Archivum Mathematicum

Herbert Fleischner; Emanuel Wenger

D_{0}-favouring Eulerian trails in digraphs

Archivum Mathematicum, Vol. 25 (1989), No. 1-2, 55--60

Persistent URL: http://dml.cz/dmlcz/107339

Terms of use:

© Masaryk University, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

D_{0}-FAVOURING EULERIAN TRAILS IN DIGRAPHS

HERBERT FLEISCHNER, EMANUEL WENGER
(Received April 28, 1988)
Dedicated to the memory of Milan Sekanina

Abstract

A characterization for a special class of Eulerian trails in digraphs which traverse a set of arcs of a subdigraph D_{0} before any arc of $D_{1}=D-D_{0}$ is traversed, is proved. The most general structure of a subdigraph D_{1} to allow such a restricted Eulerian trail is given.

Key words. Directed graph, Eulerian trail, restricted Eulerian trail, spanning in-tree.
MS Classification. 05 C 139

PRELIMINARIES

For notation and terminology, see [2, 4]. Let D be a digraph with vertex set $V(D)$ and $A(D)$. In particular, $V(D)$ and $A(D)$ are always assumed to be finite, $A_{v}^{+} \subset A(D)$ denotes the set of arcs, incident from v, for $v \in V(D)$. For a digraph D and a subdigraph D_{1} let $D-D_{1} \subseteq D-A\left(D_{1}\right)$ denote the uniquely determined digraph without isolated vertices. The following lemma is folklore.

Lemma 1. Let D be a digraph and $\operatorname{od}_{D}(v) \geqq 1$ for all $v \in V(D)$. Then there exists at least one non-trivial strongly connected component C with no arc of D incident from C (that is, $(a, b) \in A(D)$ implies either $a \notin V(C)$, or $b \notin V(D)-V(C)$).

Lemma 2. Let D be a digraph satisfying $\operatorname{od}_{D}(v) \geqq 1$ for all $v \in V(D)$. Suppose D has precisely one (nontrivial) strongly connected component C with no arc of D incident from C. Then there exists a spanning in-tree with root v_{0}, where v_{0} is an arbitrary vertex of C.

Proof. Let v_{0} be an arbitrary vertex of C, and let B_{0} be an in-tree with root v_{0} containing a maximum number of vertices. If $V\left(B_{0}\right) \neq V(D)$ then we consider $D_{0}=\left\langle V\left(B_{0}\right)\right\rangle$, the digraph induced by $V\left(B_{0}\right)$. Because of the maximality of B_{0} there does not exist an arc (x, y) with $x \in V(D)-V\left(D_{0}\right)$ and $y \in V\left(D_{Q}\right)$; furthermore, one easily concludes that $C \subseteq D_{0} . D_{1}=D-V\left(D_{0}\right)$ fulfills the assumptions of Lemma 1 . Because of Lemma 1 there exists a strongly connected component $C^{\prime} \subset D_{1}$ such that no arc of D_{1} is incident from C^{\prime}. By construction it follows that $C^{\prime} \cap C=\emptyset$ which contradicts the uniqueness of C.

Definition. Let D be a weakly connected eulerian digraph, and let D_{0} be a subdigraph of D. An eulerian trail T of D is called D_{0}-favouring if and only if for every $v \in V(D), T$ traverses every arc of D_{0} incident from v before it traverses any arc of $D_{1}=D-D_{0}$ incident from v.

Of course, every eulerian trail of D is a D_{0}-favouring eulerian trail for some D_{0} (just take $D_{0}=D$). For which subdigraph D_{0} of exists a D_{0}-favouring eulerian trail? There are two known results on the existence of D_{0}-favouring eulerian trails depending on the structure of $D_{1}=D-D_{0}$.

Theorem 1. Let D be a weakly connected eulerian digraph, and for given $v \in V(D)$ let $D_{0} \subset D$ be chosen such that $D_{1}=D-D_{0}$ is a spanning in-tree of D with root v. Then there exists a D_{0}-favouring eulerian trail starting (and ending) at v. Conversely, if T is an eulerian trail of D starting (and ending) at v, and if we mark at every $w \in$ $\in V(D), w \neq v$, the last arc of T incident from w, then D_{1}, the subgraph of D induced by the marked arcs, is a spanning in-tree with root v (and hence T is a $\left(D-D_{1}\right)$ favouring eulerian trail of D).

