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arG
Abstract. For each p =0, 1, ..., n — 1, some properties of the p-th derivative rr of the
Green function G for a scalar multipoint boundary value problem are established. By means
of them the @,-positivity of a positive linear operator 4, is proved.
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In the paper some properties of the Green function G = G(t, s) for the scalar
De la Vallée Poussin problem are investigated which involve that a positive linear

operator A,x(t) = J m

x(s) ds is ®,-positive where @ (1) = 4,(1) (1),

p=0,1,...,n — 1. This fact has important consequences for the existence theory
on nonlinear vector multipoint boundary value problem as it'is shown in [4]

Consider the Green function G = G(¢, 5), a < t, s < b, for the scalar multipoint
boundary value problem

(N x™ =0,
) =) =0, i=1.,rj=142..m
where n 2 2,2 < m < n, 1 < r; are natural numbers such that ry + 7, + ... +
+r,,,..n,and —o<a=t <..<t,=b< o are real numbers.
—r-t
Since the Cauchy function u = u(t, s) for (1) has the form u(t, s) = -%;—3)1—);-

" tu(t, s) _ (- )
vt (=)’
(compare with [3], p. 376)

and hence

astssbj=12..nby[l] p 137,
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3) G(t,s) =4'7" 11 125, £5S tiyys

Z Z,,()(t’ , t<stk=1,..,m—1),

where v, I=1,2,...,m,j=1,...,r,is the solution of (1) satisfying the con-
ditions

off () = 0,foreachk £ 1,i=1,...,n,k=12,...,m,

ofi () = 6;, i = 1,...,r. ; is the delta Kronecker symbol.

Further we shall consider the Banach space E = C([a, ], R) with the sup-norm
I . |I, partially ordered by the relation x < y iff x(f) < y(¢) for all ¢ € [, b]. Then
(E, =) is an ordered Banach space with positive cone P = {xeE: x(f) = 0,
a £t £ b}. Pis normal and generating (compare with [4]).

For each pe {0, 1, ..., n — 1} let us define the operator 4, : E — E by

b P,
4@ Ax(t) = | a—‘;(tii)

a
A, is a positive, completely continuous linear operator. Then the function

®) &,1) = I a"c;(tt ,8)

x(s) ds, alt< b xeE.

ds, ast=sh,

belongs to P and the operator 4, is #,-bounded from above, since on basis of (4)
for each xe P

© Ax(®) S | x| @8), a=t=sbh

The most important properties of the Green function G have been summoned
up in Lemma 1, [3], p. 375. For convenience we mention here the following ones:

"G
1. S i =1,...,n — 1, is continuous in [a, b] x [a, b].
"G . . . .
2. — =, iscontinuous in the trianglesga < t £ s £ b,a £ s £t £ b. Further,
n—1 n—1
im 0 G(i 5) — lim " G(t, s) -1
t-s+ 0" t-s-  Ot" !

for each s,a < s < b.
3. For each s,a < s < b, the function G(., s) satisfies (1) in [a, s) v (s, b] and
the boundary conditions (2).
4. The sign of G is determined by the inequality

G, ) — )" —t)*...t -t )" 20, asts=<b
and N

G(t,5) #0 forty <t < tyyy, a<s<bk=1....,m-1.
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MULTIPOINT BOUNDARY VALUE PROBLEM

The meaning of the Green function is given by the statement
5. If fe E, then the function

b
y(t) = [G(t,5) f(s)ds, a<t=b,

is the unique solution of the problem (2), y™ = f(f).
Further properties of the function G are given in the following lemma.

Lemma 1. Let toe[a, b], soe[a,b], pe{0,1,...,n — 1}. Then the following
statements are true.
1.

