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REALIZATIONS OF TOPOLOGIES 
AND CLOSURE OPERATORS BY SET SYSTEMS 

AND BY N E I G H B O U R H O O D S 

HORST H E R R L I C H 
(Received May 4, 1988) 

Dedicated to the memory of my friend Milan Sekanina 

Abstract. Milan Sekanina and his collaborators have investigated the realizability of topologies 
and of closure operators by set systems. In particular they have shown that Top has precisely two 
[8] and Clos has no [3, 7, 2] realization by set totems. Moreover Top and Clos have precisely 
one realization by Conv [10]. In this paper it is shown that Top has a large (even illegitimate) co
llection of realizations by neighbourhoods, but Clos has only one. Moreover Clos has precisely 
two realization* by uniform neighbourhoods. 

Key words: realizations of constructs, topological space, closure space, (uniform) neighbourhood 
space. 
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T E R M I N O L O G Y 

Constructs are pairs (A, U) consisting of a category A and a faithful functor U: 
A -> Set [1]. A realization of a construct (A, U) by a construct (B, V) is a full 
embedding E: A -> B with U =VoE [6J. 

Top is the construct of topological spaces and continuous maps. 
Clos is the construct of closure spaces (sets with a closure operation satisfying 

Kuratowski's axioms except possibly the idempotency axiom) and continuous 
(— closure-preserving) maps. 

Neigh has as objects all neighbourhood spaces, i.e. pairs (X, N) where N: X -» 
-> 0>&X is a map, associating with any x e l a collection N(x) of subsets U of X 
with x e U\ and has as morphisms /: (X, N) -• (X', N') all maps /; X -» X' such 
that x e X and U e N'(fO)) imply / " 1 [U] e N(x). 

UNeigh has as objects all uniform neighbourhood spaces, i.e., pairs (X, <), where 
< is a binary relation on &X satisfying the 
conditions (1) A < B -* A c B 

and (2) A a B< C c D -> A < D9 
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and has as morphisms f: (X, <) -+ (X', < ') all 
maps f: X -• X' such that A<' B implies f'l[A] < f~ *[B]. 

SSet has as objects all pairs (X, Sf) with £ <= ^X and as morphismsf: (X, Sf) 
-> (X', .0") all mapsf: X -> X' such that A e ST implies f~l[A] e Sf. 

RESULTS 

Proposition 1 [8]. Top has precisely two realizations by SSet. 

Proposition 2 [3, 7, 2]. Clos has no realization by SSet. 
Proof: Assume that E: Clos -• SSet is a realization. 
Notation: E(X9 cl) = (X, «^(cl)). Then E: Clos -> SSet, defined by E(X9 cl) = 

== (X, S?(cl) u {0, X}), is a realization too. On a 3-element set X there are precisely 
43 = 64 closure structures and precisely 2(2*~2) = 64 subsets Sf of 0X with 
{ 0 , X} c 5^. Hence i? induces an order-isomorphism between the ordered sets Fx 

of all closure structures on X and F2 of all subsets Sf of @>X with {0, X} c Sf. 
Since Fx has precisely 3 atoms and F2 has 6, this cannot be. 

Proposition 3. Top has a proper class (even an illegitimate collection) of realiza
tions by Neigh. 

Proof: Let C be a strongly rigid proper class of Hausdorff spaces with more 
than one point. (Such a class exists by [5, 4]; cf. also [11]). For every subclass F 
of C define a realization Er: Top -• Neigh by Kr(X, 0) = (X, Nr((9)) where Ue 
e Nr(0) (x) provided U is an open neighbourhood of x in (X, 0) or there exists 
(X', ®') in F, a continuous mapf: (X, 6) -• (X\ 0'), and a neighbourhood V of f(x) 
in (X \0 ' ) with l/ = / - 1 [ F ] . 

The realizations Er are pairwise different, since, if (X,0) belongs to F\F\ 
then for any x e X, Nr(0) (x) consists of all neighbourhoods of x in (X, 0) and 
Nr> (0) (x) consists of all open neighbourhoods of x in (X, 0). 

Proposition 4. Clos has precisely one realization by Neigh. 
Proof: For every closure space (X, cl) define a map Ncl: X-> 0>&X 

by Ncl (*) = { U c X | x $ cl (X\ C/)}. Then E: Clos -> Neigh, defined by E(X, cl) = 
= (X, Ncl) is a realization. 

For uniqueness, consider an arbitrary realization E: Clos -> Neigh. 
Notation: E(X9 cl) =- (X, Ncl). Let (X, cl) be a closure space. Then the following 

hold: 

(a) Nci(x) # 0f0r «^rv x e l 
Proof: Assume Ncl(xo)=0 for some x0 e X. Let (X', cl') be an arbitrary 

closure space, let x be an arbitrary element of X'9 and letf: X -• X' be the constant 
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map with value x. Then continuity off: (X, cl) -* (X', cl') implies Ncr (x) = 0 ; 

This in turn impliest that every map between closure spaces is a morphism. Contra
diction. 

