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ANOTHER APPROACH TO THE CLASSICAL 
CALCULUS OF VARIATIONS III 

J. C H R A S T I N A 

(Received September 9, 1985) 

Abstract. The article concludes the previous investigations of the same author on formal analysis 
of the most fundamental concepts of the classical calculus of variations and consists of a brief over­
view of the general theory and several examples devoted to the interrelations between the Lagrange 
and the Hamiltonian approaches. Complete proofs and some other results will be published 
elsewhere. 

Key words. Euler—Lagrange system, Hamilton system, Hamilton—Jacobi equation, regular 
and singular variational problem. 
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The primary version of the present paper was based only on the results of the 
preceeding parts [2] and dealt with applications of the general theory to some 
familiar variational problems. But the publication was delayed and in the meantime, 
it becames not actual. Moreover, the proceeding parts prove to be unsatisfactory 
from the contemporary point of view and the author decides to compile a more 
thorough and complete exposition for the interesting fibered case. Alas, the resulting 
paper [1] is excessively long for this Journal. A part of the achievements can be, 
however, easily understood and explained within the framework of [2] and ap­
propriately concludes them. So we hope that a brief survey may be useful. In order 
to make the present paper as self-contained as possible, we recall the most important 
general principles of our method. We also call some attention to the terminology 
which being adapted to [1] slightly differs from the preceeding parts [2]. 

1. Introduction. Let M be a manifold, P a compact oriented ^-dimensional 
manifold (n ^ 1) with boundary Q, d : Q -» P the natural inclusion of the boundary. 
Let cp (i/0 be an exterior differential /z-form ((n - l)-form) on M9 21 (33) be a given 
submodule of the Cco(M)-module of all «-forms ((n - l)-forms) on M. 

We shall consider the space V of all embeddings p :P*+ M and the subspace P 
of V consisting of all such p that satisfy the requirements 
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0 ) p*a = 0 (ae9l), (p o d)*0 = 0 (/?e»). 

We are interested in critical points of the functional 

(2) F(P)= f p > + J(Po3)*^ 
P Q 

on the subset P of V. This is a very general setting of the familiar Lagrange problem 
denoted here by J£?^, for brevity. 

In order to simplify the exposition, we shall restrict only on the interior phenomenae 
completely omitting the behaviour of the mapping p e Fat the boundary Q. Following 
this point of view, the data Q, 3, \J/9 -B are not longer needed and a mapping peP 
is called an extremal (to the problem £?&*) if p*a = 0 (a e 91) and the identity 

(3) p*Z_Ad(cp + a) = 0 

is satisfied for an appropriate a e 91 and all vector fields Z on M. (Note that the nota­
tion slightly differs from [2] where the difference <p — a is used. The present choice 
is in better accordance with the classical formulae.) The set of all mentioned extremals 
will be denoted &X. Note that the form cp + a is a far going generalization of the 
famous Cartan—Poincare form and (3) appears as a brief record of the Euler— 
Lagrange system. 

We shall deal with the fibered modification of the above concepts which is as 
follows. The previous manifold M is replaced by the total space of a fibered manifold 
(£, 7i, B), n :E-+ B being the fibered space projection of the total space E onto the 
base B. The manifold P is retained but assuming dimP = n = dim/?, we choose 
a fixed embedding ijj :P-+ B and instead of the previous space F, we shall deal 
with the space Af of all mappings p :P-+ E that satisfy n o p = /J. (In other words, 
we consider the space M of all cross-sections of the fibered manifold (E, n, B) over 
the subset i^(P) of the base B.) Quite analogously as before, <p is a given H-form on .E 
and 91 is a given C°°(is)-module of certain w-forms on £. We are interested in extremals, 
i.e., in mappings peM satisfying p*a ==0 (ae9l) and (3). Note that it is quite 
sufficient to consider only the n-vertical vector fields Z in the condition (3), i.e., the 
vector fields Z on E satisfying Zn*g = 0 for all functions g e Cco(B). (See [2, part I, 
lemma 9].) 

We shall deal only with the fibered modification of the problem J£?^ from now on. 

