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ANOTHER APPROACH TO THE CLASSICAL
CALCULUS OF VARIATIONS III

\

J. CHRASTINA
(Received September 9, 1985)

Abstract. The article concludes the previous investigations of the same author on formal analysis
of the most fundamental concepts of the classical calculus of variations and consists of a brief over-
view of the general theory and several examples devoted to the interrelations between the Lagrange

and the Hamiltonian approaches. Complete proofs and some other results will be published
elsewhere.

Key words. Euler—Lagrange system, Hamilton system, Hamilton—Jacobi equation, regular
and singular variational problem.
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The primary version of the present paper was based only on the results of the
preceeding parts [2] and dealt with applications of the general theory to some
familiar variational problems. But the publication was delayed and in the meantime,
it becames not actual. Moreover, the proceeding parts prove to be unsatisfactory
from the contemporary point of view and the author decides to compile a more
thorough and complete exposition for the interesting fibered case. Alas, the resulting
paper [1] is excessively long for this Journal. A part of the achievements can be,
however, easily understood and explained within the framework of [2] and ap-
propriately concludes them. So we hope that a brief survey may be useful. In order
to make the present paper as self-contained as possible, we recall the most important
general principles of our method. We also call some attention to the terminology
which being adapted to [1] slightly differs from the preceeding parts [2].

1. Introduction. Let M be a manifold, P a compact oriented n-dimensional
manifold (n = 1) with boundary Q, 8 : Q — P the natural inclusion of the boundary.
Let ¢ () be an exterior differential n-form ((n — 1)-form) on M, A (B) be a given
submodule of the C*(M)-module of all n-forms ((n — 1)-forms) on M.

We shall consider the space V of all embeddings p : P— M and the subspace P
of V¥ consisting of all such p that satisfy the requirements
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J. CHRASTINA

0 pra=0 (@), (pod)*B=0 (Be®).
We are interested in critical points of the functional
@ Fp) = [p*o + J(p 0O

on the subset P of V. This is a very general setting of the famlhar Lagrange problem
denoted here by Z 2, for brevity. _

In order to simplify the exposition, we shall restrict only on the interior phenomenae
completely omitting the behaviour of the mapping p € V at the boundary Q. Following
this-point of view, the data Q, d, ¥, B are not longer needed and a mapping p € P
is called an extremal (to the problem Z2) if p*a = 0 (x € ) and the identity ’

3) p*2Z_ldlp+a@)=0

is satisfied for an appropriate & € A and all vector fields Z on M. (Note that the nota-
tion slightly differs from [2] where the difference ¢ — & is used. The present choice
1s in better accordance with the classical formulae.) The set of all mentioned extremals
will be denoted £%. Note that the form ¢ + & is a far going generalization of the
famous Cartan— Poincaré form and (3) appears as a brief record of the Euler—
Lagrange system.

We shall deal with the fibered modification of the above concepts which is as
follows. The previous manifold M is replaced by the total space of a fibered manifold
(E, n, B), n : E - B being the fibered space projection of the total space E onto the
base B. The manifold P is retained but assuming dim P = n = dim B, we choose
a fixed embedding i} : P— B and instead of the previous space ¥, we shall deal
with the space M of all mappings p : P — E that satisfy n o p = if. (In other words,
we consider the space M of all cross-sections of the fibered manifold (E, , B) over
the subset i5(P) of the base B.) Quite analogously as before, ¢ is a given n-form on E
and W is a given C®°(E)-module of certain n-forms on E. We are interested in extremals,
i.e., in mappings p e M satisfying p*a = 0 (x € W) and (3). Note that it is quite
. sufficient to consider only the n-vertical vector fields Z in the condition (3), i.e., the
vector fields Z on E satisfying Zr*g =0 for all functions g € C*(B). (See [2, part I,
lemma 9].) .

We shall deal only with the fibered modification of the problem ## from now on.

