Archivum Mathematicum

Valter Šeda

A remark to a multipoint boundary value problem

Archivum Mathematicum, Vol. 23 (1987), No. 2, 121--129

Persistent URL: http://dml.cz/dmlcz/107288

Terms of use:

© Masaryk University, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A REMARK TO A MULTIPOINT BOUNDARY VALUE PROBLEM

VALTER ŠEDA

(Received January 8, 1986)

Abstract

For each $p=0,1, \ldots, n-1$, some properties of the p-th derivative $\frac{\partial^{p} G}{\partial t^{p}}$ of the Green function G for a scalar multipoint boundary value problem are established. By means of them the Φ_{p}-positivity of a positive linear operator A_{p} is proved.

Key words. Green function, multipoint boundary value problem, positive linear operator.

MS Classification. 34 B 10, 34 B 15, 47 H 07.

In the paper some properties of the Green function $G=G(t, s)$ for the scalar De la Vallée Poussin problem are investigated which involve that a positive linear operator $A_{p} x(t)=\int_{a}^{b}\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right| x(s) \mathrm{d} s$ is Φ_{p}-positive where $\Phi_{p}(t)=A_{p}(1)(t)$, $v=0,1, \ldots, n-1$. This fact bas important consequences for the existence theory on nonlinear vector multipoint boundary value problem as it is shown in [4].

Consider the Green function $G=G(t, s), a \leqq t, s \leqq b$, for the scalar multipoint boundary value problem

$$
\begin{equation*}
x^{(n)}=0, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x^{(i-1)}\left(t_{j}\right)=0, \quad i=1, \ldots, r_{j}, j=1,2, \ldots, m \tag{2}
\end{equation*}
$$

where $n \geqq 2,2 \leqq m \leqq n, 1 \leqq r_{j}$ are natural numbers such that $r_{1}+r_{2}+\ldots+$ $+r_{m}=n$, and $-\infty<a=t_{1}<\ldots<t_{m}=b<\infty$ are real numbers.
Since the Cauchy function $u=u(t, s)$ for (1) has the form $u(t, s)=\frac{(t-s)^{n-1}}{(n-1)!}$ and hence $\frac{\partial^{j-1} u(t, s)}{\partial t^{j-1}}=\frac{(t-s)^{n-j}}{(n-j)!}, a \leqq t, s \leqq b, j=1,2, \ldots, n$, by [1], p. 137, (compare with [3], p. 376)

$$
G(t, s)= \begin{cases}\sum_{l=1}^{k} \sum_{j=1}^{r_{1}} v_{j l}(t) \frac{\left(t_{l}-s\right)^{n-j}}{(n-j)!}, & t \geqq s, t_{k} \leqq s \leqq t_{k+1} \tag{3}\\ -\sum_{t=k+1}^{m} \sum_{j=1}^{r_{1}} v_{j l}(t) \frac{\left(t_{l}-s\right)^{n-j}}{(n-j)!}, & t \leqq s(k=1, \ldots, m-1)\end{cases}
$$

where $v_{\jmath l}, l=1,2, \ldots, m, j=1, \ldots, r_{1}$, is the solution of (1) satisfying the conditions
$v_{j l}^{(i-1)}\left(t_{k}\right)=0$, for each $k \neq 1, i=1, \ldots, r_{k}, k=1,2, \ldots, m$,
$v_{j l}^{(i-1)}\left(t_{l}\right)=\delta_{j i}, i=1, \ldots, r_{l} . \delta_{j i}$ is the delta Kronecker symbol.
Further we shall consider the Banach space $E=C([a, b], R)$ with the sup-norm $\|\cdot\|$, partially ordered by the relation $x \leqq y$ iff $x(t) \leqq y(t)$ for all $t \in[a, b]$. Then (E, \leqq) is an ordered Banach space with positive cone $P=\{x \in E: x(t) \geqq 0$, $a \leqq t \leqq b\}$. P is normal and generating (compare with [4]).