2. The Hamiltonian approach. In the particular case 91 = {0}, the trivial module, 
the extremals p e SX are defined by the single identity 

(4) p*Z_Adq> = 0, 

where Z runs over all n-vertical vectors on E. If the form dcp admits certain simple 
(we say canonical) expression in a special local coordinate system (in canonical 
coordinates) which can be achieved by performing an appropriate transformation 
(the Legendre transformation) of the original variables, then the condition (4) turns 
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into the familiar Hamilton system. One can also say that every procedure which 
permits to reduce a general problem S£& with 21 y- {0} into an equivalent Lagrange 
problem with the relevant module 21 trivial is the Hamiltonian approach to the 
variational problems. 

A possible construction of the last kind may be outlined as follows. Starting with 
an arbitrary problem S£0>y we begin with introducing another Lagrange problem 
noted $£0>+ and determined by certain new data (_E+, n+,B+), <p+, 2l+ where 
B+ = _5, 2X+ = {0} and the remaining objects _E+, 7t+, q>+ are specified below. Note 
besides that the original objects P and ij are retained and the boundary data Q, 5, ^ + , 
23+ are not important for us. 

Going to the details, we assume (for simplicity) that every form a e 21 can be uni­
quely represented by a sum 

(5) a = a V + ... + acac (a\ ..., 0ceC°°(£)), 

where a1, ..., ac e 21 are certain fixed forms and a1,..., ac are arbitrary. Then we put 
E+ — RcxE with coordinates in thelirst factor noted p1, ...,pc. At last we choose 

(6) q>+ = (n+)*q> + p\n+)*oil + ... + pc(7T+)*ac 

for the sought form q>+ on E+; here appears the obvious projection n+ :E* -*• E 
and we put n+ = n <> n+ :E+ -+ B. One can verify the most important property of 
these objects; every form of the type q> + a (a e 21) possesses a unique representation 
by the pull-back of the type q> + a = o*q>+ with an appropriate cross-section 
a :E-+E+ of the fibered manifold (_E+, n+,E); compare with [2, part II, Section 4] . 

With these new data in mind, we are interested in critical points of the functional 

^+(p+) = J ( p + » + + J(...) 
P Q 

on the set M+ of all mappings p+ :P-+E+ satisfying n+ °p + = ij (here n+ = 
= n o rc^) and some boundary conditions not specified above. The extremals p+ e 
e S9C+ are defined by the corresponding conditions (4), of course, i.e. by the require­
ment 

(7) (p+)*Z+_ldq>+ = 0 

where Z + runs oyer all n+-vertical vector fields on the space E+. 
The main point of the construction consists in the fact (not proved here) that 

the relation p = n+ <> p+ maps the set of all extremals p+ e &3£+ onto the set of all 
extremals p e 89C of the original problem. (Cf. [2, part II, Section 5].) 

The problem %&+ already possesses the sought property 21+ = {0}. However, 
it currently suffers from two defects. At first, the extremals p+ eS3C+ need not fill 
the space E+ up (the shortage defect) in the sense thafall sets p+(P) (p+ e £2£+) may 
lie in a proper submimifold £9 of E+. By other words, there may exist a proper 
embedding f : & -• l£ of a manifold E' into the manifold E+ ofthe property that 
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every extremal p+ e&2C+ can be decomposed as p+ = V ° p9 where p9 :P->E9 

is an appropriate mapping. At second, many extremals p+ may lead to the same result 
p = TT+ o p+ e <f #* (the abundance defect) and it follows that it is sufficient to handle 
only some particular extremals p+ e $9£+ in order to get all extremals p e £%. At 
our stage of understanding the problem, it is a matter of taste which extremals p+ 

are left out. (From the more advanced point of view, the Hamilton—Jacobi equation 
and boundary conditions should play a crucial role here, cf. [l].) For example, 
it may be sufficient to handle only that extremals which lie in an appropriate sub-
manifold of E+ narrower than the above mentioned E9. 

The final conclusion is that we are led to investigating some other Lagrange 
problems induced on an appropriate submanifold of the total space E+. 

Having this in mind, let i' :E9 -> E+ be an embedding of a manifold E9 into E+. 
We shall assume that the composition n9 = n+ o V :E9 -> B is a surjective sub­
mersion. Then we may introduce a new Lagrange problem noted S£0>9 and called the 
problem induced on E9 by the problem <£&+. It is defined by the data (£ ' , n', B9), 
<p\ 81' where B9 = B, <p9 = (f)*P+ , 81* = {0}, the original objects P and /J are 
retained and the boundary data are unimportant. 

