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Abstract. Various properties of injective modules and generalizations are studied. Quasi-
Frobeniusean and pseudo-Frobeniusean rings are characterized. 
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INTRODUCTION 

In this sequel to [10], certain properties of injectivity and generalizations are 
considered. The concept of injectivity is one of the fundamental concepts in the 
theory of rings and modules (cf. [3], [4], [5]) and has been extensively studied since 
several years. CE-injective modules, introduced in [10], are here further developed. 
This note contains the following results: (1) If A is a prime left self-injective regular 
ring, then for any left ideals 2?,D with an isomorphism g:B « D, there exist left 
ideals U, V containing B, D respectively and an isomorphism f: U « V extending g 
such that either U = A or V = A\ (2) If M is a CE-injective left .̂ -module such that 
any left submodule isomorphic to a complement submodule is a complement sub-
module, B = End (AM), the following are then equivalent; (a) B is semi-perfect; 
(b) fevery simple left 2?-module has a projective cover; (c) B contains no infinite set 
of orthogonal idempo tents; (3) A is left and right pseudo-Frobeniusean iff the injective 
hull of every simple left ^-module and the injective hull of every cyclic projective 
right .̂-module are projective; (4) A is quasi-Frobeniusean iff every left .̂ -module 
has an injective projective left cover; (5) The following conditions are equivalent: 
(a) Every factor ring of A is quasi-Frobeniusean; (b) A is a left GFC ring such that 
the injective hull of every cyclic left Al-module is cyclic projective; (c) The injective 
hull of every cyclic left .4-module is cyclic projective and every simple left .̂-module 
has a projective cover; (6) A is semi-simple Artinian iff A is a left' p.p. ring such that 
every simple left _4-module has a p-injective projective cover. 

Throughout, A denotes an associative ring with identity and ̂ -modules are unital. 
Z, J will stand respectively for the left singular ideal and the Jacobson radical of A. 
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An ideal of A will always mean a two-sided ideal and A is called left duo if every left 
ideal of A is an ideal. A left (right) ideal of A is called reduced if it contains no non
zero nilpotent element. A left ^-module M is called p-injective if, for any principal 
left ideal P of A, every left .A-homomorphism of Pinto M extends to one of A into M. 
A is von Neumann regular iff every left (right) A-module is flat if every left (right) 
A module is p-injective. In general, there is no inclusion relation between the classes 
of flat modules and p-injective modules. However, if K is a maximal left ideal of A 
which is an ideal, then AA/K is flat iff A/KA is injective iff A/KA is p-injective. For any 
left A -module M9 Z(M) = {ye M\l(y) is essential in AA) is the singular submodule 
of M. M is called singular (resp. non-singular) if Z(M) = M (resp. Z(M) = 0). A is 
called semi-local if A/J is Artinian. 

We start by considering non-singular left ideals in left self-injective rings. 

Lemma 1. Let A be a left self-injective ring. If I is a non-singular left ideal of A, 
for any bel9 Ab is generated by an idempotent. 

Proof. Let 0 ^ b e /, K a non-zero complement left ideal of A such that L = 
= 1(b) ® K is an essential left ideal. If / : Kb -> A is the map kb -> k(k e K), since 
AA is injective, there exists ce A such that f(kb) = kbc for all keK. Therefore 
K s l(b - bcb) which implies L s l(b - bcb)9 whence b -bcbe Z(I) = 0. Thus 
Ab = Ae9 where e = cb is idempotent. 

Proposition 2. Let A be a left self-injective ring containing a non-singular left ideal I. 
If B9 D are left ideals of A contained in I with an isomorphism g :B « D, there exist 
injective non-singular left ideals U0, V0 containing B9 D respectively with an iso
morphism / 0 : U0 « V0 extending g9 and injective non-singular left ideals P, Q which 
do not contain any non-zero mutually isomorphic left ideals of A such that U0® P = 
= V0 ® Q is the injective hull of I and PQ = QP = 0. //, further, A is semi-prime, 
then there exist central idempotents ui, vL of A such that P g Aut, Q e Avx, Pvx = 
= Qu, = 0. 