Theorem 1 plays an essential role in establishing the BEST-Theorem which gives a formula for the number of eulerian trails in an eulerian digiaph. A proof of Theorem 1 can be found in [1].

Theorem 2. Let D be an eulerian digraph. Let $D_{1} \subseteq D$ be chosen such that $\operatorname{od}_{D_{1}}(v) \geqq 1$ for every $v \in V\left(D_{1}\right) \subset V(D)$, and let $D_{0}=D-D_{1} . D$ has a D_{0}-favouring eulerian trail if and only if D_{1} has precisely one (nontrivial) strongly connected component C_{1} with the property that no arc of D_{1} is incident from C_{1}. Moreover, every D_{0}-favouring eulerian trail of D must start at some vertex of C_{1}, and for any vertex of C_{1} there is a D_{0}-favouring eulerian trail of D starting at that vertex.

Theorem 2 was proved by Berkowitz [3].

A GENERAL THEOREM

In view of Theorems 1 and 2, we ask the following question: What is the most general structure a subdigraph D_{1} of an eulerian digraph D can have in order to imply the existence of a $\left(D-D_{1}\right)$-favouring eulerian trail T ?

Theorem 2 implies that D_{1} must not contain more than one nontrivial strongly connected component C_{1} with the property that no arc of D_{1} is incident from C_{1}. But this condition is not sufficient even if D_{1} is weakly connected; this can be seen from the digraph D^{*} of Figure 1.

What if we go the other way round? That is, given an eulerian digraph. D and $D_{1} \subseteq D$, can we find $D_{1}^{+} \subseteq D$ with $D_{1} \subseteq D_{1}^{+}$such that D has a $\left(D-D_{1}^{+}\right)$favouring eulerian trail T^{+}which induces a $\left(D-D_{1}\right)$-favouring eulerian trail T ?

This approach and Theorem 1 and Theocem 2 lead to the following theorem which answers our original question.

Figure 1. An eulerian digraph D^{*} having no D_{0}-favouring eulerian trail (the arcs of D_{i} are marked with $i, i \doteq 0,1)$.

Theorem 3. Let D be an eulerian digraph, and let D_{1} be a subdigraph of D. Any two of the following statements are equivalent:

1. D has $a\left(D-\dot{D}_{1}\right)$-favouring eulerian trail.
2. There exists a digraph D_{1}^{+}with $D_{1} \subseteq D_{1}^{+} \subseteq D$ such that for every $v \in V(D)$
a) $\operatorname{od}_{D_{1}}^{+}(v)=\operatorname{od}_{D_{1}}(v)$ if and only if $\operatorname{od}_{D_{1}}(v) \neq 0$;
b) $\operatorname{od}_{D_{1}^{+}}(v)=1$ otherwise.
c) D_{1}^{+}has precisely one non-trivial strongly connected component C_{1} with no arc of D_{1}^{+}incident from C_{1}.
3. There exists a digraph D_{1}^{+}with $D_{1} \subseteq D_{1}^{+} \subseteq D$ such that
a) D has a ($D-D_{1}^{+}$)-favouring eulerian trail;
b) for every D_{1}^{\prime} with $D_{1} \subseteq D_{1}^{\prime} \subseteq D_{1}^{+}$, if $(x, y) \in A\left(D_{1}^{\prime}-D_{1}\right)$, then $\operatorname{od}_{D_{1}}(x)=0$.
4. D_{1} contains a spanning in-forest D_{1}^{-}such that
a) for some v_{0} and for every $x \in V\left(D_{1}\right)-v_{0}, \operatorname{od}_{D_{1}^{-}}(x)=0$ if and only if $\operatorname{od}_{D_{1}}(x)=0$, and $\operatorname{od}_{D_{1}^{-}}\left(v_{0}\right)=0$;
b) D has an in-tree B with root v_{0} and $D_{1}^{-} \subseteq B$.

