp 

epG(t s) 
or ^-^- = 0 for tk ^ s g tk+1, a ^ t ^ s g b. Consider only the case (16). 

Btp 

The other one can be investigated in a similar way. 
Let us choose a sufficiently small e > 0. Two cases may happen. Either 1. k > 1 

or 2. A: = 1. We shall consider only the first case, the second one would be proceeded 
in a similar way înstead of [/*,** + e] we would consider [tk+1 — e, tk+1]). 
(16) implies that for each function y e Cn([a9 b]9 R) satisfying the boundary condi­
tions (2) and such that suppy 0 c [tk, tk + e] 

l/ ř )«)lší ôpG(t, s) 
õt" 

\yw(s)\ds = *j' ôpG(t, s) 

дtp 
|/">(s)|ds = 0, 

for all t9 tk + e ^ t ^ b9 and hence, 

(17) f»(t) = 0 for tk + e £ / ^ b. 

Now we shall construct a function y e Cn([a9 b]9 R) with supp/10 c: [tk9 tk + e]9 

satisfying (2) and for which (17) is not true. Let 
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(18) y(t) = 

(t-tlr...(t-tkr, tyůtštk, 

m + m(,-,k) + ... + y < - ' ^ » - l 

tk = t = tk + 6, 

(í - í*+irt i - o - w-p^t), tk + E = . á íM, 

1! 
í ( í - s ) " " 1 w л . 

where the polynomial Px(t) is such that the degree of the polynomial 
(t - h+iYk+ * • • • (t - O r m- Pi (0 1s w - - > otherwise Pj (0 can be arbitrary and h(t) = 
= y(n)(0> h = ' -f- h + £> i s continuous in [fk, t* + e] and h(f*) = h(tk + e) = 0. 
The function A(0 will be determined in such a way that y e C""1^, *]> -R)- Then 

/»)(o = < 
0, tx й t ѓ h 
h(t), tк£tйtк + л 
0, tк + єйt йtm 

and hence, y e Cn([a, b~\, R)> suppj>(,,) c [/*, tk + e] and >> satisfies the boundary 
conditions (2). Since y(t) is a polynomial of degree n - 1 in [tk + e, fm], it cannot 
satisfy (17) and this contradiction shows that the second statement of Theorem 1 
is true. 

In view of the definition (18) it suffices to check the continuity of y(t) and that 
of its derivatives up to order n — 1 at the points tk, tk + e. By the uniqueness 
theorem for initial value problem, yU)(t),j = 0, 1,...,»- 1, exist and are,conti­
nuous at the point tk. The same will happen at tk + s, if h satisfies 

T{W~SГ2'J Ks)ds = y«\tк + e) - [,<»(.*) + 
(n-í-j)l 

(19) + 
„u+n Ю „(»-i), 

e + 
ю 

cn-l-j ], j = 0 , l , . . . , n - l . 
1! " (n-l-j)l 

Denote the right-hand side of (19) as aj9 j = 0, 1,..., n — 1. If we put 

(20) h(t) = (tk + e - 0 (t - tk)g[t), tk^t^tk + e, 

then the condition (19) has the form 

(21) "j (tk + e - s)"-J(s - h)g(s)ds = fl/n - 1 - ; ) ! , ; = 0,1, ..., n - 1. 
tk 

Since the functions 

122) yj(t) = (rk + e - 0 n "V - t*), t* ̂  t ^ t* + e,j = 0, 1,..., n - 1, 

are linearly independent in [**, h + e], by E. Schmidt's orthogonalization process 
an orthonormal sequence {XJ(*)}JZO in the real Hilbert space L2([h> h + e]) can 
be constructed such that 

127 



v. SEDA 

J 

(23) x / 0 = I djtiyi(t)9 tk^t^tk + e9j = 0,1, ...9n - 1, 
J-=0 

with uniquely determined constants djl9 j9 / = 0, 1, . . . ,« — 1 and d, tj # 0, 
f = 0, 1, ...,;i — 1. If (., .) is the scalar product in L2([tk9 tk 4- e])9 then the 
conditions (21) mean the relations 

(2V) (yj,g) = aj(n - 1 -J ) ! , f = 0, V . . . , * - 1, 

which on basis of (22), (23) are equivalent to 

(24) (xj9 g) = £ djja^n - 1 - /)! = bj9 j = 0, 1, ..., n - 1. 
/=-o 

The function 

g(0 = I ixj, g)*j(t) « i V / o ="i;1£ ML^(0 = 
j=o j=-o j=o i = o 

(25) = £ ( I &A.)^0. ' ^ ' ^ * + «. 

satisfies (24) as well as (21). Thus, in view of (20), (25), there is a polynomial h(t) 
such that h(tk) = h(tk 4- e) = 0 which satisfies (19) and the proof is complete. 

Corollary. If p e {0, 1,... , n - 1} awi the function <PP is given by (5), /fte/t fAe 
operator Ap is <Pp-positive. 

Proof. By (6), Ap is ^-bounded from above. According to [2], p. 59, it will be 
^-bounded from below if to any function xeP9 x ?-= 0, there exists a constant 
a = a(x) > 0 such that 

(26) A2
px(t) = OL(X) $p(t)9 a£t^b9 

where A2 means the second iterate of Ap. By statement 2 of Theorem 1, A.px(0 = 0 
cannot hold in any subinterval [al9 bx] c [a9 b] and hence, putting Ap:c(0 = y(t), 
a ^ / ^ b9 we get that >> eP, j (0 ^ 0 on any subinterval [ai9 bx] cz [a9 b] and 
(26) reduces to the inequality 

(27) Apy(t) £ z(x) 4>p(t)9 a^t^b. 

Thus the #p-boundedness of Ap from below will be shown if to any function yeP, 
y{t) ^ 0 on any subinterval [ax, bx] c [a9 b] there exists a constant a > 0 such 
that (27) is true. This has been proved in Lemma 8 in [4]. Then Theorem 2.2 in [2], 
p. 62, completes the proof of the corollary. 
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