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TOPOLOGIES COMPATIBLE WITH ORDER 
AND SEPARATION AXIOMS 

MIROSLAV P L O S C l C A 

(Received February 23, 1987) 

Abstract. This paper is an addendum to [1]. It deals with some types of compatibility of a topology 
and an order. The aim is to study conditions on a partially ordered set (P, ̂ ) under which every 
topology on P, compatible in a certain sense with a given order, is Hausdorff. 
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In this paper we deal with three types of compatibility, so called /-compatibility 
for / e {1, 2, 3}, investigated in the papers [1], [2], [3], For definitions and notation 
refer [1]. 

Every topology which is /-compatible (i = 1, 2, 3) with an ordering on a given 
set is Tl. We shall characterize all ordered sets P, every /-compatible (/ = 2, 3) 
topology of which is T2. For / = 1 this question was solved in [2]: 

Theorem 1. Let P be an ordered set. The following conditions are equivalent: 
(i) Every 0 e CX(P) is T2. 

(ii) For every two different points afbeP there exist finite sets Mt £ fa — {a}, 
M2^\b - {b}, N! £ ja - {a}, N2 c \b - {b} such that P - \(MX u M2) -
- \(Nl u N2) is finite. 

We are going to prove similar results for 2- and 3-compatibility. In the whole 
section we.assume that an ordered set P is given. 

Lemma 1. If every 0 e C2(P) is T2, then N(a, b) = N(a) n N(b) is finite whenever 
a,beP9 a ^ b. 

Proof. Suppose that a,beP9 a ^ b and N(a, b) is infinite. According to 2.5 
from [1] there exists 6 e C2(P) such that a e A e 6 implies A n N(a, b) ?- 0. Put 
01 = {B c PI(B n {a, b) = 0) or (3 A e (9) (a e A and B 2 A n N(a, b}). 

It is easy to verify that (Sx 6 C2(P) and 6i does not fulfil T2. 
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Theorem 2- The following conditions are equivalent: 
(i) Every 0 e C2(P) is T2. 
(ii) Every 0 e CX(P) is T2. 
Proof. If (ii) holds, then (i) follows from the inclusion C2(P) £ Ct(P). Let us 

assume that (i) is valid, we are going to show that the condition (ii) from theorem 1 
is valid. Let a9beP9 a ^ b. Let us put At = \a n \b9 A2 = fa n \b9 A3 = 
\a n \b9 AA = \a n \b9 A5 = N(a) n \b9 A6 = N(a) n \b9 A7 = \a n N(b), A8 = 
= \a n N(b)9 A9 = N(a9 b). 

For every i = 1, 2 , . . . , 9 we shall find M[ c fa - {a}, M2 <= \b - {b}, Nj c 
<= j a - {a}, N2 <= \b - {b} such that At - f(MJ u M2) - \(N[ u N2) is finite. 
Then P - fu(M[ u M2) - |u(Nj u N2) will be finite. If xeP9 we define the 
topologies 
0'x = {A c p/(x £ .A) or (y4 ^ x - f M for suitable finite M = f x - {x}}, 
0£ = {̂  _= P/(x £ A) or (.4 3 x - | N for suitable finite N _= \x - {x}}. 
Let us put 0X = 0'a n 0fc'. Let x, >> be different points of P, we verify (CI) for them: 
If x £ {a, b}9 put -A = {x}. If x = a (the case x = b is analogous), put v4 = f x — 
- \({b9 y} n f x). In both cases xe Ae09 y$ conv 4̂ hold. By the assumption 0l 

is T2. This fact yields A9BeO such that ae>4, i e 5 , -A n B = 0. There exist 
finite M{ c= fa - {a}9 M\ c= fb - {b}, A( 2 fa - fM{, -5 => fb - fAfJ. If N\ = 
= N| = 0, we have ^ - \(M\ u M*) - \(N\ u N\) ^ A n B = 0. 