2. The Hamiltonian approach. In the particular case A = {0}, the trivial module,
the extremals p € #% are defined by the single identity
(O] p*Z _1dp =0,
where Z runs over all n-vertical vectors on E. If the form do admits certain simple
(we say canonical) expression in a special local coordinate system (in canonical

coordinates) which can be achieved by performing an appropriate transformation
(the Legendre tramformatwn) of the onginal variables, then the condition (4) turns

132



CLASSICAL CALCULUS OF VARIATIONS

into the familiar Hamilton system. One can also say that every procedure which
permits to reduce a general problem £ with A # {0} into an equivalent Lagrange
problem with the relevant module U trivial is the Hamilionian approach to the
variational problems.

A possible construction of the last kind may be outlined as follows. Starting with
an arbitrary problem ##, we begin with introducing another Lagrange problem
noted 2% and determined by certain new data (E*,n*, B*), 0%, A" where
B* = B, A* = {0} and the remaining objects E*, n*, o* are specified below. Note
besides that the original objects P and it are retained and the boundary data Q, 9, ¥ *,
B* are not important for us.

Going to the details, we assume (for simplicity) that every form o € A can be uni-
quely represented by a sum ‘

o) a=adal +..+da (a,...,a e C°(E)),

where a!, ..., af € A are certain fixed forms and d’, ..., a° are arbitrary. Then we put
E* = R°x E with coordinates in the first factor noted p', ..., p°. At last we choose

©) ot = (mg)*¢ + p'(ng)*oa* + ... + p(ng)*ac

for the sought form ¢@* on E*; here appears the obvious projection nj : E* —» E
and we put #* = mony; : E* — B. One can verify the most important property of
these objects; every form of the type ¢ + o (o« € W) possesses a unique representation
by the pull-back of the type ¢ + a = c*@* with an appropriate cross-section
o :E— E* of the fibered manifold (E*, ng, E); compare with [2, part II, Section 4].

With these new data in mind, we are interested in critical points of the functional

F'(p*) = I!(zf)*rp* + ,{ ()

on the set M* of all mappings p* : P— E* satisfying n* o p* = i} (here n* =
= n ong) and some boundary conditions not specified above. The extremals pte
€ 6% are defined by the corresponding conditions (4), of course, i.e. by the require-
ment ’

™ (p*)*Z* _1de* =0

where Z* runs over all n*-vertical vector fields on the space E™. +

The main pomt of the construction consists in the fact (not proved here) that
the relation p = ng o p* maps the set of all extremals p* € X+ onto the set of all
extremals p € 8% of the original problem. (Cf. [2, part II, Section 5].)

The problem L2+ already possesses the sought property ‘2[" {0}. However,
it currently suffers from two defects At ﬁrst the exgemﬂs pteext need not ﬁll
the space E* up (the shortage defect) in the sense that all sets p*(P) (p* € £%'*) may
lie in a proper submamfold E’ of E*. By other words, there may exist a proper
embedding i E’ E of a mamfold E mto the ma.mfold E+ of the ?roperty that
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.every extremal p* € §4* can be decomposed as p* =i’ op’ where p”: P> E’
is an appropriate mapping. At second, many extremals p* may lead to the same result
p =7y op* € &X (the abundance defect) and it follows that it is sufficient to handle
only some particular extremals p* € £Z* in order to get all extremals p e £Z. At
our stage of understanding the problem, it is a matter of taste which extremals p*
are left out. (From the more advanced point of view, the Hamilton — Jacobi equation
and boundary conditions should play a crucial role here, cf. [1].) For example,
it may be sufficient to handle only that extremals which lie in an appropriate sub-
manifold of E* narrower than the above mentioned E’.

The final conclusion is that we are led to investigating some other Lagrange
problems induced on an appropriate submanifold of the total space E*.

Having this in mind, let i’ : E’ - E* be an embedding of a manifold E’ into E*.
We shall assume that the composition n° = n* o> : E>’ - B is a surjective sub-
mersion. Then we may introduce a new Lagrange problem noted #2” and called the
problem induced on E’ by the problem £2*. It is defined by the data (E’, n’, B’),
@, W where B = B, ¢’ = (")*¢*, W = {0}, the original objects P and i} are
retained and the boundary data are unimportant.