One can easily see the following simple fact: Ifp' : P -* E9 andp+ = V o p' e 8X* 
thenp ' e &%* (the extremals of &&9). The converse is in general not true; the relation 
p9eS&9 does not necessarily imply p+ = i" <>p9 e89£+. Additional requirements 
ensuring the last inclusion will be formulated in terms of certain n+-vertical vector 
fields on E+. So let 21+ be a family of such vector fields. Assume that the family 81+ 

is transverse to the submanifold E9 of _E+. (That means, for every x eE> the set of all 
vectors V+ (V+ e 8l+ , y = i9(x)) together with the linear subspace AV(TXE9) of the 
tangent space TyE

+ span the whole tangent space TyE
+.) Necessary and sufficient 

conditions ensuring the inclusion p+ = i* © p' e &9£+ for a given extremal p' 6 $9£9 

can be expressed by 

(8) (p')* ((/')*K+ __! d<p+) = 0 (V+ e 8l+). 

Note at last that the embedding i' is called regular if (V)*V+ __I dq>+ = 0 for an 
appropriate family 81+ of the mentioned type. In the regular case we have p+ = 
= f o ^ ' e ^ + for fl«xp' e MT\ 

After these preparatory considerations, we are going to more concrete topics, 
namely to various settings of the classical multiple integral variational problem. 
In all examples below, we begin with transferring the original problem S£& into the 
corresponding auxiliary problem j£?^+ and then we try to remove the shortage and 
abundance defects. In all cases we obtain a nice Hamiltonian system completely 
equivalent to the original Euler — Lagrange system. 

3. General setting of the variational problem. We introduce the space M = RB+m 

with the coordinates x\yJ (i = 1, . . . , n\j = 1, . . . , m), B = Rn with coordinates xl 

(i = 1, ..., n) and the obvious projection nB : M -> B. If (M, nB9 B) is the relevant 
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fibered manifold, then the accompanying space of all d-jets of cross-sections will be 
shortly denoted Jd. The jet coordinates on Jd are 

xt>yL.j. (0 = s = d;i\ i'i,...,*s = 1, ...,n;./ = 1, ...,m). 

Only nondecreasing multiindices / = it ... is, it < ... < /s, are used here but in 
practise, in order to simplify some formulae, it is useful to introduce the convention 

yi = yi. ( / = i 1 . . . i s , r = i 1 . . . o 
whenever / is a permutation of / ' (which will be denoted / ~ / ') . Owing to this 
convention, we may confortably remind the contact forms 

cot = dyi - Xyii dxl (Ii = it... isi) 

on the space Jd
9 for every multiindex / = ix ... is with the norm | /1 = s < d. Note 

also that for every e ^ d9 there exists the obvious natural projection nd : Jd -• Jc 

forgetting the coordinates y\ (e < \ I \ = d). In particular, J° = M so that n% : Jd -> 
-> J° = M. We shall denote nd = n% o TC0 : J

d -> P. 
The underlying fibered space for the variational problems will be (E9 n9 B)9 where 

E = Jd, 7r = 7rd. The manifold P will be parametrized by the coordinates z1, ..., /n 

and the embedding i£ will be simply defined by tl = (/£)**'. We shall deal with the 
form 

<p = (7rf)*fd^ A ... A dxn (f eC°°(Je)), 

where the constants e9 d will be specified later on. At last, the module 91 will always 
include all «-forms of the type 

(9) ZaJM A dxt (dxt = - ( - l)r* dx1 A ... A d^"1 A dx l+1 A ... A dx") 

and, may be, some others. As usual, the boundary data need not be specified. 
One can easily see that the first group of conditions (1) implies p*(oj = 0 (| /1 < d), 

hence 

p*y{ = dsp*yjldtI (/ = ix ... i,, s<:d9dt* = dth ... dtis). 

It follows that the functional (2) may be rewritten as 

F(p) = j f(t\ ...9t^ ....dYyW, ^)dtx A ... Adtn + i(...). 
P Q 

This is the common multiple integral of the classical calculus of variations dependent 
on higher order derivatives of the variable functions p*y* e C°°(P). 

We shall now specify the constants d9 e and the module 91 in order to obtain some 
more concrete problems. J 

4. First example. We begin with the simplest and most economical but relatively 
unknown case by choosing d = e. At the same time, the module 21 will consist 
exactly of all forms (9) where aj. e C°°(JC)> | /1 < e9 are arbitrary functions. Inserting 
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such a form a = Sa^co/ A dxt into the condition (3), the coefficients a}n can be elimi­
nated and the familiar Euler —Lagrange system 

(10) 2 ( - l ) 5 d*(p* df/dy{)/dxl = 0 (j = 1, ...,*; sum over/) 

immediately appears. But this is a familiar story and we turn to the Hamiitonian 
theory. 