Proof. The set of essential extensions of AI in AA has, by Zorn's Lemma, 
a maximal member C which is a complement left ideal of A. Then AC is the injective 
hull of AL Also AC is non-singular by [8, Lemma 2]. Consider the set E of elements 
(U9 V9f)9 where U9 Fare left ideals of A in C containing B9 D respectively and/ : U « 
» F extending g, ordered by the following: (V9V9f) g (£/', V',/') iff Ug U', 
K i T a n d /'extends / Then, by Zorn's Lemma, E has a maximal member 
(U09 V09f0). If U9 V are the injective hulls of U09 V0 respectively in AC9 then f0 

extends to an isomorphism of Uinto V. By the maximality of (U09 V09f0)9 we have 
U = U09 V=V09 whence C =U0®P=V0® Q9 where P = Au9 Q = Av9 w, i; 
being idempotents in C, and P, Q do not contain any mutually isomorphic left ideals. 
We claim that PQ = 0. Suppose the contrary: if b e A such that ubv ^ 0, h : Au -* .At; 
the map defined by A(aw) = aubv for all a e A9 then A(̂ 4w) = Aw9 0 ^ w = w2 e Av 
by Lemma 1, whence ker h is a direct summand of AAu. Therefore Au = ker h ® Az9 
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0 T* z = z1 e Au and Az « Aw9 which is a contradiction! This proves that PQ = 0. 
Similarly QP = 0. Now suppose that A is semi-prime. Then P g l(r(PA)) = Aut 

and Q g r(/(Q)) = Avx, where wt, vt are central idempotents. Since PQ = 0, then 
v 6 r(PA) implies that Aux g l(v)9 whence Qux = 0. Similarly, Pvx = 0. 

Corollary 2.1. If 4̂ /s pnVwe left self-injective regular, then for any left ideals _8, D 
with g : B « D, there ex/sl /eft /dea/s U, V containing B9 D respectively andf: U « F 
extending g such that either U = A or V = A. 

Left p-injective rings whose complement left ideals are principal generalize left 
self-injective rings and left continuous regular rings. The next proposition may be 
similarly proved. 

Proposition 3. Let A be a left p-injective ring whose complement left ideals are 
principal and K and infective non-singular left ideal. If B, D are left ideals contained 
in K with an isomorphism g :B « D, there exist left ideals U, V containing B, D 
respectively with an isomorphism f:U&V extending g such that K = U © P = 
= V © Q, where P, Q do not contain any non-zero mutually isomorphic left ideals 
and PQ = QP = 0. Consequently, if A is prime, then either K=U or K—V. 

Remark 1. Let A be a left p-injective ring containing a reduced injective left ideal K. 
If B, D are isomorphic left ideals contained in K, then the conclusion of Proposition 3 
holds. 

As usual, (1) a left .A-module M is said to have a projective cover if there exist 
a projective left y4-module P and an epimorphism g:P -* M such that ker g is super
fluous in P. H. BASS [1] called A left perfect if every left A-module has a projective 
cover. (2) AM is a generator if, for any left A-module N, there exists an epimorphism 
from a direct sum of copies of M onto N. (3) AM is a cogenerator if, for any left 
A -module N, there exists a monomorphism of N into a direct product of copies of M. 
A is called left pseudo-Frobeniusean (resp. FPF) if every faithful (resp. finitely 
generated faithful) left A-module generates the category of left ^4-modules (cf. [3], [5]). 
The following conditions are equivalent: (1) A is left pseudo-Frobeniusean; (2) A is 
an injective cogenerator; (3) A is a semi-local left cogenerator; (4) A is a left cogenerat-
ing right Kasch ring. (A is right Kasch if every maximal right ideal of A is a right 
annihilator ideal.) Also, A is left cogenerating iff the injective hull of every simple 
left A-module is projective. Recall that A is a left p.p. ring if every principal left ideal 
of A is a projective left .A-module. 

Remark 2. A is von Neumann regular iff A is a left p.p. ring such that there exists 
a p-injective left generator. 

Following [10], a left A-module M is CK-injective if, for any left submodule N 
containing a non-zero complement left submodule of M, every left .A-homomorphism 
of N into M extends to an endomorphism of AM. We now consider the ring of endo-
morphisms of a generalization of quasi-injective modules. 
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Proposition 4. Let M be a CE-injective left A-module such that any left submodule 
isomorphic to a complement left submodule is a complement submodule. If B = 
= End(i4M), the following conditions are equivalent: 

(1) B is semi-perfect; 
(2) Every simple left B-module has a projective cover; 
(3) B contains no infinite set of orthogonal idempotents. 

