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NECESSARY AND S U F F I C I E N T C O N D I T I O N S 
FOR FINALLY VANISHING OSCILLATORY 

S O L U T I O N S IN S E C O N D ORDER DELAY 
EQUATIONS 

BHAGAT SINGH 

(Received March 10, 1986) 

Abstract Necessary and sufficient conditions have been found to ensure that all oscillatory 
solutios of the equation 

(1) MO /('))' + a(t) rt*(0) = f(0, g(0 £ t 
approach zero. By way of several theorems it is shown that this behavior of equation (1) is asso
ciated with the presence of nonoscillatory solutions with certain properties. 
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1. INTRODUCTION 

In [9], this author found conditions on a(t), r(t),f(t) and g(t) to ensure that all 
nontrivial oscillatory solutions of the equation 

(1) (r(t)y'(t))' + a(t)y(g(t))=f(t) 

approach zero asymptotically. It was shown that an oscillatory solution y(t) of (1) 
satisfies limy(t) = 0 subject to: 

f-*oo 

00 00 00 

J l/r(t) dt < oo, J | a(t) | df < oo and J | /(*) | df < oo. 
In section 3 of this work, we would present necessary and sufficient conditions to 
achieve asymptotic approach to zero of all oscillatory solutions of (1). This 
behavior of the oscillatory solutions of (1) is closely associated with (1) having 
a nonoscillatory solution with certain properties. The connection between oscilla
tion and nonoscillation becomes very interesting under rather restrictive constraint 
a(t) > 0, in which case the ratio \f(t) \/a(t) (Wallgren [14]) plays a significant role. 
This connection is examined in several theorems in this section without the re
striction that a(t) > 0. 
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B. SINGH 

The proof of [9, Theorem 2] is lengthy and requires a stringent condition that 
the retardation g(t) be slight by requiring / - g(t) < B, B > 0 a constant. We 
remedy this situation by giving an alternative proof based on t > g(t) and g(t) -> oo 
entirely. 

It turns out that we can deduce restrictions on the growth of oscillatory solutions 
from growth condition on r(t). We examine this in section 4 and come up with 
alternative theorem to ensure asymptotic decay to zero of the oscillatory trajectories 
of(l). 

Even though a voluminous literature exists about many oscillatory and non-
oscillatory criteria for homogeneous and nonhomogeneous equations such as (1), 
the asymptotic nature of nonoscillatory or oscillatory solutions of these equations 
has not been so extensively studied, and for that matter the literature is very scanty 
with regard to oscillatory solutions. For asymptoticity on nonoscillation, the reader 
will find a good account in the works of Hammett [5], Londen [6] and this author 
[8, 10, 11, 12]. An excellent reference list is included by Graef £3] and Graef and 
Spikes [4] for any interested reader. 

Throughout this study, all theorems proven are supported by examples to show 
that they are not vacuous. Although the results found apply well to ordinary 
differential equations, the presence of retarded term makes application of common 
techniques which work for ordinary differential equations a nontrivial matter. 
Travis [13] shows how a theorem of Bhatia [1] fails in such passage to retarded 
equations (cf, £9]). In what follows all results are easily extendable to the nonlinear 
equation 

(2) (r(f) y'(f)Y + 4f) h(y(g(t))) = f(t). 

2. DEFINITION AND ASSUMPTIONS 

It will be assumed for the rest of this paper that 
(i) r(f), a(t)y g(t),f(i) : R-> R and continuous; R is real line, 

(ii) r(t) > 0, r'(t) ^ 0, g(t) > 0 on some positive half real line R*. 
0*0 £(0 -+ oo as f -• oo, g(t) < t and g'(t) > 0 for t ^ t0 where t0 > 0. 
We call a function Q(t)eC\t0y oo) oscillatory if it has arbitrarily large zeros 

in [r0, oo). Otherwise Q(t) is. called nonoscillatory. In this work, the term "solution" 
applies to those solutions (of equations under consideration) which can be extended 
to the right of some positive point on _R, say t0. 