% 0%G(ty, s) -

Py 0 forall se[a,b],
t

iff there is an 1€ {1, 2, ..., m} such that

(8) to =1 and O0Zp=<r -1
2. If
P,
(&) ACUT 0  for all s in a subinterval [a,, b,] = [a, b],

ot?

then for each k, k =1,2,...,m — 1, such that (t;, t;+,) n(a,,b,) # 0 and
to & (Ths txs 1)

d%G(t,, 5)
22000 o orall se(t,,t .
P S [tes 1]
If tO € (tk’ tk+l)’ (al’ bl) N (tka to) # 9 ((al ’ bl) N (th tk+1) # 0), then
AP
.O__G_(t?’_s)=0 foralls,tySs=t,,
ot?
. P,
(E.G_(t‘!iﬂ =0 forall s,tySs s tun)-
ot?
9%G(1, so) i j
3. If o = 0 for all t from a subinterval [a,, b,] < [a, b], then in case
(a2, by) N (a, 50) # O (in case (ay, by) N (50, b) # 9)
14
M:O forallt,ast<s,,
or?
P,
(6_____G(t, So) _ Oforallt,soSst= b) .
or’
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V. SEDA

4.If m = 2 and t,€(a, b), then there is no subinterval [a,,b,] < [a, b] such
that (9) is true.

Proof. 1. If (8) is true, then (7) holds by the properties 3 and 1 of the Green
function. Conversely, if (7) is valid, then for all functions y € C"([a, b], R) satisfying
(2) we must have y(#)(¢,) = 0 which is only so possible when (8) is true. To show
the last implication we construct in case that (8) is not true a function y €
€ C'([a, b], R) satisfying (2) for which yP(t,) # 0. To that aim consider the
function

) =T (= 1) = )~ 1) aStSh

Since ry + r, + ... + r, = n, this function satisfies the boundary value problem
y™ =1,(2). Foreachl,1=1,2,...,m,

ri

gy = Y (:‘) [ — )T 2@ =)™ (= )" X

s=0
X(t =ty )" (= 1™ (1) =
(10) =nlty = t)" (=4 )" (= )" (=t # O

Two cases may happen. Either g{?(#,) # 0 and then the proof is done or g{)(t,) =
= 0. In this case we multiply g, by the function

g2(%0)

g2(1) = g,(t0) + 11

(P)
(t—to) + ... +%§:L)(t—to)’, ast<h,
where g,(%o), g5(to), ..., g (t,) will be suitably chosen. We have

P
(81 - 82)P(t0) = ; (f) g7 (1) 25°(10).
If all values g,(to) = gi(to) = ... = g¥(to) =0, then 1, =1¢, for an I, le
€{l,2,...,m} and, in view of (10), 0 < p < r; — 1, which is (8) and thus, it
cannot happen. Similarly we come to contradiction with our assumption, when
p = 0. Hence we can suppose that p = 1 and that in the sequence g,(¢o),
g1(to), ---, 8P(to) at least one term is different from zero, say g® *(1,) # 0.

®) _
Then we choose g() = 220 ¢ _ 131, with g¥(to) # 0 and hence (g, . £,)®

k!
(to) = (Z) g7 1(t0) g(t0) # 0. We have found a polynomial y of degree

n + p at most satisfying (2) and such that yP(z;) # 0. This completes the proof
that (7) and (8) are equivalent each to other.

al’
2. and 3. By (3), —%(—t—:’—s—)- is an analytic function of the variable s in any interval
t
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MULTIPOINT BOUNDARY VALUE PROBLEM

[t te+1]s K =1,...,m — 1, such that t, ¢ (%, t+,) as well as in the intervals
[ t0] and [to, ti1 1], when 25 € (&, tis+)-
» ;
Similarly (3) implie} that a_Ci;il;_sQ is analytic in [a, s,] when a < s, < b
t

as well asin [so, b] ifa < 5, < b. By the uniqueness theorem for analytic functions,
the statements 2 and 3 follow.

4. If m = 2, then there is a k € {1, ..., n — 1} such that the conditions (2) have
the form

N

2) x4~ Y(a) = 0, i=1,...,kxt"Y0b)=0i=1,..,n— k.