One can easily see the following simple fact: If p’ : P> E’ and p* = i’ o p’ € &X'
then p’ € 6% (the extremals of £2’). The converse is in general not true; the relation
p’ € X does not necessarily imply p* =i’ o p’e £Z*. Additional requirements
ensuring the last inclusion will be formulated in terms of certain n*-vertical vector
fields on E*. So let A* be a family of such vector fields. Assume that the family 2A*
is transverse to the submanifold E’ of E*. (That means, for every x € E, the set of all
vectors ¥, (V* € A, y = ’(x)) together with the linear subspace di’(T,E’) of the
tangent space T,E* span the whole tangent space T,E*.) Necessary and sufficient
conditions ensuring the inclusion p* =i’ o p’ € EX* for a given extremal p’ € X’
can be expressed by :
® @) @)V _Ldp*)=0  (V*eu™.

Note at last that the embedding i’ is called regular if (’)*V* _1de* = 0 for an
appropriate family 2* of the mentioned type. In the regular case we have pt =
=Pop ebX* forany.p e EX’.

After these preparatory considerations, we are going to more concrete topics,
namely to various settings of the classical multiple integral variational problem.
In all examples below, we begin with transferring the original problem £ into the
corresponding auxiliary problem ##2* and then we try to remove the shortage and
abundance defects. In all cases we obtain a nice Hamiltonian system completely
equivalent to the original Euler — Lagrange system.

3. General setting of the variational problem. We introduce the space M = R**™
with the coordinates x’,y/ (i = 1, ...,n;j = 1, ..., m), B = R" with coordinates x*
(i=1,...,n) and the obvious projection n} : M — B. If (M, nlf, B) is the relevant
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fibered manifold, then the accompanying space of all d-jets of cross-sections will be
shortly denoted J. The jet coordinates on J¢ are

Xyl (0OSsSdyiig,anii=1,..,nj=1,..,m).

Only nondecreasing multiindices I = i; ... i, i; < ... < iy, are used here but in
practise, in order to simplify some formulae, it is useful to introduce the convention

yvi=yl, d=i;...i,=ij..i)

whenever I is a permutation of I’ (which will be denoted I ~ I’). Owing to this
convention, we may confortably remind the contact forms

=dy} —Zyhdx*  (Ti=iy..i)

on the space J¢, for every multiindex I = i ... i, with the norm | I| = s < d. Note
also that for every e < d, there exists the obvious natural projection nd gl Je
forgetting the coordlnates yi (e < |1 | < d) In particular, J° = M so that nf : J¢ -
— J° = M. We shall denote 7 = n¥ o 74 : J9 > B.

The underlymg fibered space for the variational problems will be (E, =, B) where
E = J% n = n%. The manifold P will be parametrized by the coordinates ¢, ..., "
and the embedding i} will be simply defined by ¢ = (i5)*x'. We shall deal with the
form

0 =@)*dxi A Adx  (feC2(J9),

where the constants e, d will be specified later on. At last, the module U will éllways
include all n-forms of the type

9 Zaojadx; (dx;= —(=D'dx!A...AdXTI AT A LAY

and, may be, some others. As usual, the boundary data need not be specified.
One can easily see that the first group of conditions (1) implies p*w} = 0(| I| < d),
hence

p¥i=opryifer (I=iy..i,s<d,of =0 .. o).
It follows that the functional (2) may be rewritten as
Fip) = [ f(t', ..., 1% ..., a%p*yljat’, .. )dt Ao AdE™ + [(..).
P Q

This is the common multiple integral of the classical calculus of variations dependent
on higher order derivatives of the variable functions p*y’ € C*(P).

We shall now specify the constants d, e and the module 2 in order to obtain some
more concrete problems. |

4. First example. We begin with the simplest and most economical but relatively
unknown case by choosing d = e. At the same time, the module € will consist
exactly of all forms (9) where af, e C*(J*), | I| < e, are arbitrary functions. Inserting

135



J. CHRASTINA

such a form & = Zal,w} A dx; into the condition (3), the coefficients a; can be elimi-
nated and the familiar Euler — Lagrange system

(10) T(=1y @(p* of/oy))lox' =0 (=1, ..., n; sum over I)

immediately appears. But this is a familiar story and we turn to the Hamiltonian
theory.