For each $p \in\{0,1, \ldots, n-1\}$ let us define the operator $A_{p}: E \rightarrow E$ by

$$
\begin{equation*}
A_{p} x(t)=\int_{a}^{b}\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right| x(s) \mathrm{d} s, \quad a \leqq t \leqq b, x \in E . \tag{4}
\end{equation*}
$$

A_{p} is a positive, completely continuous linear operator. Then the function

$$
\begin{equation*}
\Phi_{p}(t)=\int_{a}^{b}\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right| \mathrm{d} s, \quad a \leqq t \leqq b \tag{5}
\end{equation*}
$$

belongs to P and the operator A_{p} is Φ_{p}-bounded from above, since on basis of (4) for each $x \in P$

$$
\begin{equation*}
A_{p} x(t) \leqq\|x\| \Phi_{p}(t), \quad a \leqq t \leqq b \tag{6}
\end{equation*}
$$

The most important properties of the Green function G have been summoned up in Lemma 1, [3], p. 375. For convenience we mention here the following ones:

1. $\frac{\partial^{i-1} G}{\partial t^{i-1}}, i=1, \ldots, n-1$, is continuous in $[a, b] \times[a, b]$.
2. $\frac{\partial^{n-1} G}{\partial t^{n-1}}$ is continuous in the triangles $a \leqq t \leqq s \leqq b, a \leqq s \leqq t \leqq b$. Further,

$$
\lim _{t \rightarrow s^{+}} \frac{\partial^{n-1} G(t, s)}{\partial t^{n-1}}-\lim _{t \rightarrow s^{-}} \frac{\partial^{n-1} G(t, s)}{\partial t^{n-1}}=1
$$

for each $s, a<s<b$.
3. For each $s, a<s<b$, the function $G(., s)$ satisfies (1) in $[a, s) \cup(s, b]$ and the boundary conditions (2).
4. The sign of G is determined by the inequality
and

$$
G(t, s) \neq 0 \quad \text { for } t_{k}<t<t_{k+1}, \quad a<s<b, k=1, \ldots, m-1
$$

The meaning of the Green function is given by the statement
5. If $f \in E$, then the function

$$
y(t)=\int_{a}^{b} G(t, s) f(s) \mathrm{d} s, \quad a \leqq t \leqq b
$$

is the unique solution of the problem (2), $y^{(n)}=f(t)$.
Further properties of the function G are given in the following lemma.
Lemma 1. Lét $t_{0} \in[a, b], s_{0} \in[a, b], p \in\{0,1, \ldots, n-1\}$. Then the following statements are true.
1.

$$
\begin{equation*}
\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0 \quad \text { for all } s \in[a, b] \tag{7}
\end{equation*}
$$

iff there is an $l \in\{1,2, \ldots, m\}$ such that

$$
\begin{equation*}
t_{0}=t_{l} \quad \text { and } \quad 0 \leqq p \leqq r_{l}-1 \tag{8}
\end{equation*}
$$

2. If
(9) $\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0 \quad$ for all s in a subinterval $\left[a_{1}, b_{1}\right] \subset[a, b]$,
then for each $k, k=1,2, \ldots, m-1$, such that $\left(t_{k}, t_{k+1}\right) \cap\left(a_{1}, b_{1}\right) \neq \emptyset$ and $t_{0} \notin\left(t_{k}, t_{k+1}\right)$

$$
\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0 \quad \text { for all } s \in\left[t_{k}, t_{k+1}\right]
$$

If $t_{0} \in\left(t_{k}, t_{k+1}\right),\left(a_{1}, b_{1}\right) \cap\left(t_{k}, t_{0}\right) \neq \emptyset\left(\left(a_{1}, b_{1}\right) \cap\left(t_{0}, t_{k+1}\right) \neq \emptyset\right)$, then

$$
\begin{aligned}
& \frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0 \quad \text { for all } s, t_{k} \leqq s \leqq t_{0} \\
& \left(\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0 \text { for all } s, t_{0} \leqq s \leqq t_{k+1}\right)
\end{aligned}
$$