Suppose that (9) is true. By the statement 2 of this lemma either

P
(11) E—G—(E’Ls—)-=0 foralls,a <s <t
or?
P,
r F6lto, ) _ 0 forall s, t, < s < b. Consider only the former case. The latter

o
k
would be proceeded in a similar way. By (3), (11) means the equality Y v$?(t,) x
i=1
. La—s)"

= 0in [a, t,], and hence, (11) is equivalent to

(n —1)'
(12) v(”’(to) =0, j=1L..k
Consider the functions
(13) u(t) =( —ay'(r - bk, astsb j=1,..,k.

By the definition, v;, are nontrivial solutions of (1) satisfying the conditions
i) =0, i=1,...,n—k, vfi"a) =6, i=1,...,k. This implies that
there exist constants Ck,00 Ck_1,1> Ck—1,05+++»C1,k_1sC1,k_2s+-+» C1,0 Such that
U1 () = ¢, othi(D), €0 #0
Oe_g,1(0) = we_y(0) [x_1,1(t — @) + ch_y,0] =
(14) = Cp_1,1U(1) + Ck_1, ot _1 (1), Cx_1.0 #0
Uk_2,1(0) = co_z,2t(0) + co_z, 181 () + cx_2,04k_2(0), Ck_2,0 # 0

.............................................................

v,1(8) = cpu_1(D) + cq k2t _1(O) + ¢y k3t _2(t) + ... + ¢y, 0uy(0),
c,0#70,ast<b.

By (14), (12) are equivalent to the relations
(15) uPlt)) =0, j=1,..,k
(13) implies that u,(t,) # 0, ul""(¢,) # 0 and hence p # 0, p # n — 1. Similarly
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V. SEDA

the degree of u;_4(?), ..., u;(t), respectively, being n — 2, ..., n — k, respectively,
p must be different from n — 2,...,n — k. Since u;(1) = (t = b)"%, p#n —
—k —1,...,p # 1. We have found that there is no t, € (4, b) for which (15) are
true and the statement is completely proved.

Theorem 1. Let pe {0, 1,...,n — 1} and let x€ P, x # 0 in [a, b]. Then

1. Ax(8) > 0in (a,b) if m = 2;

2. A,x(r) = 0 cannot hold in any subinterval [a,, b,] < [a, b] for m > 2.
Proof. The first statement follows from the statement 4 of Lemma 1 and
6"G(t s)

nonegativity of the functions x(7), Py
t

To prove the second statement let us suppose that there is an interval [a,, b,] <

P,
< [a, b] in which A, x(1) = 0. As the functions x(s), oG, ¢ G(tp’ )
t

are nonnegative,

or?
= 0 for each t, € [a,, b],

. apG(to , S)
it follows that for each ¢, € [a;, b,] supp x(s) = S,, ={se[a,b]: ——2-= = 0.
P
Hence there is an interval [a,, b,] such that _Q%_,s_)
t

s€[a,, b;]. On basis of the statements 2 and 3 of Lemma 1 there exists an interval
[, tes1]s k€ {1,...,n — 1}, such that either

P
(16) —a—Ga—(t%s—)EO for y <Sasti,a<s<t<h,
6 %6, 5) = 0 for L, £5sStyy,a=St=s=<b Consider only the case (16).

o
The other one can be investigated in a similar way.

Let us choose a sufficiently small ¢ > 0. Two cases may happen. Either 1. k > 1
or2. k = 1. We shall consider only the first case, the second one would be proceeded
in a similar way (instead of [#, #, + €] we would consider [f;+; — & tar]-
(16) implies that for each function y € C*([a, b], R) satisfying the boundary condi-
tions (2) and such that supp y'” < [#, # + €]

- . b txte P .
Iy("(t)l j' B G(t 5) [ (")(s) |ds = I 2%%& |y(")(s) |ds =0,
a T
for all t,t, + ¢ £ ¢t £ b, and hence,
an Ty =0 forty + e <t <b.