3. MAIN RESULTS 

Theorem (1). Suppose 

(3) f|fl(OI<i*<oof 
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NECESSARY AND SUFFICIENT CONDITIONS 

(4) fl/(0ldt<oo 
and 

(5) J l / r (0d t<oo , 

than all oscillatory solutions 0/(1) approach zero as t -> oo. 
Proof. Let y(t) be an oscillatory solution of equation 1. Let T > t0 be large 

enough so that 

(6) J|a(0|df<l/4 
T 

and 

(7) J|/(0|d*<l/4. 
T 

Suppose to the contrary that lim sup | y(t) | > d > 0. Let Tx > T be so large 
f->oo 

that g(T±) £ T and y(T^ = 0. There is T > T2 > Tx such that y(T2) = 0 and 

(8) Max {| y(t) :T <t<T} = \ y(T) \ > d > 0. 

Let [*!, x2] designate the smallest closed interval containing T such that y(xt) = 
= y(*i) = 0. Designate M = Max {| y(t) \ : xx < t ^ x2}. Note that T2 < xt. 
It is clear that M ^ d and 

(9) | y(t) | < M 

and 

(10) | y(g(t)) | < M 

for t 6 £xx, x2~\. Also let TM e [xt, x2] be such that M = | y(TM) \. Now 

M~ J/(0dr, 
*1 

which gives 
TM 

(ii) M g j i y (o i dj. 
xt 

also 
X2 

-M=J/(0dt , 
TAf 

which gives 

(12) M^ J 1/(01 dr. 
TM 

From (11) and (12) we get 

2M £ J | y'(0 | At - 7| / |1/2 (r(t) | / (0 |)1/2 (K0r1/2 dr. 
XI xi 
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By Schwarz's inequality 

(13) 4M2 £ (Tl/KOdO(?(r(0/(0)y '(OdO. 
Xi * i 

Integration by parts yield 

(14) AM1 £ (?l/r(0d0(-?(r(t)y'(t))'y(»dt). 
XI Xi 

From (14) by using equation 1 we have 

(15) AM2 <> ]\lr(t)dt()\(t)y(g(t))y(t)dt-)2y(t)f(t)dt). 
XI Xi Xi 

From (9), (10) and (15) 

4 = ( J l/r(t) dt) ('f\ a(t) I df + - L p /(.) | dt), 
Xt Xt -*-l act 

I.Є. 

s4-+- 1 

(16) ? ~ 4 T 4d * 
Jl/r(.)d* 

* l 
* 2 

Unless d = 0, (16) yields a contradiction since J l/r(0 dt can be made arbitrarily 
Xi 

small by choice of large T. The proof is complete. 
Remark (1). The above theorem improves our theorem 2 in [9] by eliminating 

the requirement that g(t) = t — t(t) with T(0 bounded. If conditions (3) and (4) 
hold then condition (5) is necessary as the following example shows. 

Example (1). The equation 

(17) / ( 0 + l , ( . ) = - C i ^ , .>0, 
r r 

has y(0 = sin (log t) as a solution. 

The decomposition of a(t) as a(t) = ax(t) + a2(t) can be effectively used by 
assuming conditions on ax(t) and a2(t). Our next theorem uses such a decomposi
tion toward obtaining necessary and sufficient condition for all oscillatory solutions 
of (1) to approach zero asymptotically. 

Theorem. (2). Suppose a(t) = at(t) + a2(t), ax(t) > 0, | a2/at \ < kx for some 
kt > 0 and large t. Further suppose that \f(t) \lat(t) approaches a limit as t -• co. 
Let 

Jl/r(f)dt < oo, and lat(t)At<«>.-
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Then 
lim(|/(OI/a1(0) = 0 
f-*oo 

is a necessary and sufficient further condition for all oscillatory solutions of (1) to 
approach zero as t -> oo. 

Proof. The sufficiency is obvious. To prove necessity we rewrite (1) as 

This yields 

<*i(0 <*i(0 
where y(t) is an oscillatory solution such that y(t) -> 0 as / -* oo. Now if 

liminf \I^L>o, 
r-oo * i ( 0 

then ^ \ is bounded away from zero. Thus (K0y'(0)' assumes a constant 
a i (0 

sign making y(t) nonoscillatory. This contradiction completes the proof of the 
theorem. 