Following the general lines (cf. (6)) and omitting some pull-backs, we have the
form

an . ot = fdx + Iplwiadx; (dx =dx'A..Adx")
where

pli G=1,..,n;j=1,..,m;0 £ |I| <e; I nondecreasing)

are new coordinates along the fibres of the fibered manifold (E*, n, E). The extre-
mals p* € % * are defined by the condition (7). Now the choice Z* = 9/dp}; easily
yields the requirements (p*)*wj', A dx; = 0, that is, (p*)*w] = 0 for every | I| < e.
The choice Z* = d/dy} is more interesting and especially, for the case | /| = e,
we get the conditions

(12) : (P*f 1oyl — piy) =0 (1] =e)
with the so called cyclic means

| ply = Zpi+  (sumover I, such that I’ ~ I).
It follows that the shortage defect is present and we are led to the submanifold E’ of E*
for which the corresponding embedding i’ : E> - E* satisfies

@)*@f oyl = piy) =0 (11| = e).

One can see that the regular case takes place if and only if the ciassical criterion
(13) det /oy oyi) #0  (of’ =L .om;| I = || =e)

is satisfied. Note that (13) is nothing else than the transversality condition for the
family A* of vector fields 8/dyi (1 1| = e) to the submanifold E’.
The extremals p’ € 2~ can be defined in terms of the form
(19) do’ = d(®)*e* = d(Zp); dy/ Adx, — Hdx) =
=Xdp/, AdyjAdx; — dHAdx =
= i(dp{, + aH. dxi)A (dy{ - aH, dx‘) A dx,-,
0y1 opr;

where H = p{,)y{ — fe C>(E’) is the Hamilton function. If the regularity condition
. (13) is satisfied, then the functions

(15) X, yl,pi (0 £ | 1| < e, I nondecreasing)
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may serve for local coordinates on E” and the relation p* = i’ o p’ yields a one-to-one
correspondence between the sets £2+ and £%°. But we know that the set £Z* is
projected onto the set &% by m7. So it follows that the relation p = mg op* =
= my o i o p’ maps the set £2° onto the set §%.

Let us summarize the above results. In the regular case (13), we have the coordinates
(15) on the manifold E’. In these coordinates, the Hamilton system for the extremals
p’ € 8%’ can be explicitly expressed as

(»)* (dy{ - ﬂ&x‘) Adx; = (p)* (dpfi + oH dx‘) Adx; =0
al’{i y{
or, in a semi-classical notation,
9 j 9 aH £ i 9 aH
(16) a(p)*yilot' = (p)* T Y. o(p)*piilot' = —(p)* 0
Opni i oyr

and, at last, as a Pfaffian 'system

(r)* (dy; ) 7 dX) = (P)*(dpp: + Z by dx') =0
i Ii

with new variables hJ;; related by the constraints Lhj,; = 0H/dy}. Every solution p’

of these systems yields a solution p of the Euler— Lagrange system (10) by a simple

neglecting the coordinates pj;. Conversely, every extremal p € % can be obtained

in such a manner (but in general from several extremals p’ € £%” since the abundance

defect is not yet removed).

5. A digression to the Hamilton—Jacobi equation. Let us look for such submanifolds
E” of E’ for which the relevant embedding i” : E” — E’ satisfies the condition

an - ()*de’ = 0.

One can easily see that the latter condition is equivalent to the identity % = M”,
i.e., every cross-section p” : P— E” is an extremal of the induced problem L2,
Let us look more closely at the regular case of the embedding i’. Then, according to
the existence of local coordinates (15), there exists a natural projection n,_, : E’ —
— Je~1 and it is possible to check that the choice E” = J°~! with the embedding
i”=0:E"=J"1>PF satlsfymgne L 0" = identity (that means, o is a cross-section
of the ﬁbered manifold (B, m)_{, J°™ 1)) is the most reasonable one. (Indeed, in this
case E” is a maximal regular solution of the exterior system (17), cf. [1, Section 39,
point xii].) It may be also proved that in the latter case there exist functions S, ..., S"e
e C*(J°™ 1) such that

(18) (”)*@’ = a*¢’ = £ dS* A dx,,
at least locally. Then the condition (17) is clearly equivalent to the system
(19) 8S'oy} = a*pl,, L oS'fox' = —o*H
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which appears as a variant of the Hamilton— Jacobi equation. The latter equation
can be easily solved using the classical method of characteristic strips.