Following the general lines (cf. (6)) and omitting some pull-backs, we have the 
form 

(11) . <p+ = fd* + ZpiiCoi A dXi (dx = dx1 A ... A dx") 

where 

PJu (i = 1> -••-«'»/ = 1» . . , w;0 ^ | / | < e\ I nondecreasing) 

are new coordinates along the fibres of the fibered manifold (E+, n^E). The extre­
mals p+ e $9C+ are defined by the condition (7). Now the choice Z+ = d/dpii easily 
yields the requirements (p+)*coj A dx( = 0, that is, (p+)*cai = 0 for every | /1 < e. 
The choice Z+ = d/dyi is more interesting and especially, for the case | /1 = e, 
we get the conditions 

(12) (p+)*(df/dyi - pJ
{I}) = 0 (| /1 = e) 

with the so called cyclic means 

pJ
{l) = SpjT (sum over /', /' such that /'/' ~ /). 

It follows that the shortage defect is present and we are led to the submanifold £' of E+ 

for which the corresponding embedding /' :E9 -> E+ satisfies 

(r)*(dfl3yi-pin) = 0 (\I\ = e). 

One can see that the regular case takes place if and only if the classical criterion 

(13) det (d2f/dy\ dyfr # 0 (/ . / = 1, • • -, m; | / | = I /' I = e) 

is satisfied. Note that (13) is nothing else than the transversality condition for the 
family 2t+ of vector fields d/dyi (I -H = e) to the submanifold E\. 

The extremals p* e $3T can be defined in terms of the form 

(14) dcp9 = d(V)*<p+ = d(Lpii dy{ A dxt - H dx) = 
= Sdp/i A dyi A dx{ - d// A dx = 

where / / = p{/}y/ - fe C°°(E9) is the Hamilton function, if the regularity condition 
(13) is satisfied, then the functions 

(15) x\ yi,pii (0 g | /1 < e> I nondecreasing) 
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may serve for local coordinates o n F and the relationp+ = /' o p' yields a one-to-one 
correspondence between the sets $9C* and &%'. But we know that the set &3C* is 
projected onto the set 83C by n^. So it follows that the relation p = %\ op+ = 
= 7T£ o /' o p' maps the set g£* onto the set S%. 

Let us summarize the above results. In the regular case (13), we have the coordinates 
(15) on the manifold E\ In these coordinates, the Hamilton system for the extremals 
p' e gST can be explicitly expressed as 

(P)*(dyi - jLdxf) AdXi = (Py (dpi, + -yydx^jAdXi = 0 

or, in a semi-classical notation, 

(i6) d(Pyy
Jidti = GO* i ^ - , £ d(p)*P

Jiidti = -GO* -a/f 

3pii * 3y/ 

and, at last, as a Pfaffian system 

(10* (dyi - £ ~ dx<) = (p')*(dpf, + £ ftf H. dx>) = 0 

with new variables hJ
lii% related by the constraints E/i'ju = dHjdyi. Every solution p' 

of these systems yields a solution p of the Euler'—Lagrange system (10) by a simple 
neglecting the coordinates pJ

It. Conversely, every extremal p e S2£ can be obtained 
in such a manner (but in general from several extremals p' e S9C* since the abundance 
defect is not yet removed). 

5. A digression to the Hamilton—Jacobi equation. Let us look for such submanifolds 
£" of £" for which the relevant embedding /" : E" -• £" satisfies the condition 

(17) (/")*d<?' = 0. 

One can easily see that the latter condition is equivalent to the identity &ST" = M", 
i.e., every cross-section p" :P-+E" is an extremal of the induced problem $£&". 
Let us look more closely at the regular case of the embedding /'. Then, according to 
the existence of local coordinates (i5), there exists a natural projection n\lY :E* -+ 
-> J*""1 and it is possible to check that the choice E" = Je~l with the embedding 
/" = G : £ " = J*"1 -»£" satisfying7Tg_ x <>/" = identity (that means, a is a cross-section 
of the fibered manifold (E\ 7r^_l5 J

6"1)) is the most reasonable one. (Indeed, in this 
case -E" is a maximal regular solution of the exterior system (17), cf. [1, Section 39, 
point xii].) It may be also proved that in the latter case there exist functions S1 , . . . , S*e 
e C V 1 ) such that 

(18) (*'") V = * V = £ dS< A dxi9 

at ieast locally. Then ttie condition (i7) is clearly equivalent to the system 

(19) dSl/dyi = cr*pJi, i a s W = -**H 
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which appears as a variant of the Hamilton — Jacobi equation. The latter equation 
can be easily solved using the classical method of characteristic strips. 