Example (2). The equation 

y , + l -2 s in ( log . ) ( t ) _ 6̂  + 1 0 . ( s i n ( l o g 0 _ C Q S ( , o g t ) ) + 

r r r 
(20) + 1 ^ 4 s i n 2 ( l o g 0 > t>0f 

r 
has y = » a s a n eventually vanishing solution. Here-all conditions 

r 
of Theorem 2 are easily verified. Hence all oscillatory solutions of (20) approach 
zero as t -> oo. 

oo oo 

Corollary (1). Suppose a(t) > 0, J 1/r dt < oo, and J a(t) At < oo. Further 

suppose lim ^ exists. Then a necessary and sufficient condition for (1) /0 have 
f-oo <K0 

'a// oscillatory solutions approaching zero is lim , { =-=0. 
Proof. Follows from Theorem 2. 
Sufficiency part of the proof of Theorem 2 leads us to the following theorem. 

Theorem (3). Suppose a(t) = ax(t) -f a2(t), ax(t) > 0, a2(t)/ax(t) bounded for 
00 oo 

large t, J # i(0 dt < oo, and J 1/r dt < oo. Further suppose thatf(t)/ax(t) is bounded. 
Then all oscillatory solutions of (1) approach zero as t -+ oo. 
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00 00 

Proof. It is clear that J | a(t) | dt < oo. Since j at(t) At < GO, and fW/a^t) 
00 

is bounded as t -* oo, we have J | f(t) \ dt < oo. The conclusion now follows by 
Theorem 1. 

Example (3). Consider the equation 

(2D a V ( o y +
1 - 2 s i n

3
( l o g ( t ) ) ^ ) = 4 + 

r r 
, 10 £ . /f . / t x. 1—4 sin2 (log 0 o 

+ -Hs in (log 0 - cos (log 0) + r * , t > 0, 
f t6 

which has y(0 = » a s a vanishing oscillatory solution. In fact, since 
r 

all conditions of Theorem 3 are satisfied all oscillatory solutions of (21) tend 
to 0 as / -> oo. 

Remark (2). Theorem 3 and Example 3 show that the existence of the limit 
Iimi-»L 
f-oo « l ( 0 

is essential in Theorem 2. In fact, if all oscillatory solutions of (1) approach 0, 
then (19) in the proof of Theorem 2 shows that liminf (|f(0 \/ax(t)) = 0. In 
example 3 we see that J \ \ is bounded, liminf ,{ = 0 but lim ,\ does 

« l ( 0 r-oo <*l(0 r-oo Ai(0 
not exist. 

Our next theorem gives sufficient conditions when oscillatory solutions do not 
have limits. 

Theorem (4). Suppose a(t) = at(t) + a2(t\ a^t) > 0 and a2(t)lax(t) is bounded 
for large U Further suppose that lim inf | f(t) \/ax(t) > 0. Let y(t) be an oscillatory 

t-KJO 

solution of (I). Then lim sup | y(t) | > 0. 
«-*00 

Proof. Suppose to the contrary that y(t) -• 0 as t -» oo. From (1), we get 
inequality (19) 

«i(0 «i(0 «i(0 

fct > 0. A contradiction is immediately reached, since (r(t) y'(t))' assumes a constant 
sign. The proof is complete. The following example satisfies the conditions and 
conclusion of Theorem 4. 

Example (4). Consider the equation 
(22) / ( 0 + j K t - 2 * ) - = l . 

All oscillatory solutions of (22) satisfy lim sup | y(t) \ > 0 since all conditions of 

theorem 4 are satisfied. In fact y(t) = 1 + cos t is one such solution. 
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oo 

Remark (3). Note that Theorem 4 does not require J l/r(0 < oo. 