As a rule g : Je°! = E’ is not a regular embedding and in order to ensure the
inclusion p’ = g o p” € £%, the mapping p” : P— J¢~! must satisfy the correspond-
ing additional conditions of the type (8). Choosing the vector fields 9/dp}; for the
relevant transverse family, one can immediately check that the mentioned conditions
are

(20) P)*oj=0 (Il <e),

i.e., they are identical with the contact conditions. Since they are plainly equivalent
to the first group of the Hamilton equations (16), the second group (16) may be
considered as a little intricate reformulation of the embedding relation p’ = ¢ o p”
of an extremal p’ € £2” into the submanifold E” = J¢~! of E’.

Given an arbitrary mapping p’ € M’ (in particular, an extremal p’ € £2”) the
question arises whether the subset p’(P) may be embedded into a submanifold E”
satisfying (17). By other words, given p’ : P — E’, we seek the embedding i’ satisfying
(17) such that p> = i” o p’ for certain map p” : P — E”. As usual, we shall mention
only the above case E = J°~! and i” = ¢. Then the embedding conditions are
expressed by the first group of equations (19), i.e., by the identities

@D (.- © p)* 0S'[0y] = (P)*Ph;-

The functions S, ..., S~ ! may be chosen arbitrarily but satisfying (21). The remain-
ing function S” could be determined from the arising initial value problem

(22) oSYox" = —h(..., x', ..., aS"/oxk, ..., dS"/dyl, ..),
as" . .

(23) 5 (ers X'y s y,( )y eer) = Doy X5y 000,
oyr '

following from (19). Here 7} = (p)* y}, pi = (p)* p); and h = o*H + 8S*/ox*
(sumoverk=1,...,n — 1).

The familiar method of characteristic strips which may be employed for solving
the problem (22), (23) is a little simplified since the right hand side of (22) does not
contain the unknown function S". On the other side, however, the most important
case when p’ € £2” leads to some additional troubles since then the initial conditions
(23) are given on a characteristic submanifold. This is a familiar result, of course,
at least in the case e = 1 and we refer to [1, Section 39, points viii and ix] for
a conceptual proof.

6. Second example. Let us return back to Section 4. We should like to remove the
abundance defect and for this aim, let us analyse the conditions.(7) more thoroughly.
Remind that the choice Z* = d/op}; yields the contact conditions (p*)* v} = 0
(1 1] < e). One can see that the choice Z* = 9/dy] leads to the conditions (12),
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(24) (e)* (@ /oy] — pl,) dx — Zdpj;Adx) =0 (0 < |I|<e),
(pH)* (@f 13y’ . dx — ZdpiAdx) = 0 (1) =0).

If we know an extremal pe &% then (excepting the cases n =1 or e = 1) the
corresponding extremal p* € 8%t over p (i.e., satisfying p = n} o p*) cannot be
uniquely determined from these conditions since they all involve only the cyclic
means p{ 1y It follows that according to the one-to-one correspondence p* = i’ o p’
between the sets £2* and £%°, there always exists an extremal p’ € £%° over p
but it is not uniquely determined.

In order to remove this abundance defect, a narrower submanifold of E* than
the original manifold E’ is needed. We may state only the final result here omitting
the lengthy proof, cf. [1, Section 29].