The sets M'n M2, Nj, N2 for i = 2, 3, 4 can be constructed by analogous way 
using the topologies 02 = 0'a n 0"h9 

^3 = 0:n0'b9 Ot = 0"anOl 

Now we define the topologies 0S = {A c P/(a <£ .A) or (A 2 N(a) n (b - {b} - f M) 
for suitable finite M g | 6 - {b})}, 05 = 0'5n0'b. Then 05 e C2(P) follows from 
0'h e C2(P). By T2 there exist A9Be05 such that a e ^, b e B9 A n B = 0. Hence 
,4 => (\b - {6} - f M') n N(a), 5 3 f b - f AT for suitable M', M" <= f b - {b}. 
Let us put M{ = N!5,= N| = 0, M^ = M' u M\ Clearly ,45 - \M\ cz A n B = 
= 0. The cases / = 6, 7, 8 are symmetrical with / = 5. According to Lemma 1 
we can put M\ = M\ = N\ = N\ = 0. This completes the proof. 

,For 3-compatibility we obtain a similar result: 

Theorem 3. The following conditions are equivalent: 
(i) Every 0 e C3(P) is T2. 
(ii) For every two incomparable elements a,beP there exist finite sets M1 £ 

c f a - {a}9 M2 £ f b - {b}9 Nt £ \a - {a}, N2 c \b - {&} MCA fftaf P -
- \(Mt u M2) - j(N! u N2) fryw/te. 

Proof. Suppose that (ii) is valid. Let 0 e C3(P)9 we are going to show that 0 
is T2. Let a9beP9a it b.lf a9b are comparable, then 3-compatibility ensures the 
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existence of disjoint neighbourhoods of a and b. Suppose that a\\ b holds and 
Mx, M2, Nl9 N2 are as in (ii). 

For ye Mi take Uy e 0 such that a e Uy9 Uy n f y = 0. 
For yeM2 take Vy e 0 such that b e Vy9 Vy n \y = 0. 
For y e Nx take Uy e 0 such that a e Uy, Uy n \y = 0. 
For y e N2 take Vy e 0 such that fc e Vy, Vy n \y = 0. 

Such sets Uy, Vy exist according to the condition (C2) used for a9y or b9y 
respectively. Let's put U' = n{Uy/yeMx u NJ, V' == n{VylyeM2 u N2}. The 
set Z = U' n V c P - |(AfjL u M2) - |(Nt u N2) is finite. For U = (U' - Z) u 
u {a}, V = (V' - Z) u {b} we have U, Ve 0, U n V = 0. To show the converse 
let us suppose that (ii) does not hold for some a9be P9a\\b. Using the denotation 
from theorem 2 put 0 = 0'a n 0"a n <9'b n 0"h. If A9Be 0, ae A9 beB9 then for 
suitable finite sets Mx £ \a - {a}9 M2 <=: \b - {b}9 Nx c | a - {a}9 N2 = \b~ 
- {b} we have AnB 2 P - f (A^ u Af2) - |(NX u N2) # 0. Finally we show 
the 3-compatibility of 0. Let x, >> e P, x < y. If {x, y} n {a, fe} = 0, we put .A = 
= {x}, B = {y}. If x G {a, 6}, we put A = P - \y9 B = {>;}. (There holds ;; $ {a9 b} 
because of a \\ b.) If y e {a9 b}9 we put A = {x}, B = P - jx. In every case the 
sets A9BeO satisfy (C2). 

R E F E R E N C E S 

[1] M. Рloščica, The lattices of topologies on a partially ordered set, Аrch. Matл. (Brno) 2 
(1987), 109-116. 

[2] J. Rosický, Topologies compatible with the ordering, Publ. Fac. Sci. Univ. Brno (1971), 
9 -23 . 

[3] А. and M. Sekan ina, Topologies compatible with the ordering, Аrch. Math. (Brno) 2 (1966), 
113-126. 

Miroslav Ploščica 
Matematický ústav SA V 
dislokované pracovisko v Košiciach 
Ždanovova 6 
040 01 Košice 
ČSSR 

225 


		webmaster@dml.cz
	2012-05-09T20:10:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