Theorem (5). Suppose a(t) = ai(0 + a2(t\ ax(t) > 0, a2(t)/at(t) bounded for 
oo oo 

large t9 $ at(t)dt < oo, J l/rdt < oo, and f(i)/ax(i) is bounded for large U Then 

all solutions of (1) are nonoscillatory if liminf ,\ > 0. 
t-oo <*i(0 

oo oo 

Proof. It is easily seen that J | f(t) \ dt < oo and J | a(t) \ dt < oo. Since 
00 

J l/r(0 dt < oo, by Theorem 1, all oscillatory solutions approach zero. Let now 
y(t) be a solution of (1), If y(t) is oscillatory then y(t) -* 0 as t -> oo. From (1), 
we obtain (in a manner of inequality (19)) 

*i(0 "" «i(0 

which clearly gives a contradiction by making y(t) nonoscillatory. 
Example (5). The equation 

(23) (i,y(oy + li^,(0,,L+i±!!!li, 

has WO = T a nonoscillatory solution. In fact, taking ax(t) = 1/t2, a2(t) == sin t/t2

9 
V 

r(t) = l/2t2 and f(t) = (t2 + sin t + l)//4 we find that all conditions of Theorem 5 
hold. Hence all solutions of (23) are nonoscillatory. 

Our next theorem generalizes Theorem 2.6 of Wallgren [14]. 

Theorem (6). Suppose r(t) is bounded9 a(t) = a^(t) + a2(t)9 at(i) > Q > 0, 
I a2(t) |/fli(0 ^ kl9 for large t and lim | f(t) \/ax(t) = oo. TTiew all solutions of (1) 
are unbounded. t"*00 

Proof. From equation 1 

Thus 

w^ЖҶ^^^^лo/мo. 

KKO/Wl.j. JWI_ ( 1 + t l ) l ) < f ( 0 ) | . 
ÖI(0 - «i(0 

If >>(0 is bounded, then above inequality shows that { \ -* oo as / -> oo. 
aiW 

Since ax(t) ^ Q > 0 we get | (r(0/(0) ' I -* oo as / -* oo. Since r(0 is bounded 
/ ( 0 -• ±oo as t -> oo. The conclusion follows by contradiction. 

Example (6). The equation 

(24) f , / ( / ) + 2y(t - */2) e*/2 - e*/2 2(/ - «/2), 
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has y = e* sin t + t and y = t as solutions. All conditions of Theorem 6 are 
satisfied. 

00 00 

Theorem (7). Suppose J | a(t) \ At < oo and J f(0 dt = oo rfte« a// oscillatory 
solutions of (1) are unbounded. 

Proof. From (1) we get 

(25) r(0 y'(t) - r(T) y'(T) + Jf a(s) y(g(s)) ds - J /(s) ds. 
r r 

If y(0 is oscillatory and bounded then (25) yields 

(26) r(0 y'(t) - r(T) y(T) + m f | a(s) | ds £ } /(s) ds, 

where | y(0 \ *£ m for t'£T. (26) readily leads to a contradiction which proves 
this theorem. 

Example (7). The following equation shows that under the conditions of. 
Theorem 7, bounded nonoscillatory solutions can exist. 

(27) (t5/2y'(t))' + 1 X O - — p - -^, -

has y(t) = - 1 / / as a solution. , 

Theorem (8). If under the hypothesis of theorem 7 we require r(t) to be bounded, 
all other conditions being the same then all solutions of (I) are unbounded. 

Proof. We only need to prove it when y(t) is nonoscillatory. Following the 
proof of Theorem 7, if | y(t) | < m then (26) yields r(0 y'(t) -* oo as t -> oo 
and since r(0 is bounded, we have y'(t) -• oo as t -• oo which forces y(t) to be 
unbounded. The proof is now complete by contradiction. 