3. If $\frac{\partial^{p} G\left(t, s_{0}\right)}{\partial t^{p}}=0$ for all t from a subinterval $\left[a_{2}, b_{2}\right] \subset[a, b]$, then in case $\left(a_{2}, b_{2}\right) \cap\left(a, s_{0}\right) \neq \emptyset\left(\right.$ in case $\left.\left(a_{2}, b_{2}\right) \cap\left(s_{0}, b\right) \neq \emptyset\right)$

$$
\begin{aligned}
& \frac{\partial^{p} G\left(t, s_{0}\right)}{\partial t^{p}}=0 \quad \text { for all } t, a \leqq t \leqq s_{0} \\
& \left(\frac{\partial^{p} G\left(t, s_{0}\right)}{\partial t^{p}}=0 \text { for all } t, s_{0} \leqq t \leqq b\right)
\end{aligned}
$$

4. If $m=2$ and $t_{0} \in(a, b)$, then there is no subinterval $\left[a_{1}, b_{1}\right] \subset[a ; b]$ such that (9) is true.

Proof. 1. If (8) is true, then (7) holds by the properties 3 and 1 of the Green function. Conversely, if (7) is valid, then for all functions $y \in C^{n}([a, b], R)$ satisfying (2) we must have $y^{(p)}\left(t_{0}\right)=0$ which is only so possible when (8) is true. To show the last implication we construct in case that (8) is not true a function $y \in$ $\in C^{n}([a, b], R)$ satisfying (2) for which $y^{(p)}\left(t_{0}\right) \neq 0$. To that aim consider the function

$$
g_{1}(t)=\frac{1}{n!}\left(t-t_{1}\right)^{r_{1}}\left(t-t_{2}\right)^{r_{2}} \ldots\left(t-t_{m}\right)^{r_{m}}, \quad a \leqq t \leqq b
$$

Since $r_{1}+r_{2}+\ldots+r_{m}=n$, this function satisfies the boundary value problem $y^{(n)}=1$, (2). For each $l, l=1,2, \ldots, m$,

$$
\begin{gather*}
g_{1}^{\left(r_{1}\right)}\left(t_{l}\right)=\sum_{s=0}^{r_{1}}\binom{r_{l}}{s}\left[\left(t-t_{l}\right)^{r_{l}}\right]^{\left(r_{l}-s\right)}\left(t_{l}\right)\left[\left(t-t_{1}\right)^{r_{1}} \ldots\left(t-t_{l-1}\right)^{r_{l}-1} \times\right. \\
\left.\times\left(t-t_{l+1}\right)^{r_{l+1}} \ldots\left(t-t_{m}\right)^{r_{m}}\right]^{(s)}\left(t_{l}\right)= \\
=r_{l}!\left(t_{l}-t_{1}\right)^{r_{1}} \ldots\left(t_{l}-t_{l-1}\right)^{r_{l}-1}\left(t_{l}-t_{l+1}\right)^{r_{l}+1} \ldots\left(t_{l}-t_{m}\right)^{r_{m}} \neq 0 . \tag{10}
\end{gather*}
$$

Two cases may happen. Either $g_{1}^{(p)}\left(t_{0}\right) \neq 0$ and then the proof is done or $g_{1}^{(p)}\left(t_{0}\right)=$ $=0$. In this case we multiply g_{1} by the function

$$
g_{2}(t)=\dot{g}_{2}\left(t_{0}\right)+\frac{g_{2}^{\prime}\left(t_{0}\right)}{1!}\left(t-t_{0}\right)+\ldots+\frac{g_{2}^{(p)}\left(t_{0}\right)}{p!}\left(t-t_{0}\right)^{p}, \quad a \leqq t \leqq b
$$

where $g_{2}\left(t_{0}\right), g_{2}^{\prime}\left(t_{0}\right), \ldots, g_{2}^{(p)}\left(t_{0}\right)$ will be suitably chosen. We have

$$
\left(g_{1} \cdot g_{2}\right)^{(p)}\left(t_{0}\right)=\sum_{s=0}^{p}\binom{p}{s} g_{1}^{(p-s)}\left(t_{0}\right) g_{2}^{(s)}\left(t_{0}\right)
$$