We begin with the abbreviation u{ = p/, (0 < | I| £ e, I nondecreasing) and let
v}, € C*(E*) be certain functions labeled by j = 1, ..., m and by all not nondecreasing
multiindices Ji with i = 1, ...,nand I = i;, ...,i;i (0 <s<e; i, ..., =1,...,n)
already nondecreasing. We shall make the following assumptions. At first, every
function v}; may depend only on the coordinates of the type

Xoyb (Il <e), phe ((IIS|T).
At second, the family of functions

xX,vi (I1<e), uf (I1Se), vl 0O<]|I|<e

may serve for a local coordinate system on E*. '
~ With these assumptions, the sought new submanifold E’ of E* is defined by the
conditions

25 @*@floyi —u)=0 (I|=e), @*vi;=0 0<|I|<e),
so that in the regular case (13), the functions
(26) xyi (Il<e), uf O<|I|Ze)

may serve for local coordinates on E. The form d¢’ is expressed by (14) with addi-
tional relations (25) among the variables involved. Then the main result claims that
in the regular case (13), the relationp = ng o i’ o p’ yields a one-to-one correspondence
between the sets 6% and £%°. Note that the Hamilton system for the extremals
P’ € 6%’ may be effectively written down but we refer to [1, Section 27] and instead
turn to some more popular subcases of the last result.

7. Third example. The above assumptions can be most easily realized by taking
v}; = p};. Then (24) simplifies into

@)*pli=0 (Ii not nondecreasing),

(@)*@f /oyl — p}) =0 (| I| = e, I nondecreasing).
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The functions
1)) x,y0 ((Il<e), pi (0<|I|Z e, Inondecreasing)

may be used for coordinates and we obtain the Hamilton system

Aot = (PP, zap)phior = —(p)* 2o
. 8 oyt .
for the extremals p’ € £2°. Note that the sum runs over all indices 7 but only the
nondecreasing multiindices I are taken into account. Unlike (16), we have a determin-
ed system of partial differential equations and the relation p = ny oi’ o p’ between
the sets 8% and X’ is one-to-one in the regular case (13).

8. Fourth_example. Another realization of the assumptions of Section 6 is provided
by the choice

U{i = P{i - P{'i' i~ I’i’)

with Ji not nondecreasing but re already nondecreasing. This particular case is
very suggestive and popular.

If we deal with the regular case (13), the functlons (27) may be taken for local
coordinates on E’. As usual, it is useful to introduce the convention pl = pi, when-
ever I ~ I’. Keeping this in mind, the ex pression of the form d¢’ is again (14) but
the Hamilton system for the extremals p’ € §%” looks quite another than (16) and
is as follows:

3 i i ’- aH > j i > aH
BE) ol = G S, LA = ) S

Pr

The first sum is taken over i’, I’ with I'i’ ~ I. In the second group of equatlons, the
above symmetry convention must be taken into account.

Remind that the relationp = ng o i’ o p’ yields a one-to-one correspondence between
the sets 8X and EX.

9. Several remarks. At first, we shall briefly mention the non-regular variational
problem. For this aim assume that (13) fails and there exist exactly ¢(c = 1) linearly
independent vector fields

=Xwlko/dy} (k=1,...,c;sumoverjand [, |I| =e)
on the space J¢, solutions of the system
*ofloyidyt =0  (I=|I'| = e, sum over j and I).

One can then prove that the relationp = ng o i’ o p’ yields a one-to-one correspondence
between extremals p € 8% and extremals p’ € X’ satisfying the additional conditions

2wk op)*yilott =0 (k =1, ..., c; sum over j, I, i).
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On the other side, the unpleasant presence of ¢ additional conditions is ballanced
by the fact that the form ¢’ can be expressed. by the coordinates

i O=|Il<e), p} O<|I|<e)

and certain parameters i, ..., u€ ¢, where C is the number of coordinates pi(| I | = e).
It follows that the number of variables appearing in the Hamilton system for the
extremals p’ € 6% is diminished on c. We refer to the paper [ 1] for more informations.