As a rule a : 7 e _ 1 -+ E9 is not a regular embedding and in order to ensure the 
inclusion p9 = a °p" e ST, the mappingp" :P-+ Je~x must satisfy the correspond­
ing additional conditions of the type (8). Choosing the vector fields d/dpJ

n for the 
relevant transverse family, one can immediately check that the mentioned conditions 
are 

(20) (p")X==0 ( | / |<e ) , 

i.e., they are identical with the contact conditions. Since they are plainly equivalent 
to the first group of the Hamilton equations (16), the second group (16) may be 
considered as a little intricate reformulation of the embedding relation p9 = c ° p" 
of an extremal p9 e ST into the submanifold E" = J*"1 of E9. 

Given an arbitrary mapping p9 e M9 (in particular, an extremal p9 e S3C9) the 
question arises whether the subset p\P) may be embedded into a submanifold E" 
satisfying (17). By other words, given p9 : P -> £", we seek the embedding i" satisfying 
(17) such that p9 = i" o p9 for certain map p" : P -» E". As usual, we shall mention 
only the above case E = Jc_1 and i" = a. Then the embedding conditions are 
expressed by the first group of equations (19), i.e., by the identities 

(21) « - i o p ) * 3 5 i % / = (p')*p/I.. 

The functions S1 , . . . , 5 n _ 1 may be chosen arbitrarily but satisfying (21). The remain­
ing function Sn could be determined from the arising initial value problem 

(22) dSMdxT = -h( . . . , x\ ..., 3S73*\ ...,dSn/dy{9...), 

(23) ^ ( . . . ,x i , . . . , ^ / ( . . . ,x i , . . . ) , . . . )=p / n ( . . . ,x i , . . . ) , 

following from (19). Here y{ = (p9)*y{9 p
J
n =.(p')*P/. and h = G*H + dSk/8xk 

(sum over k = 1,..., n — 1). 
The familiar method of characteristic strips which may be employed for solving 

the problem (22), (23) is a little simplified since the right hand side of (22) does not 
contain the unknown function Sn. On the other side, however, the most important 
case when p9 e &%9 leads to some additional troubles since then the initial conditions 
(23) are given on a characteristic submanifold. This is a familiar result, of course, 
at least in the case e = 1 and we refer to [1, Section 39, points viii and ix] for 
a conceptual proof. 

6. Second example. Let us return back to Section 4. We should like to remove the 
abundance defect and for this aim, let us analyse the conditions (7) more thoroughly. 
Remind that the choice Z + = d/dpJ

n yields the contact conditions (p+)* co{ = 0 
(| /1 < e). One can see that the choice Z + = d/dy{ leads to the conditions (12), 
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(24) (p+)* ((df/dyj - p{l}) dx - Idp£ A dXi) = 0 (0 < | / | < e)9 

(p+)* (Bf/dy* . dx - Idp/ A dxt) = 0 • (| / | = 0). 

If we know an extremal p e ^#" then (excepting the cases n = 1 or e = 1) the 
corresponding extremal p+ sS9C+ over p (i.e., satisfying p = n+ op+) cannot be 
uniquely determined from these conditions since they all involve only the cyclic 
meansp[I} It follows that according to the one-to-one correspondence p+ = f op' 
between the sets &9C+ and 89C\ there always exists an extremal p' e <£#*' over p 
but it is not uniquely determined. 

In order to remove this abundance defect, a narrower submanifold of E+ than 
the original manifold E* is needed. We may state only the final result here omitting 
the lengthy proof, cf. [1, Section 29]. 