If all values $g_{1}\left(t_{0}\right)=g_{1}^{\prime}\left(t_{0}\right)=\ldots=g_{1}^{(p)}\left(t_{0}\right)=0$, then $t_{0}=t_{l}$ for an $l, l \in$ $\epsilon\{1,2, \ldots, m\}$ and, in view of (10), $0 \leqq p \leqq r_{t}-1$, which is (8) and thus, it cannot happen. Similarly we come to contradiction with our assumption, when $p=0$. Hence we can suppose that $p \geqq 1$ and that in the sequence $g_{1}\left(t_{0}\right)$, $g_{1}^{\prime}\left(t_{0}\right), \ldots, g_{1}^{(p)}\left(t_{0}\right)$ at least one term is different from zero, say $g_{1}^{(p-k)}\left(t_{0}\right) \neq 0$. Then we choose $g_{2}(t)=\frac{g_{2}^{(k)}\left(t_{0}\right)}{k!}\left(t-t_{0}\right)^{k}$, with $g_{2}^{(k)}\left(t_{0}\right) \neq 0$ and hence $\left(g_{1} \cdot g_{2}\right)^{(p)}$ $\left(t_{0}\right)=\binom{p}{k} g_{1}^{(p-k)}\left(t_{0}\right) g_{2}^{(k)}\left(t_{0}\right) \neq 0$. We have found a polynomial y of degree $n+p$ at most satisfying (2) and such that $y^{(p)}\left(t_{0}\right) \neq 0$. This completes the proof that (7) and (8) are equivalent each to other.
2. and 3. By (3), $\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}$ is an analytic function of the variable s in any interval
$\left[t_{k}, t_{k+1}\right], k=1, \ldots, m-1$, such that $t_{0} \notin\left(t_{k}, t_{k+1}\right)$ as well as in the intervals $\left[t_{k}, t_{0}\right]$ and $\left[t_{0}, t_{k+1}\right]$, when $t_{0} \in\left(t_{k}, t_{k+1}\right)$.

Similarly (3) implies that $\frac{\partial^{p} G\left(t, s_{0}\right)}{\partial t^{p}}$ is analytic in $\left[a, s_{0}\right]$ when $a<s_{0} \leqq b$ as well as in $\left[s_{0}, b\right]$ if $a \leqq s_{0}<b$. By the uniqueness theorem for analytic functions, the statements 2 and 3 follow.
4. If $m=2$, then there is a $k \in\{1, \ldots, n-1\}$ such that the conditions (2) have the form

$$
x^{(i-1)}(a)=0, \quad \ddots i=1, \ldots, k, x^{(i-1)}(b)=0, i=1, \ldots, n-k
$$

Suppose that (9) is true. By the statement 2 of this lemma either

$$
\begin{equation*}
\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0 \quad \text { for all } s, a \leqq s \leqq t_{0} \tag{11}
\end{equation*}
$$

or $\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0$ for all $s, t_{0} \leqq s \leqq b$. Consider only the former case. The latter would be proceeded in a similar way. By (3), (11) means the equality $\sum_{j=1}^{k} v_{j 1}^{(p)}\left(t_{0}\right) \times$ $\times \frac{(a-s)^{n-j}}{(n-j)!} \equiv 0$ in $\left[a, t_{0}\right]$, and hence, (11) is equivalent to

$$
\begin{equation*}
v_{j 1}^{(p)}\left(t_{0}\right)=0, \quad j=1, \ldots, k \tag{12}
\end{equation*}
$$