At second, we shall mention the Hamilton—Jacobi equation. Dealing with the
example of Section 7, one can derive the corresponding Hamilton — Jacobi equation
(19) quite analogously as in the Section 5. An important difference appears, however,
since the condition (’)* pj, = 0 (Ii not nondecreasing) together with (19) imply the
unpleasant restrictions

0S'/oy} = 0  (Ii not nondecreasing)

for the sought unknown functions S, ..., S". It follows that S' may depend only
on the variables x',y{ ,, the function S> may depend only on x',y] ;, ,, and
so on. It is not difficult to find a solution satisfying these constrants but if we try to
embed a given extremal then the problem (22), (23) cannot be in general resolved.
The matter get worse for the popular symmetrical variant of Section 8. In this case,
the Hamilton —Jacobi equation should be resolved under the constraints

0S'joyi = 8sYoyl.  Ii ~ ')

and already the existence of any solution is not evident. Possibly some embeddability
results can be derived for the case considered in Section 6 for an appropriate choice
of the functions vj;, but nothing is known in this direction.

10. Fifth example. We shall essentially alter the choice of e, d and U for the first
time here. We put d = 2¢ — 1 and the module U will consist exactly of all forms (9)
where aj; € C*(J% are arbitrary functions and | /| < d. One can verify that the
conditions (3) lead to the same Euler—Lagrange system (10) as before. It follows
that the projections 7l o p of the present extremals p e 8% are identical with the
extremals considered in Section 4. ‘

Turning to the Hamiltonian theory, we introduce the space E* = R°xE(E = J9)
with coordinates

i (I1sd), pli O<|Il<d

and the form (11) on the space E*. In general, the problem £2* suffers both from
the abundance and the shortage defects. We are directly going to remove them but
restricting only on the modification of the general construction of Section 6.

The final result is as follows. Let us abbreviate u} = p{;, (| I| < d, I nondecreas-
ing) and let v}; be certain functions labeled by the same indices j, I, i as in Section 6.
We moreover assume that every function v}, does not depend on the coordinates

of the type p}» (I I'| < | I|) and the family of functions
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0 (I12d), u O<|I|Se), v O<|I|<e),
Pl (es1Il<d
may serve for a local coordinate system on E*. Then denoting by
o' = dlox' + Tyl dloy; (i=1,..,n)

" the so called formal derivatives, we introduce the submanifold E’ of E* defined by the
‘requirements

(@)*@ffoyi —u) =0 (1]=e),
(28) O)*@floy] —u)) =@ *pli  (Il=e—-k+1, 1<k<e),
(@)*vfi = O<|I|<e),
@) *ph = (esiI|<a),

on the relevant embedding i’ : E’ - E™*. Note that the first two groups of the above
requirements cannot be altered if one wish to remove the shortage defect, cf. the
relations (12), (24). The functions v}; in the third group may be, however, chosen
with a large degree of generality, even nonlinear, so that many recent results are
included as a very particular case of our construction, cf. 3], [4]. At last, the fourth
group of requirements (28) ensures that in certain favourable cases stated below the
higher order derivatives yj (| I| = e) can be eliminated out of the corresponding
Hamilton system for the extremals p’ € §2° and we obtain exactly the same final
~ result as in Section 6 above but under stronger limitations.

Let us go to more details. At first assume that the second requirement (28) does
not introduce any further relations among the functions (26) than the remaining require-
ments, i.e., than the requirements (25) appearing already in Section 6. In other words,
assume that the relations (28) can be locally resolved with respect to certain subfamily
of the higher order jet variables y} (| I| > e). Still in other words, assume that the
corresponding Jacobian

29) (@*f Loy oyt + 2 0@'()* p1)loy))

of (28) with respect to the variables yj (| I| > e) possesses the maximal possible rank
equal to the number of conditions (28). (Note that the rows of (29) are labeled by
j’=1,...,mand all I’ with e < | I’| £ d, the columns by j = 1, ..., m and I with
1 £ | 1] < e.) At second assume the regular case (13). Under these assumptions, the
functions (26) together with a maximal family of higher order varibles yj (| I| > e)
functionally independent on the manifold E’ (i.e., not interrelated by (28)) constitute
a coordinate system on E’. But the form d¢’ is expressed by the formula (14) with
relations (25) among the variables involved. In particular, none of the higher order
variables yj (e < | I| < d) is present and the Hamilton system is exactly the same as
in Section 6.