Now we shall construct a function y € C%([a, b], R) with supp y™ < [h te + s]
satisfying (2) and for which (17) is not true. Let
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t=—t) e —t)™ St
(n 1)
R L e e
18  yn = (t - s),. 1
I———-—T),—h(s)ds, LSES 4+,
(t"tk“)'kn---(t"‘tm)rmpl(t), h+estst,,

where the polynomial P;y(f) is such that the degree of the polynomial
(t =ty )™ (t — t,)™ Py() isn — 1, otherwise Py(f) can be arbitrary and h(f) =
=y™(), t, £t £ 1, + &, is continuous in [, t, + €] and k(1) = h(t, + &) = 0.
The function A(f) will be determined in such a way that y e C""!([a, 4], R). Then

0, (LSt
YO = b)), LSt +e
0, t,+est=st,

and hence, y € C"([a, b], R), supp y™ < [#, # + €] and y satisfies the boundary
conditions (2). Since y(¢) is a polynomial of degree n — 1 in [#, + ¢, t,,], it cannot
satisfy (17) and this contradiction shows that the second statement of Theorem 1
is true.

In view of the definition (18) it suffices to check the continuity of y(¢) and that
of its derivatives up to order n — 1 at the points #, #, + ¢. By the uniqueness
theorem for initial value problem, yUX¢), j = 0,1, ..., n — 1, exist and are, conti-
nuous at the point #;. The same will happen at ¢, + &, if & satisfies

tite (tk 46— s)n—i-j

'j Ty he)ds = Ot + ) = V() +
(Jj+1) (u—1)
y (t) (t) enm1-i . -
(19) i (n-l-—_])' 1. Jj=01,..,n—1.
Denote the right-hand side of (19) as q;, j = 0, 1 ., n — 1. If we put
(20) ht) =t + e — 1) (t — 1) g), LSt + g

then the condition (19) has the form

fhte

@) [+e—9)""(s—tegE)ds=an—-1-j)!, j=01,...,n—1

Tk
Since the functions ‘
22) y) = +e-0"7t—-1), H<t24+6=01..,n-1,

are linearly independent in [#:, + e] by E. Schmidt’s orthogonalization process
an orthonormal sequence {x;(f)};/-{ in the real Hilbert space L’([t., % + ¢]) can
be constructed such that
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V. SEDA

Jj
(23) x_,(t)=2d_,,,y,(t), f,‘§t§lk+8,j=0, 1,..., n— l,
1=0

with uniquely determined constants d;,, j, /=0,1,....n—1 and d, ; #0,
j=0,1,....,n— 1. If (.,.) is the scalar product in L2(|#, & + €]), then the
conditions (21) mean the relations

(21) 08 =am—-1-), j=01,..,n-1,
which on basis of (22), (23) are equivalent to

‘ J
(24) (xl, g) =l;od]',a‘(n -1- I)! = bJ, ] = 0, 1, ..v., n— 1.
The function

n—1 n—-1 n—-1 j
g(t) =j;0(xj, g) x;(t) =j;°bjxj(t) =j§0 l;)bjdj.x}’:(t) =
n—1 n—1

(25) =1Z:o (jZl bid; ) (1), LStS o+,

satisfies (24) as well as (21). Thus, in view of (20), (25), there is a polynomial h(f)
such that A(t,) = h(t, + €) = 0 which satisfies (19) and the proof is complete.

Corollary. If pe {0, 1,...,n — 1} and the function ®, is given hy (5), then the
operator A, is ®,-positive.

Proof. By (6), 4, is ®,-bounded from above. According to [2], p. 59, it will be
@ ,-bounded from below if to any function x € P, x £ 0, there exists a constant
a = a(x) > 0 such that

26) A 2 a(x) P, a=st=b,
where A: means the second iterate of 4,. By statement 2 of Theorem 1, 4,x(f) = 0
cannot hold in any subinterval [a,, b,] < [a, b] and hence, putting A,x(1) = y(f),

a St < b, we get that ye P, y(t) # 0 on any subinterval [a,, b,] < [a, b] and
(26) reduces to the inequality

@7 Ay0) 2 a(x) 8,), as<tsb.

Thus the dip-boundcdxiess of 4, from below will be shown if to any function y e P,
¥(®) % 0 on any subinterval [a,, b,] = [a, b] there exists a constant « > 0 such
that (27) is true. This has been proved in Lemma 8 in [4]. Then Theorem 2.2 in [2],
P. 62, completes the proof of the corollary.
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