Consider the functions

$$
\begin{equation*}
u_{j}(t)=(t-a)^{j-1}(t-b)^{n-k}, \quad a \leqq t \leqq b, j=1, \ldots, k \tag{13}
\end{equation*}
$$

By the definition, $v_{j 1}$ are nontrivial solutions of (1) satisfying the conditions $v_{j 1}^{(i-1)}(b)=0, i=1, \ldots, n-k, v_{j 1}^{(i-1)}(a)=\delta_{i j}, i=1, \ldots, k$. This implies that there exist constants $c_{k, 0}, c_{k-1,1}, c_{k-1,0}, \ldots, c_{1, k-1}, c_{1, k-2}, \ldots, c_{1,0}$ such that

$$
\begin{align*}
& v_{k 1}(t)=c_{k, 0} u_{k}(t), \quad c_{k, 0} \neq 0 \\
& v_{k-1,1}(t)=u_{k-1}(t)\left[c_{k-1,1}(t-a)+c_{k-1,0}\right]= \\
& =c_{k-1,1} u_{k}(t)+c_{k-1,0} u_{k-1}(t), \quad c_{k-1,0} \neq 0 \tag{14}\\
& v_{k-2,1}(t)=c_{k-2,2} u_{k}(t)+c_{k-2,1} u_{k-1}(t)+c_{k-2,0} u_{k-2}(t), c_{k-2,0} \neq 0 \\
& v_{1,1}(t)=c_{1, k-1} u_{k}(t)+c_{1, k-2} u_{k-1}(t)+c_{1, k-3} u_{k-2}(t)+\ldots+c_{1,0} u_{1}(t), \\
& c_{1,0} \neq 0, a \leqq t \leqq b .
\end{align*}
$$

By (14), (12) are equivalent to the relations

$$
\begin{equation*}
u_{j}^{(p)}\left(t_{0}\right)=0, \quad j=1, \ldots, k \tag{15}
\end{equation*}
$$

(13) implies that $u_{k}\left(t_{0}\right) \neq 0, u_{k}^{(n-1)}\left(t_{0}\right) \neq 0$ and hence $p \neq 0, p \neq n-1$. Similarly
the degree of $u_{k-1}(t), \ldots, u_{1}(t)$, respectively, being $n-2, \ldots, n-k$, respectively, p must be different from $n-2, \ldots, n-k$. Since $u_{1}(t)=(t-b)^{n-k}, p \neq n-$ $-k-1, \ldots, p \neq 1$. We have found that there is no $t_{0} \in(a, b)$ for which (15) are true and the statement is completely proved.

Theorem 1. Let $p \in\{0,1, \ldots, n-1\}$ and let $x \in P, x \neq 0$ in $[a, b]$. Then

1. $A_{p} x(t)>0$ in (a, b) if $m=2$;
2. $A_{p} x(t)=0$ cannot hold in any subinterval $\left[a_{1}, b_{1}\right] \subset[a, b]$ for $m>2$.

Proof. The first statement follows from the statement 4 of Lemma 1 and nonegativity of the functions $x(t),\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right|$.

To prove the second statement let us suppose that there is an interval $\left[a_{2}, b_{2}\right] \subset$ $\subset[a, b]$ in which $A_{p} x(t)=0$. As the functions $x(s),\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right|$ are nonnegative, it follows that for each $t_{0} \in\left[a_{2}, b_{2}\right]$ supp $x(s) \subset S_{t_{0}}=\left\{s \in[a, b]: \frac{\partial^{P} G\left(t_{0}, s\right)}{\partial t^{p}}=0\right\}$. Hence there is an interval $\left[a_{1}, b_{1}\right]$ such that $\frac{\partial^{p} G\left(t_{0}, s\right)}{\partial t^{p}}=0$ for each $t_{0} \in\left[a_{2}, b_{2}\right]$, $s \in\left[a_{1}, b_{1}\right]$. On basis of the statements 2 and 3 of Lemma 1 there exists an interval $\left[t_{k}, t_{k+1}\right], k \in\{1, \ldots, n-1\}$, such that either