4. EFFECT OF LARGE r(0 A N D NONOSCILLATION 

Example (8). The equation 

(29) 0?y(0)' + e"2ny(t - 2n) =-= e"r sin t - 3e~' cos t + e~2' sin /, 

has y = e~2'sin t as an oscillatory solution approaching zero. But this equation 

is not covered by Theorem 1 since J | a(t) \ dt = oo. However, it will be shown by 
our next theorem, that all oscillatory solutions of (29) approach zero as t -+ oo. 
In fact, Theorem 9 measures the growth of solutions of (1) in terms of r(t). By 
taking r(0 large enough, the sizes of a(t) and f(t) can be compensated for. As an 
outcome of this approach, we observe that oscillatory trajectories 6f (1) eventually 
vanish if (1) has a nonoscillatory solution satisfying certain properties. 
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00 

Theorem (9). Suppose J l/r(0 dt < oo, 

(30) J I a(x) | ( J l/r(s) ds) dx < oo 
X 

and 

(31) J | / (x) | (Jl /r(s)ds)dx<oo; 
JC 

then all oscillatory solutions of (1) tend to zero asymptotically. 
Proof. We proceed as in Theorem 1 with y(i) as an oscillatory nonvanishing 

solution of (1), and arrive at conclusions (9) and (10) namely I y(0 I ^ M and 
I y(g(0) I ^ M for t e [x t , x2], y(xl) -= y(x2) = 0. Let x0 e [*i, x2] such that 
M = | y(x0) |. Integrating (1) for t e [x0, x2], \ve have 

(32) r(0 y'(0 + J a(x) y(g(x)) dx - J f(x) dx, 
xo * 0 

since y'(x0) = 0. Dividing (32) by r(0 and integrating between [x0, x2] we have 

±M = - fl/r(0 J «(x) y(g(*)) dx d* +J1/K0 J /(*) ^ dt, 
JCO x o XO Xo 

which gives 

M < fl/KO J I <x) | | y(g(x)) \dxdt + f l /r(0 J I f(x) | dx d*. 

Since | y(g(t)) | < M for f e [xa, x2] <= [x., x2] we have 

(33) 1 <, f(fl/r(s)ds)|a(x)\dx + -^ J| f(x)|(fl/r(s)ds)dx, 
xo x -*™ xo x 

where, in (33), the integrals have been rearranged by change of order of integra
tion. Unless M becomes arbitrarily small, (33) leads to a contradiction. 

Our next theorem highlights nonoscillation in obtaining some results about 
oscillatory solutions. We will need the equation 

(34) (r(i)y'(t))' + a(t)y(g(t)) = 0. 

Theorem (10). Suppose equation (34) has a nonoscillatory solution y(t) such 
oo 

that sgn (y(t)) -= sgn (y'(t)). Further suppose that a(t) > 0, [Mr(t)dt < oo and 
00 00 

JI /(*) I (Jl/KO dO dx < oo. Then all oscillatory solutions of (1) approach zero 
• X 

as t -» oo. 
Proof. Let T be large enough so that for / £ T,y(t) and y(g(0) are of the same 

sign. Without any loss of generality, we can assume that for t |£j T we have 

(35) y(0>0,y(g(0)>0,/(0>0 and /(g(0) > 0. 
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Dividing by y(g(t)) and integrating between T and t we have 

,*n r(0y'(0 r(T)y'(T) \ r(x)y'(x)y'(g(x))g'(x)dx 
(36) *K0) y(g(T)) + J pj-fcjj + 

t 

+ Ja(x)dx = 0. 
T 

(36) yields on further manipulation 

f /is) * r ( D / ( D f1/rM, . f 1 f r(x)/(x)/(g(x)g'(x)dxds ^ 

rJ lim *~ y(g(T)) |1 / r ( s )d s + /7(0 I ? ^ " 
(37) = -Jl/r(s)Ja(x)dxds. 

