Archivum Mathematicum

Josef Kalas

Asymptotic behaviour of the equation $\dot{z}=G(t, z)[h(z)+g(t, z)]$

Archivum Mathematicum, Vol. 25 (1989), No. 4, 195--206

Persistent URL: http://dml.cz/dmlcz/107357

Terms of use:

© Masaryk University, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

(Vol. 25, No. 4 (1989), 195-206)

ASYMPTOTIC BEHAVIOUR OF THE EQUATION $\dot{z}=G(t, z)[h(z)+\mathrm{g}(t, z)]$

JOSEF KALAS
(Received February 2, 1988)

In honour of the 60th birthday anniversary of Prof. M. Ráb

Abstract

Asymptotic properties of the solutions of an equation $\dot{z}=G(t, z)[h(z)+g(t, z)]$ with real-valued function G and complex-valued functions h, g are studied. The technique of the proofs of results is based on the modified Liapunov function method. The results are applied to the generalized Riccati equation $\dot{z}=q(t, z)-p(t) z^{2}$.

Key words. Asymptotic behaviour, Liapunov function, Riccati equation.
MS Classification. 34 D 05, 34 D 20.

1. INTRODUCTION

Consider the equation

$$
\dot{z}=h(z)
$$

where h is a holomorphic function in a simply connected region Ω containing zero which satisfies the conditions $h(z)=0 \Leftrightarrow z=0, h^{(j)}(0)=0(j=1, \ldots, n-1)$, $h^{(n)}(0) \neq 0$, where $n \geqq 2$ is an integer. The paper is concerned with the asymptotic behaviour of the solutions of the perturbed equation

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+g(t, z)] \tag{1.1}
\end{equation*}
$$

where G is a real-valued function and h, g are complex-valued functions, t or z being a real or complex variable, respectively. The general results for the equation (1.1) are formulated in Section 2. The last section is devoted to the application of these results to the equation

$$
\begin{equation*}
z=q(t, z)-p(t) z^{2} . \tag{1.2}
\end{equation*}
$$

This application gives the generalization of some results of M. Ráb [6]. The technique of the proofs is based on the Liapunov function method with "Liapunovlike" function $W(z)$ defined in [1].

The case $n=1$, which is qualitatively different from the case $n \geqq 2$, was investigated in several papers; for the list of these papers see [1] or [2]. The asymptotic behaviour of the solutions of the Riccati equation

$$
\begin{equation*}
\dot{z}=q(t)-p(t) z^{2} \tag{1.3}
\end{equation*}
$$

which is a special case of (1.2) was studied by M. Ráb and Z. Tesařová. Some results dealing with the asymptotic properties of the solutions of (1.1) under the assumption $n \geqq 2$ were published in [2] or [3]. Unfortunately, the assumptions of these results make necessary the existence of the trivial solution of (1.1). Moreover, the inequalities of the type (2.3) were assumed to be satisfied at some points arbitrarily close to the point $z=0$. This fact is very restrictive and the results are not applicable to the equations (1.2), (1.3). In the present paper and in [4] we attempt to remove this limitation.
In contradistinction to the present paper the paper [4] deals with the sufficient conditions assuring the existence of the solutions $z(t)$ of (1.1) for $t \rightarrow \infty$ and

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\lim \inf }|z(t)| \leqq \delta, \tag{1.4}
\end{equation*}
$$

where $\delta \geqq 0$ is a given nonnegative number. Then the conditions which guarantee

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\lim \sup }|z(t)| \leqq \delta \tag{1.5}
\end{equation*}
$$

for any solution $z(t)$ of (1.1) satisfying (1.4) are obtained. Even though these results generalize several results of [8], they do not allow to get the results of the type of Theorem 3 and 4 of the present paper.

In the whole paper we use the following notation:

C	- set of all complex numbers
N	- set of all positive integers
R	- set of all real numbers
\boldsymbol{I}	- interval $\left[t_{0}, \infty\right)$
Ω	- simply connected region in C such that $0 \in \Omega$
$C(\Gamma)$	- class of all continuous real-valued functions defined on the
	set Γ
$\tilde{C}(\Gamma)$	- class of all continuous complex-valued functions defined on
	the set Γ