$$
\begin{equation*}
\frac{\partial^{p} G(t, s)}{\partial t^{p}} \equiv 0 \quad \text { for } t_{k} \leqq a \leqq t_{k+1}, a \leqq s \leqq t \leqq b \tag{16}
\end{equation*}
$$

or $\frac{\partial^{p} G(t, s)}{\partial t^{p}} \equiv 0$ for $t_{k} \leqq s \leqq t_{k+1}, a \leqq t \leqq s \leqq b$. Consider only the case (16). The other one can be investigated in a similar way.

Let us choose a sufficiently small $\varepsilon>0$. Two cases may happen. Either $1 . k>1$ or $2 . k=1$. We shall consider only the first case, the second one would be proceeded in a similar way (instead of $\left[t_{k}, t_{k}+\varepsilon\right]$ we would consider $\left[t_{k+1}-\varepsilon, t_{k+1}\right]$). (16) implies that for each function $y \in C^{n}([a, b], R)$ satisfying the boundary conditions (2) and such that supp $y^{(n)} \subset\left[t_{k}, t_{k}+\varepsilon\right]$

$$
\left|y^{(p)}(t)\right| \leqq \int_{a}^{b}\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right|\left|y^{(n)}(s)\right| \mathrm{d} s=\int_{t_{k}}^{t_{k}+2}\left|\frac{\partial^{p} G(t, s)}{\partial t^{p}}\right|\left|y^{(n)}(s)\right| \mathrm{d} s=0,
$$

for all $t, t_{k}+\varepsilon \leqq t \leqq b$, and hence,

$$
\begin{equation*}
y^{(p)}(t) \equiv 0 \quad \text { for } t_{k}+\varepsilon \leqq t \leqq b . \tag{17}
\end{equation*}
$$

Now we shall construct a function $y \in C^{n}([a, b], R)$ with supp $y^{(n)} \subset\left[t_{k}, t_{k}+\varepsilon\right]$, satisfying (2) and for which (17) is not true. Let

$$
y(t)=\left\{\begin{array}{l}
\left(t-t_{1}\right)^{r_{1}} \ldots\left(t-t_{k}\right)^{r_{k}}, \quad t_{1} \leqq t \leqq t_{k}, \tag{18}\\
y\left(t_{k}\right)+\frac{y^{\prime}\left(t_{k}\right)}{1!}\left(t-t_{k}\right)+\ldots+\frac{y^{(n-1)}\left(t_{k}\right)}{(n-1)!}\left(t-t_{k}\right)^{n-1}+ \\
+\int_{t_{k}}^{t} \frac{(t-s)^{n-1}}{(n-1)!} h(s) \mathrm{d} s, \quad t_{k} \leqq t \leqq t_{k}+\varepsilon, \\
\left(t-t_{k+1}\right)^{r_{k}+1} \ldots\left(t-t_{m}\right)^{r_{m}} P_{1}(t), \quad t_{k}+\varepsilon \leqq t \leqq t_{m},
\end{array}\right.
$$

where the polynomial $P_{1}(t)$ is such that the degree of the polynomial $\left(t-t_{k+1}\right)^{r_{k+1}} \ldots\left(t-t_{m}\right)^{r_{m}} . P_{1}(t)$ is $n-1$, otherwise $P_{1}(t)$ can be arbitrary and $h(t)=$ $=y^{(n)}(t), t_{k} \leqq t \leqq t_{k}+\varepsilon$, is continuous in $\left[t_{k}, t_{k}+\varepsilon\right]$ and $h\left(t_{k}\right)=h\left(t_{k}+\varepsilon\right)=0$. The function $h(t)$ will be determined in such a way that $y \in C^{n-1}([a, b], R)$. Then