Proof. 1. implies 2. Let T be a ($D-D_{1}$)-favouring eulerian trail starting at v_{0}. Define D_{1}^{+}by $D_{1}^{+}=D_{1}$ if $\operatorname{od}_{D_{1}}(v) \geqq 1$ for every $v \in V(D)$; otherwise, for every v with $\operatorname{od}_{D_{1}}(v)=0$, mark the last arc of T which is incident from v, and let D_{1}^{+} consist of D_{1} plus the marked arcs. In any case, $D_{1} \subseteq D_{1}^{+}$and D_{1}^{+}satisfies 2. a), 2. b). Moreover, T is a ($D-D_{1}^{+}$)-favouring eulerian trail because of the choice of the elements of $A\left(D_{1}^{+}\right)-A\left(D_{1}\right)$. It remains to show that D_{1}^{+}has precisely one nontrivial strongly connected component C_{1} with no arc of D_{1}^{+}incident from C_{1}. Because of $\operatorname{od}_{D_{1}^{+}}(v) \geqq 1$ for every $v \in V\left(D_{1}^{+}\right)$and the finiteness of D_{1}^{+}, D_{1}^{+}has at least one non-trivial strongly connected component and, in particular, by Lemma 1 at least one non-trivial strongly connected component C_{1}^{+}with no arc of D_{1}^{+}incident from C_{1}^{+}.
T must start and end in a vertex of C_{1}^{+}. Otherwise, there exist one or more $\operatorname{arcs}(v, w)$ of D such that $v \in V\left(C_{1}^{+}\right)$and $w \notin V\left(C_{1}^{+}\right)$; among these arcs let $\left(v_{1}, w_{1}\right)$ be
the last arc in T, such that $v_{1},\left(v_{1}, w_{1}\right), w_{1}$ is a section of T. By definition of C_{1}^{+}, $\left(v_{1}, \dot{w}_{1}\right) \notin A\left(D_{1}^{+}\right)$, and because of $\operatorname{od}_{D_{1}^{+}}\left(v_{1}\right) \geqq 1$ we get a contradiction to the fact that T is a $\left(D-D_{1}^{+}\right)$-favouring eulerian trail. It's clear now that there can be only one component C_{1}^{+}with the desired property. The implication now follows.
2. implies 3. Take D_{1}^{+}and C_{1} as defined by 2 a). b), and c). At first it will be proved that D has a ($D-D_{1}^{+}$)-favouring eulerian trail.

Properties 2. a), b), imply that D_{1}^{+}is a spanning subdigraph of D. Therefore and because of Lemma 1, and property. 2. c) there exists in D a spanning in-tree $B_{1}^{+} \subset D_{1}$. with root $v_{0} \in V\left(C_{1}\right)$ (sce Lemma 2).

Mark all the arcs of B^{+}. Construct T by starting at vertex v_{0} with any $\operatorname{arc}\left(v_{0}, x\right)$, choose any unmarked arc incident from x, if such arc exists; otherwise, choose among the marked arcs one which does not belong to B_{1}^{+}if such arc exists; otherwise, choose the arc of B_{1}^{+}. Continue this way until this procedure terminates at some $y \in V(D)$. Then $y=v_{0}$; otherwise, T contains more arcs incident to y than it contains arcs incident from y contradicting D being eulerian. Suppose T does not contain all arcs of D. Then let z be a vertex incident with arcs not contained in T. Since D is eulerian and T is a closed trail, $\mathrm{id}_{D_{-T}}(z)=\operatorname{od}_{D_{-}}(z) \neq 0$. Moreover, $z \neq v_{0}$ by the very construction of T. By definition of B_{1}^{+}, there is a path $P\left(z, v_{0}\right) \subset$ $\subset B_{1}^{+}$joining z to v_{0}. Write

$$
P\left(z, v_{0}\right)=z,\left(z, u_{1}\right), u_{1}, \ldots, u_{k},\left(u_{k}, v_{0}\right), v_{0} ;
$$

possibly. $z=u_{k}$ and $u_{1}=v_{0}$ (i.e. $P\left(z, v_{0}\right)$ may contain just one arc). By the construction of T it follows that $\left(z, u_{1}\right)$ is not contained in T; therefore, also (u_{1}, u_{2}) is not contained in T (note that $\left(u_{1}, u_{2}\right)$ can be contained in T only if all arcs incident to u_{1} are contained in T); a.s.o. In particular, (u_{k}, v_{0}) is not contained in T, contradicting the fact that $\mathrm{id}_{T}\left(v_{0}\right)=\operatorname{od}_{T}\left(v_{0}\right)=\operatorname{id}_{D}\left(v_{0}\right)=\operatorname{od}_{D}\left(v_{0}\right)$. Thus, T contains all arcs of D. This and the construction of T imply that T is a $\left(D-D_{1}^{+}\right)$favouring eulerian trail of D.