(b) X e N(x) for every x e X. 
Proof : This follows from (a), since every constant map between closure spaces 

is continuous 

(c) X={1,2}: 
(cl) zfcl{l} = cl{2} = X, then Ncl(l) = Ncl(2) = {X}, 
(c2) /fcl{l} = {1} andcl{2} = {2}, then Ncl(l) = {{1}, X} andNcl(2) = {{2}, X}, 
(c3) fy"cl{l} = X and cl{2} = {2}, then one of the following two cases holds: 

Case A: Ncl(l) - {{1}, X} and Ncl(2) = {X}, 
Case B: Ncl(l) = {X} and Ncl(2) = {{2}, X). 

Proof : follows immediately from the fact that, there are only 4 neighbourhood 
structures on {1,2}, which satisfy (b). 

(d) X = {1, 2, 3}: tfcl{l} = cl{2} = X and c\{3} = {2, 3}, then one of the follow
ing two cases holds: 

Case A: Ncl(l) = {{1, 2}, X} and Ncl(2) = Ncl(3) = {X}, 
Case B: Ncl(l) = Ncl(2) = {X} and Ncl(3) = {X, {2, 3}}. 

P roo f : Let (X', cl') be the indiscrete closure space with underlying set Xr = 
= {1, 2}. Then the mapsf: (X', cl') -> (X, cl), defined by f(x) = x,andg: (X', cl') --
-+ (X, cl), defined by g(x) = x + 1, are continuous. Hence, by (cl), we obtain: 

if UeNcl(l), then 2 e U , 

if UeNcl(2), then l e t / , 

if UeNcl(2), then 3 e U, 

if UeNcl(3), then 2 e U . 

Next, let (X, cl) be the closure space, defined by X = {1, 3}, cl{l} = X and ci{3} = 
= {3}. Then the map h: (X, cl) -> (X, cl), defined by h(x) = x, is continuous. Hence, 
by (c3), one of the following cases must hold: 

Case A: UeNcl(3)-> l e U, 
CaseB: UeNcl(l) -> 3 e U. 

Since (X, cl) is not indiscrete, NcI(l) = iYcl(2) = Ncl(3) = {X} cannot hold. This 
implies (d). 

(e) Case B cannot hold. 
Proof : Assume that case B holds. Let (X, cl) be as in (d), let (X', cl') be an 

arbitrary closure space, let x be an element of X\ let U be a subset of X' with 
xe U9 and let f: X' -> X be defined by 
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3, if y = x, 
/(y) = <2, if yeU\{x}, 

1, ifj>eX ' \U . 

Then the following conditions are equivalent: 

(1) UeNcV(x\ 

(2) f: (X\ NciO -• (X, NC|) is a morphism in Neigh, 

(3) / : (X\ cl') -» (X, cl) is continuous, 

(4) cY{x} cz U. 

Hence in particular, if (X\ cl') is a topological Frspace, then Ncl> (x) = {U a 
c X | x e U } for every xeX'. Since there exist different Tropologies on an 
infinite set, E is not injective on objects. Contradiction. 

( f ) £ = K. 
Proof: In view of (e), Case A must hold. Again, let (X, cl) be as in (d) let 

(X\ cl') be an arbitrary closure space, let x be an element of X\ let U be a subset 
of X' with x e U, and let / : X' -• Y be defined by 

f(.v\ = { 

Then the following conditions are equivalent: 

(1) UeNcV(x), 

(2) / : (X\ Ncl>) -> (X, Ncl) is a morphism in Neigh, 

(3) / : (X\ cl') -• (X, cl) is continuous, 

(4) x£cl '(X \U) . 

Thus Nc, = Ncl,i.e., £ = £. 

Proposition 5, Clos has precisely two realizations by UNeigh. 
Proof. As in the proof of Proposition 4, two cases arise. Case A leads to the 

realization Et: Clos -• UNeigh, defined by ^(X, cl) == (X, < t (cl)), where A < 
< t (cl) B iff A f] cl (X\ B) = 0, i.e., iff B is a neighbourhood of A in the familiar 
sense. Case B does not lead to a contradiction but to the realization E2: Clos -> 
-• UNeigh, defined by E2(X, cl) = (X, <2 (cl)' where A <2 (cl) B iff (X\B) n 
n cl A = 0, i.e., iff X\.4 is a neighbourhood of X\2? in the familiar sense. 

Remark. Since the construct Rere of reflexive relations has a realization E: 
Rere -• Clos, given by 

xeclA++-lae A agx, 
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since the restriction of E to objects with finite underlying sets is an isomorphism, 
and since the proof of Proposition 5 depends only on finite closure space, Rere 
has precisely two realizatioos in UNeigh (resp. in Neigh). 
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