$$
y^{(n)}(t)= \begin{cases}0, & t_{1} \leqq t \leqq t_{k} \\ h(t), & t_{k} \leqq t \leqq t_{k}+\varepsilon \\ 0, & t_{k}+\varepsilon \leqq t \leqq t_{m}\end{cases}
$$

and hence, $y \in C^{n}([a, b], R)$, $\operatorname{supp} y^{(n)} \subset\left[t_{k}, t_{k}+\varepsilon\right]$ and y satisfies the boundary conditions (2). Since $y(t)$ is a polynomial of degree $n-1$ in $\left[t_{k}+\varepsilon, t_{m}\right]$, it cannot satisfy (17) and this contradiction shows that the second statement of Theorem 1 is true.

In view of the definition (18) it suffices to check the continuity of $y(t)$ and that of its derivatives up to order $n-1$ at the points $t_{k}, t_{k}+\varepsilon$. By the uniqueness theorem for initial value problem, $y^{(j)}(t), j=0,1, \ldots, n-1$, exist and are, continuous at the point t_{k}. The same will happen at $t_{k}+\varepsilon$, if h satisfies

$$
\begin{gather*}
\int_{t_{k}}^{t_{k}+\varepsilon} \frac{\left(t_{k}+\varepsilon-s\right)^{n-1-j}}{(n-1-j)!} h(s) \mathrm{d} s=y^{(j)}\left(t_{k}+\varepsilon\right)-\left[y^{(j)}\left(t_{k}\right)+\right. \\
\left.+\frac{y^{(j+1)}\left(t_{k}\right)}{1!} \varepsilon+\ldots+\frac{y^{(n-1)}\left(t_{k}\right)}{(n-1-j)!} \varepsilon^{n-1-j}\right], \quad j=0,1, \ldots, n-1 . \tag{19}
\end{gather*}
$$

Denote the right-hand side of (19) as $a_{j}, j=0,1, \ldots, n-1$. If we put

$$
\begin{equation*}
h(t)=\left(t_{k}+\varepsilon-t\right)\left(t-t_{k}\right) g(t), \quad t_{k} \leqq t \leqq t_{k}+\varepsilon \tag{20}
\end{equation*}
$$

then the condition (19) has the form

$$
\begin{equation*}
\int_{t_{k}}^{t_{k}+\varepsilon}\left(t_{k}+\varepsilon-s\right)^{n-j}\left(s-t_{k}\right) g(s) \mathrm{d} s=a_{j}(n-1-j)!, \quad j=0,1, \ldots, n-1 \tag{21}
\end{equation*}
$$

Since the functions

$$
\begin{equation*}
y_{j}(t)=\left(t_{k}+\varepsilon-t\right)^{n-j}\left(t-t_{k}\right), \quad t_{k} \leqq t \leqq t_{k}+\varepsilon, j=0,1, \ldots, n-1 \tag{22}
\end{equation*}
$$

are linearly independent in $\left[t_{k}, t_{k}+\varepsilon\right]$, by E. Schmidt's orthogonalization process an orthonormal sequence $\left\{x_{j}(t)\right\}_{j=0}^{n=0}$ in the real Hilbert space $L^{2}\left(\left[t_{k}, t_{k}+\varepsilon\right]\right)$ can be constructed such that

v. SEDA

$$
\begin{equation*}
x_{j}(t)=\sum_{l=0}^{j} d_{j, l} y_{l}(t), \quad t_{k} \leqq t \leqq t_{k}+\varepsilon, j=0,1, \ldots, n-1 \tag{23}
\end{equation*}
$$

with uniquely determined constants $d_{j, l}, j, l=0,1, \ldots, n-1$ and $d_{J, j} \neq 0$, $j=0,1, \ldots, n-1$. If (.,.) is the scalar product in $L^{2}\left(\left[t_{k}, t_{k}+\varepsilon\right]\right)$, then the conditions (21) mean the relations

$$
\left(y_{j}, g\right)=a_{j}(n-1-j)!, \quad j=0,1, \ldots, n-1
$$

which on basis of (22), (23) are equivalent to

$$
\begin{equation*}
\left(x_{j}, g\right)=\sum_{l=0}^{j} d_{j, l} a_{l}(n-1-l)!=b_{j}, \quad j=0,1, \ldots, n-1 \tag{24}
\end{equation*}
$$