We begin with the abbreviation uj = p[l} (0 < | /1 ^ <?, / nondecreasing) and let 
vJ

ne C™(E+) be certain functions labeled by j = 1, ..., m and by all not nondecreasing 
multiindices // with / = 1, ..., n and / = i\, ..., is (0 < s < e\ il9 ..., /s = 1, ..., n) 
already nondecreasing. We shall make the following assumptions. At first, every 
function vn may depend only on the coordinates of the type 

*v>y£ (I/'!<•«). Pir (m = m ) . 
At second, the family of functions 

x\y[ ( | / | = e ) , u[ ( | / | = e ) , vJ
n ( 0 < | / | < e ) 

may serve for a local coordinate system on E+. 
With these assumptions, the sought new submanifold E' of E+ is defined by the 

conditions 

(25) (/')* (df/dyi - u[) = 0 (| /1 = e\ (/')* ^ 0 (0 < | / | < e\ 

so that in the regular case (13), the functions 

(26) x\y[ ( | / | < e ) , u[ ( 0 < | / | ^ e) 

may serve for local coordinates on E. The form dcp9 is expressed by (14) with addi­
tional relations (25) among the variables involved. Then the main result claims that 
in the regular case (13), the relation p = n + o /' o p' yields a one-to-one correspondence 
between the sets $9£ and S9C\ Note that the Hamilton system for the extremals 
p' G S3T may be effectively written down but we refer to [1, Section 27] and instead 
turn to some more popular subcases of the last result. 

7. Third example. The above assumptions can be most easily realized by taking 
vit ~ Pit- Then (24) simplifies into 

(/')* pJ
n = 0 (// not nondecreasing), 

(/')*(df/dyi ~ Pi) = 0 (\I\=e9Inondecreasing). 
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The functions 

(27) xl
9 y{ (| /1 < e)9 pj (0 < | /1 ^ e91 nondecreasing) 

may be used for coordinates and we obtain the Hamilton system 

d(pTyildti = GO* -22-, ^(pyptidt1 = -(P)* 2* 
dPh dyi . 

for the extremals p' e S3C\ Note that the sum runs over all indices / but only the 
nondecreasing multiindices // are taken into account. Unlike (16), we have a determin­
ed system of partial differential equations and the relation p = n^ ° V ° p' between 
the sets S2C and S9Cy is one-to-one in the regular case (13). 

8. Fourth example. Another realization of the assumptions of Section 6 is provided 
by the choice 

Vn = Pn - PIT (« ~ * '0 

with // not nondecreasing but /'/' already nondecreasing. This particular case is 
very suggestive and popular. 

If we deal with the regular case (13), the functions (27) may be taken for local 
coordinates on E\ As usual, it is useful to introduce the convention p\ = pj

l9 when­
ever / ~ /'. Keeping this in mind, the expression of the form dcp' is again (14) but 
the Hamilton system for the extremals p' e $9T looks quite another than (16) and 
is as follows: 

W)*W'/a'f = (P)*^TT. S dipWiJdf = - 0 0 * ^ r • 
dpi i dyi 

The first sum is taken over /', / ' with IT ~ /. In the second group of equations, the 
above symmetry convention must be taken into account. 

Remind that the relation p = n^ © V o p' yields a one-to-one correspondence between 
the sets S3C and ST. 

9. Several remarks. At first, we shall briefly mention the non-regular variational 
problem. For this aim assume that (13) fails and there exist exactly c(c ̂  1) linearly 
independent vector fields 

Wk = lwikd/dyi (k= 1,..., c; sum over; and /, 11\ = e) 

on the space Je
9 solutions of the system 

2W* d2f/dyi dyf = 0 (/ = | / ' | = e, sum over j and /) . 

One can then prove that the relation p = n\ o /' o p' yields a one-to-one correspondence 
between extremals p e SX and extremals p* e S9T satisfying the additional conditions 

-S(p')*n# d(pyyHdti = 0 (fc = 1,..., c; sum over j9 /, i). 

140 



CLASSICAL CALCULUS OF VARIATIONS 

On the other side, the unpleasant presence of c additional conditions is ballanced 
by the fact that the form <p' can be expressed, by the coordinates 

x\y{ ( 0 = | / | <e), p{ ( 0 < | / | <e) 

and certain parameters ul, ..., uc "c, where C is the number of coordinates p{(\ I \ = e). 
It follows that the number of variables appearing in the Hamilton system for the 
extremals P' e $$£' is diminished on c. We refer to the paper [1] for more informations. 