Proof. Since B is semi-perfect iff every finitely generated left ^-module has 
a projective cover [1, Theorem 2.1], then (1) implies (2). 

Assume (2). Let W denote the Jacobson radical of B and R = K + W a maximal 
left ideal of B = B/W, where K is a maximal left ideal of B. Since B/K has a projective 
cover, let g : P -> B/K be an epimorphism, where BP is projective and ker g is super
fluous in P. If p : B -> B/K is the natural projection, there exists a left 2?-homo-
morphism h : B -> Psuch that gh = p and for any c eP, there exists yeB such that 
g(c) = p(y) = gh(y) which yields P = ker g + h(B), whence h(B) = P. If h(\) = d, 
then P = Bd and h(B) = Bd. Since i?/ker h « P, then ker h is a direct summand 
of BB (because BP is projective). If h(K) = 0, then K = ker h and B = K ® Be, 
0 ^ e = e2 e B, whence Ke = 0. In that case, R = 1(e) (since e $ W). If h(K) ?- 0, 
since gh(K) = 0, then h(K) is superfluous in P. Since h(l?) = P is projective, there 
exists a left P-homomorphism t: h(B) -> J? such that hf = i, the identity map 
on h(B). Since A(K) is superfluous in h(B), then .*h(K) is superfluous in B. Now let 
t(d) = beB. Then d = /(d) = ht(d) = h(b) = bh(\) = bd implies 0 ^ b = t(d) = 
= t(bd) = bt(d) = b2 and Kb = Kt(d) = t(Kd) = th(K) is superfluous in B. Thus 
in case h(K) # 0, there exists also a non-zero idempotent b such that Kb must be 
contained in every maximal left ideal of 2?, whence Kb g W. Therefore R = lB(b) 
(in as much as the Jacobson radical W contains no non-zero idempotent of B). The 
fact that h is an idempotent in B implies that R is a direct summand of BB. Therefore, 
whether k(K) = 0 or not, R must be a direct summand of BB which proves that B 
is semi-simple Artinian. B is therefore a semi-local ring whose idempotents can be 
lifted [10, Proposition 4 and Remark 6], whence (2) implies (1). 

(1) and (3) are equivalent by [5, P. 305 ex. 8] and [10, Proposition 4]. 
Applying [4, Corollary 2.22], we get 

Corollary 4.1. IfAM is non-singular quasi-injective, B = End (AM)> then B is semi-
simple Artinian if every simple left B-module has a projective cover. 

It is well-known that if A is left self-injective, then idempotents of A/J can be 
lifted. Using [1, Theorem 2.1], one can similarly prove the next result. 

Theorem 5. The following conditions are equivalent: 
(1) A is left pseudo-Frobeniusean; 
(2) For any simple left A-module U, U has a projective cover and the injective hull 

of AU is projective; 
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(3) Every simple left A-module has a projective cover and there exists a projective 
left cogenerator; 

(4) A is left cogenerating such that every simple left A-module has a projective cover. 

Remark 3. If A is left pseudo-Frobeniusean, then (a) the injective hull of every 
simple left _A-module is cyclic; (b) a simple left .A-module is projective iff it is injective. 

Remark 4. If A is leftf-injective with an injective maximal left ideal such that the 
injective hull of every simple left _4-module is projective, then A is left pseudo-
Frobeniusean. (A is called leftf-injective if, for any finitely generated left ideal F 
of A9 every left _A-homomorphism of F into A extends to an endomorphism of AA). 

Proposition 6. The following conditions are equivalent: 
(1) A is left and right pseudo-Frobeniusean; 
(2) The injective hull of every simple left A-module and the injective hull of every 

cyclic faithful projective right A-module are projective. 
Proof. Assume (1). Since A is a left cogenerator, then the injective hull of every 

simple left A-module is projective. Let C be a cyclic faithful projective right At-module. 
If C = cA9 then r(c) is a direct summand of AA which implies that CA(& A/r(c)) is 
injective. Consequently, (1) implies (2). 