The function

$$
\begin{gather*}
g(t)=\sum_{j=0}^{n-1}\left(x_{j}, g\right) x_{j}(t)=\sum_{j=0}^{n-1} b_{j} x_{j}(t)=\sum_{j=0}^{n-1} \sum_{l=0}^{j} b_{j} d_{j, l} y_{l}(t)= \\
=\sum_{l=0}^{n-1}\left(\sum_{j=l}^{n-1} b_{j} d_{j, l}\right) y_{l}(t), \quad t_{k} \leqq t \leqq t_{k}+\varepsilon \tag{25}
\end{gather*}
$$

satisfies (24) as well as (21). Thus, in view of (20), (25), there is a polynomial $h(t)$ such that $h\left(t_{k}\right)=h\left(t_{k}+\varepsilon\right)=0$ which satisfies (19) and the proof is complete.

Corollary. If $p \in\{0,1, \ldots, n-1\}$ and the function Φ_{p} is given by (5), then the operator A_{p} is Φ_{p}-positive.

Proof. By (6), A_{p} is Φ_{p}-bounded from above. According to [2], p. 59, it will be Φ_{p}-bounded from below if to any function $x \in P, x \neq 0$, there exists a constant $\alpha=\alpha(x)>0$ such that

$$
\begin{equation*}
A_{p}^{2} x(t) \geqq<\alpha(x) \Phi_{p}(t), \quad a \leqq t \leqq b, \tag{26}
\end{equation*}
$$

where A_{p}^{2} means the second iterate of A_{p}. By statement 2 of Theorem $1, A_{p} x(t) \equiv 0$ cannot hold in any subinterval $\left[a_{1}, b_{1}\right] \subset[a, b]$ and hence, putting $A_{p} x(t)=y(t)$, $a \leqq t \leqq b$, we get that $y \in P, y(t) \not \equiv 0$ on any subinterval $\left[a_{1}, b_{1}\right] \subset[a, b]$ and (26) reduces to the inequality

$$
\begin{equation*}
A_{p} y(t) \geqq \alpha(x) \Phi_{p}(t), \quad a \leqq t \leqq b . \tag{27}
\end{equation*}
$$

Thus the Φ_{p}-boundedness of A_{p} from below will be shown if to any function $y \in P$, $y(t) \not \equiv 0$ on any subinterval $\left[a_{1}, b_{1}\right] \subset[a, b]$ there exists a constant $\alpha>0$ such that (27) is true. This has been proved in Lemma 8 in [4]. Then Theorem 2.2 in [2], p. 62, completes the proof of the corollary.

REFERENCES

[1] Кигурадзе, И. Т., Некоторые сингулярные краевые эадачи для обыкновенных дифференциальных ураєнений, Издат. Тбилис. унив., Тбилиси, 1975.

MULTIPOINT BOUNDARY VALUE PROBLEM

[2] Красносельский, М. А., Положсительные решения операторных уравнений, главы нелинейного анализа, Гос. Издат. Физ.-Мат. Лит., Москва, 1962.
[3] V. Šeda, A Partially Ordered Space Connected With the De la Vallée Poussin Problem, Equadiff IV Proceedings, Prague, 1977, Lecture Notes in Mathematics 703, Springer Verlag, Berlin-Heidelberg - New York, 1979, 374-383.
[4] V. Seda, On a Vector Multipoint Boundary Value Problem, Arch. Math. (Brno) 22 (1986), 75-92.
V. Šeda

Department of Mathematics
MFF UK, Mlynská dolina, 84215 Bratislava