At second, we shall mention the Hamilton — Jacobi equation. Dealing with the 
example of Section 7, one can derive the corresponding Hamilton—Jacobi equation 
(19) quite analogously as in the Section 5. An important difference appears, however, 
since the condition (/')*/>/* = 0 (// not nondecreasing) together with (19) imply the 
unpleasant restrictions 

dSl/dyj = 0 (// not nondecreasing) 

for the sought unknown functions S1,..., Sn. It follows that Sl may depend only 
on the variables x\y{ x, the function S2 may depend only on xf-yi...i2...2» a nd 
so on. It is not difficult to find a solution satisfying these constrants but if we try to 
embed a given extremal then the problem (22), (23) cannot be in general resolved. 
The matter get worse for the popular symmetrical variant of Section 8. In this case, 
the Hamilton—Jacobi equation should be resolved under the constraints 

dSlldy{ = d&ldyl'. (Ii ~ 7*0 

and already the existence of any solution is not evident. Possibly some embeddability 
results can be derived for the case considered in Section 6 for an appropriate choice 
of the functions vJ

Ii9 but nothing is known in this direction. 

10. Fifth example. We shall essentially alter the choice of e, d and 91 for the first 
time here. We put d = 2e — 1 and the module 21 will consist exactly of all forms (9) 
where a{t e C°°(Jd) are arbitrary functions and | /1 < d. One can verify that the 
conditions (3) lead to the same Euler—Lagrange system (10) as before. It follows 
that the projections nd° p of the present extremals pe$9C are identical with the 
extremals considered in Section 4. 

Turning to the Hamiltonian theory, we introduce the space E+ = RcxE(E = Jd) 
with coordinates 

x\y{ ( l / l ^ d ) , p{i (0<\I\<d) 

and the form (11) on the space E*. In general, the problem SS&* suffers both from 
the abundance and the shortage defects. We are directly going to remove them but 
restricting only on the modification of the general construction of Section 6. 

The final rpsult is as follows. Let us abbreviate u{ = pfa (| /1 g d, / nondecreas­
ing) and let v{{ be certain functions labeled by the same indices/, /, / as in Section 6. 
We moreover assume that every function v{{ does not depend on the coordinates 
of the type pjr (| / ' \ < \ I \) and the family of functions 
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x\y[ (\I\£d)9 u[ ( 0 < | / | g e ) , v[{ ( 0 < | / | < e ) , 
p*n {e£\I\<d) 

may serve for a local coordinate system on E+. Then denoting by 

d* = d/dx* + Xyit dldyi (i = 1, ..., n) 

the so called formal derivatives, we introduce the submanifold E' ofE* defined by the 
requirements 

(iV(dfldy[-ui)^0 (\I\=e\ 
(28) (/')* (df/dyi - ui) = dKV)*pit (\I\=e-k+L 1 < k < e), 

( 0 * ^ = 0 ( 0 < | I | <e), 
(/')*p/f = 0 (<?= | I | <d) , 

on the relevant embedding /' : E -> E+. Note that the first two groups of the above 
requirements cannot be altered if one wish to remove the shortage defect, cf. the 
relations (12), (24). The functions v3

n in the third group may be, however, chosen 
with a large degree of generality, even nonlinear, so that many recent results are 
included as a very particular case of our construction, cf. [3], [4]. At last, the fourth 
group of requirements (28) ensures that in certain favourable cases stated below the 
higher order derivatives y[ (\ I \ > e) can be eliminated out of the corresponding 
Hamilton system for the extremals p' e $%' and we obtain exactly the same final 
result as in Section 6 above but under stronger limitations. 

Let us go to more details. At first assume that the second requirement (28) does 
not introduce any further relations among the functions (26) than the remaining require­
ments, i.e., than the requirements (25) appearing already in Section 6. In other words, 
assume that the relations (28) can be locally resolved with respect to certain subfamily 
of the higher order jet variables y[ (| I \ > e). Still in other words, assume that the 
corresponding Jacobian 

(29) (d2f/dy[ dy>r + I d(d'(0* pld/drf) 

of (28) with respect to the variables y{ (| I \ > e) possesses the maximal possible rank 
equal to the number of conditions (28). (Note that the rows of (29) are labeled by 
y = 1,..., m and all V with e < \ V \ g d, the columns by J = 1, ..., m and I with 
1 % 111 < e.) At second assume the regular case (13). Under these assumptions, the 
functions (26) together with a maximal family of higher order varibles y\ (\ I \ > e) 
functionally independent on the manifold E* (i.e., not interrelated by (28)) constitute 
a coordinate system on E. But the form dq>' is expressed by the formula (14) with 
relations (25) among the variables involved. In particular, none of the higher order 
variables yi (e ^ | I | g d) is present and the Hamilton system is exactly the same as 
in Section 6. 