Assume (2). Since A is a left cogenerator and hence left Kasch, then any proper 
finitely generated left ideal of A has non-zero right annihilator. If EA is the injective 
hull of AA9 by hypothesis, EA is projective and by [1, Theorem 5.4], AA is a direct 
summand of EA which implies A -= E. Then (2) implies (1) by [5, Theorem 12.1.1]. 

We say that a left .A-module M has an injective (resp. p-injective) projective cover 
if there exist an injective (resp. p-injective) projective left _4-module P with an epi-
morphism g : P -> M such that ker g is superfluous in P. 

Theorem 7. The following conditions are equivalent: 
(1) A is quasi-Frobeniusean; 
(2) A is left Noetherian with an injective left generator; 
(3) Every left A-module has an injective projective left cover. 
Proof. Since AA is a generator, then (1) implies (2). 
Assume (2). Let G be an injective left generator. For any projective left _4-module Pr 

there exists an epimorphism g : D -> P9 where D is a direct sum of copies of G. 
Since A is left Noetherian, then AD is injective. Therefore D/ker g « P implies that 
ker g is a direct summand of AD9 whence AP is injective. Since a left Artinian ring 
is left (and right) perfect, then by [3, Theorem 24.20], (2) implies (3). 

Assume (3). For any projective left _4-module P9 there exists an injective projective 
left _4-module Q with an epimorphism g : Q-+ P such that ker g is superfluous in Q* 
Then AP(& Q/kerg) is injective and (3) implies (1) by [3, Theorem 24.20]. 

Remark 5. The following conditions are equivalent: 
(1) A is left p-injective left perfect; 
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(2) A is a left p-injective ring whose simple left modules have projective covers 
such that Z is left T-nilpotent; 

(3) Every flat left .A-module is p-injective projective. 
We now turn to sufficient conditions for right Kasch rings to be left pseudo-

Frobeniusean. 
Proposition 8. Let A be a right Kasch ring whose indecomposable injective left 

modules are projective. If A is of left finite Goldie dimension, then A is left pseudo-
Frobeniusean. 

Proof. A contains an essential left ideal L which is a finite direct sum of non-zero 
uniform-left ideals. If E is the injective hull of AAy since the injective hull of any uniform 
left ideal in AE is an indecomposable left A-module, then E contains an essential 
left submodule F which is a finite direct sum of indecomposable injective left sub-
modules. By hypothesis, F is an injective projective left A-module which yields 
E = F. Since A is right Kasch, then any proper finitely generated right ideal has non
zero left annihilator which implies that AA is a direct summand of AE9 whence A = E 
is injective. Now the injective hull of any simple left A-module is indecomposable 
and therefore projective which implies that AA is a cogenerator. This proves that A 
is left pseudo-Frobeniusean. 

Let us now characterize rings which are fully quasi-Frobeniusean. Following 
BIRKENMEIER [2], A is called a left GFC ring if every cyclic faithful left ^-module 
is a generator. Left GFC rings generalize left pseudo-Frobeniuseaun and left FPF 
rings. Also, if every non-zero left ideal of A contains a non-zero ideal, then A is 
left GFC. 

Theorem 9. The following conditions are equivalent: 

(1) Every factor ring of A is quasi-Frobeniusean; 
(2) The injective hull of every cyclic left A-module is cyclic projective and every 

simple left A-mddule has a projective cover; 
(3) A is a left GFC ring such that the injective hull of every cyclic left A-module 

is cyclic projective; 
(4) A is left GFC satisfying the maximum condition on left annihilators such that 

the injective hulls of cyclic left A-modules are cyclic. 

Proof. It is well-known that (1) implies (2). 
Assume (2). Suppose there exists an injective left A-module Q which is not a direct 

sum of indecomposable submodules. Then AQ is not uniform. Therefore, there exist 
non-zero left submodules Ql9 M2 such that Q = Ql9 © M2. We may suppose that M2 

is not uniform (by changing the notation, if necessary). Then M2 = Q2 © M3, 
where M3 is again supposed not uniform (by changing the notation again, if necessary). 
This decomposition may be continued such that we obtain, for each positive integer n, 
Q == Qx © Q2 © ... © Qn © Mn+1 where, Mn+1 is supposed not uniform. Since 
each Qi (1 ^ / <; n) contains a cyclic projective submodule Pi9 then for any positive 
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integer n, Q contains a direct sum of cyclic projective submodules Px, ..., Pn. Each Pf 