Now consider any D_{1}^{\prime} with $D_{1} \subseteq D_{1}^{\prime} \subseteq D_{1}^{+}$and suppose $A\left(D_{1}^{\prime}-D_{1}\right) \neq \emptyset$; let $(x, y) \in A\left(D_{1}^{\prime}-D_{1}\right)$. By definition of D_{1}^{+}in 2. a), b), an arc of $D_{1}^{+}-D_{1}$ is necessarily incident from a vertex z with $\operatorname{od}_{D_{1}}(z)=0$. Hence $(x, y) \in A\left(D_{1}^{\prime}-D_{1}\right)$ implies $\operatorname{od}_{D_{1}}(x)=0$; thus 3. b) holds as well.
3. implies 4. Start with \dot{D}_{1}^{+}as described in 3., and consider a ($D-D_{1}^{+}$)-favouring eulerian trail T^{+}of D. If there is $w \in V(D)$ different from the initial vertex v_{0} of T^{+}such that the last arc of T^{+}incident from w is not in D_{1}^{+}, then mark this arc. Note that in this case none of the arcs incident from w lies in D_{1}^{+}.

We define

$$
D_{1}^{++}=D_{1}^{+} \quad \text { if no such } w \text { exists }
$$

otherwise,

$$
D_{1}^{++}=\left\langle A\left(D_{1}^{+}\right) \cup\left\{a \in A_{w}^{+} / \operatorname{od}_{D_{1}^{+}}(w)=0 \text { and } a \text { has been marked }\right\}\right\rangle
$$

In any case, by definition of D_{1}^{++}, T^{+}is even a ($D-D_{1}^{++}$)-favouring eulerian trail of D, and D_{1}^{++}satisfies 3. b) as well. Moreover, $V\left(D_{1}^{++}\right)=V(D)$.

Marking for every $v \neq v_{0}$ the last arc of T^{+}incident from v yields a spanning subdigraph B and $B \subset D_{1}^{++}$follows from the very definition of D_{1}^{++}. Furthermore, $\operatorname{od}_{B}(v)=1$ for all $v \neq v_{0}$ and $\operatorname{od}_{B}\left(v_{0}\right)=0$. Suppose B is not connected; then there exists a weakly connected component B_{1} of B which does not contain v_{0} and $\operatorname{od}_{B_{1}}(w)=\operatorname{od}_{B}(w)=1$ for all $w \in V\left(B_{1}\right)$. By Lemma 1 there exists at least one nontrivial strongly connected component $C_{1} \subseteq B_{1}$ with no arc of B_{1} incident from C_{1}. Now, if r is the last vertex of T in C_{1}, such that $r,(r, s), s$ is a section of T, then it follows from the construction of B that $(r, s) \in A(B)$; furthermore $s \in$ $\in V\left(C_{1}\right)$ because of the definition of C_{1}. By the choice of r, T terminates in C_{1} contradicting the fact, that T is an eulerian trail starting in $v_{0} \notin V\left(B_{1}\right) \supset V\left(C_{1}\right)$. Thus B is connected, and $\operatorname{od}_{B}(v)=1$ for all $v \neq v_{0}, \operatorname{od}\left(v_{0}\right)=0$. This implies that B is a spanning in-tree of $D_{1}^{++} \subseteq D$ rooted at v_{0}.

Define D_{1}^{-}by $V\left(D_{1}^{-}\right)=V\left(D_{1}\right)$ and $A\left(D_{1}^{-}\right)=A(B) \cap A\left(D_{1}\right)$; thus D_{1}^{-}is a spanning in-forest of D_{1} which satisfies 4.b). Let (x, y) be any arc of B not in D_{1}^{-}; then $x \neq v_{0}$. If $(x, y) \notin A\left(D_{1}^{+}\right)$, then it follows from the definition of D_{1}^{++}and $D_{1}^{++} \supset D_{1}$ that $\operatorname{od}_{D_{1}^{+}}(x)=0=\operatorname{od}_{D_{1}}(x)$. If $(x, y) \in A\left(D_{1}^{+}\right)$, then $(x, y) \notin A\left(D_{1}\right)$ by definition of D_{1}^{-}; and by 3. b) with $D_{1}^{\prime}=D_{1}^{+}, \operatorname{od}_{D_{1}}(x)=0$ follows.