So we may conclude that under the regularity assumption (13) and under the 
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maximum rank assumption of (29), the relation p = n^ o f o p' between the sets 
$9C and &9T is one-to-one. So we have the same result as in Section 6 but under 
much more restrictive conditions. 

One can easily see that the coordinates u\ can be completely eliminated and only 
the jet variables 

x\y[ (0 = / ^ d ) 

may be used for the coordinate system on E\ It follows that all investigations of the 
present Section can be expressed in terms of the jet variables. This is however a pure 
theory and it seems that nobody is able to write down explicitly any Hamilton system 
using only the jet variables. In any case, we cannot consider the approach of the 
present Section as an appropriate one. 

11. Sixth and the last example. We enter with the same underlying fibered space 
(E,n,B) = (Je,ne,B) and differential form <p = / d x ( / e C°°(7e)) as in Section 4, 
but the new module 21 will consist of all at least 1-contact w-forms, i.e., 91 consists 
of all H-forms of the type 

(30) a = S aJ
nco{ A dxt + I coj A coj'. A S/f, 

where a{t e C°°(Je) are arbitrary functions and SJ/j. are arbitrary (n — 2)-forms on Je. 
The first summand of (30) may be identified with the form (9) so that p*coJj == 0 
( | / | < e) for every extremal p e $2E (cf. Section 3). The last identities easily imply 
that all summands behind the first one in (30) are inessential for the defining condi­
tions (3) of extremals and it follows that the Euler — Lagrange system is the same 
as before. 

Although the Hamiltonian approach accompanied with the present setting of the 
variational problem is very natural from the point of view of general theory of partial 
differential equations, little results are available for the time being. For this reason, 
we restrict on several remarks in order to illustrate the arising difficulties. 

First of all, in order make the representation (30) more explicit, we introduce the 
notation 

dxl = dxil ... dxis, a3, = coi[ A — A ^/r' dX/ = 4Vzl A — A dyiv> 

where I = i\ ... is9 J =y\ ...jr and / = (11,...,1r) is a multiindex consisting of 
multiindices of the common nondecreasing type. Then the form a may be written 
more explicitly as the sum 

a = Xa'/cDi, A dx1 (aJ/eC^J*), 1 g | J |, 11\ + | J \ = n). 

According to Section 2, the Hamiltonian approach should handle the exterior form 

(31) cp+ = fdx + Xp/coi, A dx1 

with coefficients pJ/ playing the role of the variables along the fibres of the auxiliary 
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fibered space (E+,n^,E). Following the general lines of Section 2, the Hamilton 
system for the extremals p + e &$C+ and p' e $%' is determined from the correspond­
ing forms dq>+ and dq>' = (/')* d<p+, respectively Here the form cp+ must be rewritten 
using the Hamilton function H uniquely determined by 

(32) <p+ = lpJ/ dy3, A dx1 - H dx. 

The interdependence among the functions (/')*p£7 and the Hamilton function H 
seems to be, however, very complicated in the general case and it is not easy to follow 
this way. A slightly better approach (suggested by CarathSodory, cf. also [2, part II, 
Section 19]) uses an interesting decomposition of the form <p+. 

For this aim, suppose / 7-= 0. One can then easily verify that the formula (31) can 
be rewritten as 

(33) cp+ = f ^ 1 A . . . A r + I c t > i r A ^ , 

where £' = d*' + Zp^coj/fand 9j (| J | ^ 2) are certain (n — 2)-forms. Then the 
conjecture S£ = 0 yields a quite interesting Hamilton system 

d(pWild? = - ( P T ^ ~ > ZdipWiM = (PY ^ - • 
dwJ

n dyj 

Here H = det(<5) — IpAy/f./f) is the new Hamilton function, wn = HviVpJ
IV/f are 

new Legendre coordinates where y"' are entries of the inverse matrix 

the linear forms C* are defined by 

C = dxi + ?,vii'pii.dy{lf 

and, at last, d/d^ are nonholonomic derivatives defined by the identity 

dg/d?. C1 A ... A C" = - ( - 1 ) 1 dg A C1 A ... A C'"1 A C' + 1 A ... A f". 

The latter Hamilton system possesses very nice invariance properties and there exists 
a large variety of another reasonable conjectures on the forms $, for the particular 
case e = 1, cf. [2, part II, Section 20]. Nothing is however known for the general 
case n > 1, e > 1. 
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