So we may conclude that under the regularity assumption (13) and under the
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maximum rank assumption of (29), the relation p = ngy oi' op’ between the sets
EX and X’ is one-to-one. So we have the same result as in Section 6 but under
much more restrictive conditions.
One can easily see that the coordinates u} can be completely eliminated and only
the jet variables
x,y; O=I=4d)

may be used for the coordinate system on E’. It follows that all investigations of the
present Section can be expressed in terms of the jet variables. This is however a pure
theory and it seems that nobody is able to write down explicitly any Hamilton system
using only the jet variables. In any case, we cannot consider the approach of the
present Section as an appropriate one.

11. Sixth and the last example. We enter with the same underlying fibered space
(E, n, B) = (J° n° B) and differential form ¢ = fdx(fe C*(J%)) as in Section 4,
but the new module U will consist of all at least 1-contact n-forms, i.e., A consists
of all n-forms of the type
30) « = Tajwj Adx; + Tof A wj A8,
where aj; € C*(J°) are arbitrary functions and 9. are arbitrary (n — 2)-forms on J°.
The first summand of (30) may be identified with the form (9) so that p*w} = 0
(1 1| < e) for every extremal p e &% (cf. Section 3). The last identities easily imply
that all summands behind the first one in (30) are inessential for the defining condi-
tions (3) of extremals and it follows that the Euler —Lagrange system is the same
as before.

Although the Hamiltonian approach accompanied with the present setting of the
variational problem is very natural from the point of view of general theory of partial
differential equations, little results are available for the time being. For this reason,
we restrict on several remarks in order to illustrate the arising difficulties.

First of all, in order make the representation (30) more explicit, we introduce the
notation

dx! = dx"* ... dx", o) =l A..A0l, dy, =dyfi A Ay,

where I =i, ...i;, J =j; ...j, and S = (I, ..., I,) is a multiindex consisting of
multiindices of the common nondecreasing type. Then the form « may be written
more explicitly as the sum

a=XayolAdX  (@feCc®I), 1L\ JLIII+ || =n).

According to Section 2, the Hamiltonian approach should handle the exterior form
(31 ' ot = fdx + Lpylwl Adx!
with coefficients p’’ playing the role of the variables along the- fibres of the auxiliary
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fibered space (E*, nz, E). Following the general lines of Section 2, the Hamilton
system for the extremals p* € 2" and p’ € £2 is determined from the correspond-
ing forms do* and d¢’ = (i")* d¢*, respectively. Here the form ¢ * must be rewritten
using the Hamilton function H uniquely determined by

(32) ot =Zpildy) A dx' — Hdx.

The interdependence amorig the functions (i’)* py' and the Hamilton function H
seems to be, however, very complicated in the general case and it is not easy to follow
this way. A slightly better approach (suggested by Carathéodory, cf. also [2, part II,
Section 19]) uses an interesting decomposition of the form ¢*.

For this aim, suppose f # 0. One can then easily verify that the formula (31) can
be rewritten as

(33 et =fEANLAE +TOEAY,,

where & = dx' + Zpjwl/fand 9, (| J| = 2) are certain (n — 2)-forms. Then the
conjecture 9% = 0 yields a quite interesting Hamilton system

; dlnH dinH
ap)*yijol = » T Zap)*phjol = (p)t ———
@)*nlol = —(p' ) —— ol (P)*ph/oC = (P')*: o

Here H = det (6! — Zpjyl./f) is the new Hamilton function, w}, = Zo'pf./f are
new Legendre coordinates where v'!’ are entries of the inverse matrix
. (5: - zp;.iy{i’/f)—l = (”ﬁ’):
the linear forms ¢’ are defined by
¢ = dx* + Zo%pl, dyilf
and, at last, /3’ are nonholonomic derivatives defined by the identity

gl A AL = —(=1F'dg AL A o ACTUALH A L AL

The latter Hamilton system possesses very nice invariance properties and there exists
a large variety of another reasonable conjectures on the forms 9% for the particular
case e = 1, cf. [2, part II, Section 20]. Nothing is however known for the general
casen> l,e> 1.
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