is isomorphic to a left ideal K,. Now since the injective hull of every simple left 
.4-module is projective, then AA is a cogenerator and since every simple left A-module 
has a projective cover, then A is semi-local which yields A left pseudo-Frobeniusean. 
Then Fn = Kx © ... © Kn is a finitely generated projective submodule which is 
a direct summand of AA (in as much as AA is injective). We thus produce an infinite 
ascending chain of direct summands Ft c. F2 c- ... c: Fn cz ... which contradicts A 
left pseudo-Frobeniusean. This proves that every injective left A-module is a direct 
sum of indecomposable submodules, whence A is left Noetherian and therefore (2) 
implies (1) by [3, Proposition 25.4.6 B]. 

It is evident that (1) implies (3). 
Assume (3). If E denotes the injective hull of AA, then AE is a generator and there 

exists an epimorphism g : F -> A, where F is a finite direct sum of copies of E. 
Then AF is injective which implies that AA is injective. Since AA is a cogeneratori 
then A is left pseudo-Frobeniusean and the proof of "(2) implies (1)" shows that (3) 
implies (1). 

Similarly, (1) and (4) are equivalent by [3, Theorem 24.20]. 

Corollary 9.1. If A is left duo, the following are equivalent: (a) Every factor ring 
of A is quasi-Frobeniusean; (b) Every cyclic left A-module has a cyclic projective 
injective hull. 

Following [6], a left A-module M is called semi-simple if the intersection of all 
maximal left submodules is zero. 

Theorem 10. The following conditions are equivalent: 
(1) A is semi-simple Artinian; 
(2) A is a left p.p. ring such that every simple left A-module has a p-injective 

projective cover; 
(3) Every cyclic semi-simple left A-module is flat and has a projective cover; 
(4) Every essential left ideal of A is a left annihilator and Z contains no non-zero 

nilpotent right ideal. 
Proof. (1) implies (2) evidently. 
Assume (2). Let U be a simple left A-module. There exist a p-injective projective 

left A-module P and an epimorphism g : P -* U such that ker g is superfluous in P. 
Then P/ker g & U and since A is left p.p., by [9, Remark 2] , AU is p-injective which 
implies that J = 0 [9, Lemma 1]. The proof of Proposition 4 then shows that A is 
semi-simple Artinian and therefore (2) implies (3). 

Assume (3). Then AA/J is semi-simple and hence flat which yields J = 0. Since 
every simple left _4-module has a projective cover, then A is semi-simple Artinian 
and (3) implies (4). 

Assume (4). Suppose there exists a maximal left ideal M which is not a direct 
summand of AA. Then M is an essential left ideal which implies that M = /(b), 
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0 7* b 6 A. For any non-zero elements u, v in r(M) such that uv # 0, there exists 
de A such that 0 ?- du e M and duv = 0. Now M = l(uv) implies that de M, whence 
du = 0 which is a contradiction! Therefore (r(M))2 = 0 and since r(M) g Z, by 
hypothesis, r(M) = 0 which contradicts b ^ 0. This proves that every maximal left 
ideal of A is a direct summand of AA which yields A semi-simple Artinian. Thus (4) 
implies (1). 

We conclude with two more remarks. 
Remark 6. If every cyclic left ^4-module has a cyclic injective hull, the following 

are then equivalent: (a) A is left pseudo-Frobeniusean; (b) A is left GFC such that AIJ 
satisfies the ascending chain condition on direct summands; (c) Every simple left 
^-module has a projective cover. In that case, A is local iff the left ideals of A are 
linearly ordered, (cf. [7, Corollary 1.11] and [10, Lemma 12]. 

Remark 7. (1) If A is left GFC, then A is left self-injective iff the injective hull of 
every cyclic projective faithful left .A-module is cyclic; consequently, the following are 
equivalent: (a) A is left and right self-injective strongly regular; (b) A is semi-prime left 
duo such that the injective hull of every cyclic projective faithful left ^-module is cyclic. 

(2) If A is left FPF, then A is left self-injective iff the injective hull of every cyclic 
projective faithful left A-module is projective. 

(3) If every non-zero left ideal of A contains a non-zero ideal, then A is left pseudo-
Frobeniusean iff the injective hull of every cyclic faithful projective left ^(-module is 
a cyclic left cogenerator. 
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