From (35), the first and third term on the left are positive; the second term is 
finite. Since the first term on the right hand side is negative, we arrive at the con
clusion 

t , s t t 

lim J l/r(s) J a(x) dx ds =- lim J ( J l/r(s) ds) a(x) dx < oo. 
Hoo r T t-*ao T x 

The proof is now complete by the application of Theorem 9. 
The following example gives an application of this theorem. 
Example (9). The equation 

Pt/2 

2(ef - 1) 

has y(t) = 1 — e~% as a nonoscillatory solution. Hence all oscillatory solutions of 

(39) (et!V(0)' + —7 K0 = 4*~2tsin f - ^- e'2t cos t + —^ sin t 
2 ( e ' - l ) 2 2 ( e ' - l ) 

approach zero. In fact y = (e~5/2 'sin 0 is one such solution of (39). It is easily 
verified that all conditions of Theorem 10 are satisfied. We also note that all 
conditions of Theorem 9 are satisfied. Indeed, Theorem 10 is a recapitulation 
of Theorem 9 in terms of the nonoscillatory solutions of the homogeneous part 
of(l). 

Example 9 suggests the following theorem. 

Theorem (11). Suppose (1) has a nonoscillatory solution y(t) such that sgn (y(t)) = 
00 00 00 

= sgn (j/(0). Further suppose that a(t) > 0, J l/r(0 dt < oo and \f(x) | (J l/r(t)dt)dx 
< 0. Then all oscillatory solutions of (I) approach zero as t -* oo. 

Proof. We proceed as in Theorem 10 and arrive at conclusion (35). Dividing (1) 
by y(g(t)) and integrating we get 
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NECESSARY AND SUFFICIENT CONDITIONS 

r(t)y'(t) _ r ( T ) / ( r ) ' r(x)y'(x)y'(g(x)g'(x)dx 
y(g(t)) y(g(T)) *} y - ( g ( x ) )

 + 

+ ja(x)dx=l f$X}^ dx. 
T T y(g(x)) 

Since y(g(x)) > y(g(T)) > 0, further integration yields 

J y%ds _ r(T)y'(T) « ' J r (x) / (x) / (g(x) )g^)dxd, 
r J(g(s) .Kg(r)) r r f y2(g(x)) 

(4o) ^3d^f i / K ' ) i i / w , d x d ' -
In view of (35) and condition on f(x), (39) yields 

t -J S 00 00 

lim J -7---- J a(x) dx ds = J a(x) [ J l/r(s) ds] dx < 00. 
*->oo T r l U T T x 

The conclusion follows by Theorem 9. 
Example (10). In equation (39), the nonoscillatory solution y(t) = 1 — e~* + 

+ e~5,2t sin / for sufficiently large t satisfies the requirements of this theorem. 
00 

Theorem (12). Suppose J l/r(0 df < 00 and there exist nonnegative functions 
#i(0> H2(f) such that sgn (Ht(t)) == sgn (H[(t))> i = 1, 2. Further suppose that Ht 

and H2 satisfy 

(41) H O / / ; « ) ' + 1 «(o 1 II^(O) < 0, 

(42) (r(t)H'2(t))' + \f(t)\H2(g(t))<0. 

Then all oscillatory solutions of (1) approach zero as t -*• oo. 
Proof. Following identically the proof of Theorem 10 we obtain (cf. this author 

[7, Theorem 2]) 

J | a(x) | J l /KOdfdKoo 
X 

and 

JlfWIJl/KOd^dx<co, 
X 

which are the conditions of Theorem 9. 
Our next theorem gives an alternative version of Theorem 4. 

Theorem (13). Suppose liminf J( / (0 - |tf(OI)dt > 0. Then any oscillatory 
f-*oo 

solution y(t) of (1) satisfies lim sup | y(t) | > 0. 
*->oo 

Proof. Let y(t) be an oscillatory solution. Then y'(t) is oscillatory. Let T be 
large enough so that y'(T) = 0. From (1) 
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B. SINGH 

(43) r(t) y'(t) + J | a(x) \ \ y(g(x)) \dx^) f(x) dx. 
T T 

Suppose to the contrary that y(t) -• 0 as / -* oo. Without any loss we can assume 
that T is large enough so that for t ^ 7\ | y{g(t)) \ < 1. From (43) and this fact 

(44) (r(0 y'(t)) £ (lim inf J (f(x) - | a(x) \) dx) > 0. 
t-*oo T 

But (44) implies that y'(t) is eventually positive and y(t) is nonoscillatory. This 
contradiction completes the proof. 
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