We summarize: D_{1}^{-}is a spanning in-forest of D_{1}, and if $x \neq v_{0}$ for some $v_{0} \in$ $\in V\left(D_{1}^{-}\right)$(which is the root of B indeed) satisfies $\operatorname{od}_{D_{1}^{-}}(x)=0$ then $\operatorname{od}_{D_{1}}(x)=0$ (for, x not being the root of B implies $(x, y) \in A\left(B-D_{1}^{-}\right.$) for some y). Since $\operatorname{od}_{D_{1}}(x)=0$ implies $\operatorname{od}_{D_{1}^{-}}(x)=0$ anyway and $\operatorname{od}_{D_{1}^{-}}\left(v_{0}\right)=\operatorname{od}_{B}\left(v_{0}\right)=0$, and because $D_{1}^{-} \subseteq B$ with $V(B)=V(D)$, the proof of the implication is finished.
4. implies 1. Let $D_{1}^{-} \subseteq D_{1}$ be chosen as described in 4. a) and let B be a spanning in-forest of D with root v_{0} and $D_{1}^{-} \subseteq B$. Marking all arcs of B we construct a trail T by starting at vertex v_{0} with any arc $\left(v_{0}, x\right)$. Choose any unmarked arc incident from x, if such arc exists; choose the marked arc incident from x, otherwise.

Continuing this way until this procedure terminates we get a ($D-B$)-favouring eulerian trail (for arguments see 2. implies 3.).

Because of the freedom to choose the order in which the arcs of $A_{v}^{+}-A(B)$ appear in T for every $v \in V(D)$ we are even able to construct T in such a way that the arcs of $A_{v}^{+} \cap\left(D-D_{1}\right)$ appear in T before any of the arcs of $A_{v}^{+} \cap D_{1}$ are used. This is true even in the case where an arc $(x, y) \in B$ does not belong to D_{1}; for, in this case $\operatorname{od}_{D_{1}}^{-}(x)=\operatorname{od}_{D_{1}}(x)=0$ by 4. a), i.e. $A_{x}^{+} \cap A\left(D_{1}\right)=\emptyset$, i.e., $A_{x}^{+} \subseteq$ $\subseteq D-D_{1}$. In the case of v_{0}, if $A_{v_{0}}^{+} \cap A\left(D_{1}\right) \neq \varnothing$, than we proceed in the construction of T by starting along an arc of $A_{v_{0}}^{+} \cap A\left(D-D_{1}\right)$, and each time we arrive in v_{0} we continue along an arc of $A_{v_{0}}^{+} \cap A\left(D-D_{1}\right)$ not traversed before, as long as there is such an arc. Consequently, T is a ($D-D_{1}$)-favouring eulerian trail of D. This finishes the proof of the implication. Theorem 3 now follows.

H. FLEISCHNER, EM. WENGER

It is easy to see that Theorem 3 is a generalization of Theorem 1 and Theorem 2. Both Theorems can be derived by using the equivalent statements of Theorem 3 and some details of their proof. We also note that in proving Theorem 3 we used ideas developed originally for the proofs of Theorem 1 and Theorem 2.

REFERENCES

[1] T. van Aardenne - Ehrenfest, N. G. de Bruijn, Circuits and Trees in Oriented Linear Graphs, Simon Stevin 28 (1951) 203-217.
[2] L. W. Beineke, R. J. Wils on, Selected Topics in Graph Theory 2, Academic Press, London, 1983.
[3] H. W. Berkowitz, Restricted Eulerian Circuits in Directed Graphs, Coll. Math., Vol. 39, Fasc. 1 (1978), 185-188.
[4] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier, New Jork, and Mac Millan, London, 1976.

Prof. Herbert Fleischner, Emanuel Wenger
Austrian Academy of Sciences
Institute for Information Processing
Sonnenfelsgasse 19/2
1010-Vienna, Austria