$\mathscr{H}(\Omega) \quad$ - class of all complex-valued functions holomorphic in the region Ω
Int $\Gamma \quad$ - interior of a Jordan curve with the geometric image Γ
$\mathrm{Cl} \Gamma \quad$ - closure of a set $\Gamma \subset C$
$\operatorname{Bd} \Gamma \quad$ - boundary of a set $\Gamma \subset C$
$k, W(z) \quad-$ see [1, pp. 66-67]
$\lambda_{+}, \lambda_{-} \mathscr{T}^{+}, \mathscr{T}^{-}, \varphi-$ see $[1$, pp. 73-74]
$B(0, \delta) \quad$ - the set $\{z \in C:|z| \leqq \delta\}$.
Let $\mathscr{S}^{+} \in \mathscr{T}^{+} / \varphi$ and $\mathscr{S}^{-} \in \mathscr{T}^{-} / \varphi$ be fixed. Then $\mathscr{S}^{+}=\left\{\hat{K}(\lambda): 0<\lambda<\lambda_{+}\right\}$, $\mathscr{S}^{-}=\left\{\hat{K}(\lambda): \lambda_{-}<\lambda<\infty\right\}$, where $\mathscr{K}(\lambda)$ are the geometric images of Jordan curves such that: $0 \in \mathbb{K}(\lambda)$, the equality $W(z)=\lambda$ holds for $z \in R(\lambda)-\{0\}$ and $\mathcal{K}\left(\lambda_{1}\right)-\{0\} \subset \operatorname{Int} R\left(\lambda_{2}\right)$ for $0<\lambda_{1}<\lambda_{2}<\lambda_{+}$or $R\left(\lambda_{2}\right)-\{0\} \subset \operatorname{Int} \hat{K}(\lambda)$ for $\lambda_{-}<\lambda_{1}<\lambda_{2}<\infty$. Define

$$
K\left(\lambda_{1}, \lambda_{2}\right)=\bigcup_{\lambda_{1}<\mu<\lambda_{2}} K(\mu)-\{0\} \quad \text { for } 0 \leqq \lambda_{1}<\lambda_{2} \leqq \lambda_{+}
$$

and

$$
K\left(\lambda_{1}, \lambda_{2}\right)=\bigcup_{\lambda_{2}<\mu<\lambda_{1}} K(\mu)-\{0\} \quad \text { for } \lambda_{-} \leqq \lambda_{2}<\lambda_{1} \leqq \infty .
$$

2. MAIN RESULTS

Suppose $G(t, z)[h(z)+g(t, z)] \in \tilde{C}(I \times \Omega), G \in C(I \times(\Omega-\{0\})), g \in \tilde{C}(I \times(\Omega-$ $-\{0\})$), $h \in \mathscr{H}(\Omega)$. Assume that $h(z)=0 \Leftrightarrow z=0$ and $h^{())}(0)=0(j=1,2, \ldots$, $n-1), h_{(0)}^{(\pi)} \neq 0$, where $n \geqq 2$ is an integer.

Theorem 1. Let $\delta \geqq 0, \vartheta_{1}>0, \vartheta \leqq \lambda_{+}$. Suppose there is a function $E(t) \in C(I)$ such that

$$
\begin{gather*}
\sup _{t_{0} \leq s \leq t<\infty} \int_{s}^{t} E(\xi) \mathrm{d} \xi=x<\infty, \tag{2.1}\\
\vartheta_{1} e^{x}<\vartheta \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
G(t, z) \operatorname{Re}\left\{k h_{(0)}^{(n)}\left(1+\frac{g(t, z)}{h(z)}\right)\right\} \leqq E(t) \tag{2.3}
\end{equation*}
$$

holds for $t \geqq t_{0}, z \in K\left(\vartheta_{1}, \vartheta\right),|z|>\delta$.
If a solution $z(t)$ of (1.1) satisfies

$$
z\left(t_{1}\right) \in \mathrm{Cl} K(0, \gamma)
$$

J. KALAS

where $t_{1} \geqq t_{0}, 0<\gamma e^{x}<\vartheta$ and

$$
z(t) \notin B(0, \delta)-K\left(0, \vartheta_{1}\right)
$$

for all $t \geqq t_{1}$ for which $z(t)$ exists, then

$$
z(t) \in \mathrm{Cl} K(0, \beta) \quad \text { for } t \geqq t_{1},
$$

where $\beta=e^{x} \max \left[\gamma, \vartheta_{1}\right]$.
Proof. Let $\mathscr{M}=\left\{t \geqq t_{1}:|z(t)|>\delta, z(t) \in K\left(\vartheta_{1}, \vartheta\right)\right\}$. For $t \in \mathscr{M}$ we have

$$
\dot{W}(z)=G(t, z) W(z) \operatorname{Re}\left\{k h_{(0)}^{(n)}\left[1+\frac{g(t, z)}{h(z)}\right]\right\}
$$

where $z=z(t)$. Using (2.3) we obtain

$$
\begin{equation*}
W(z(t)) \leqq E(t) W(z(t)) \tag{2.4}
\end{equation*}
$$

for $t \in \mathscr{M}$. Suppose there is a $t^{*}>t_{1}$ such that $z\left(t^{*}\right) \in K(\beta, \vartheta)$. Without loss of generality it may be assumed that $z(t) \in K(0, \vartheta)$ for $t \in\left[t_{1}, t^{*}\right]$. There exists a γ_{1} such that $\beta<\gamma_{1} e^{x}<W\left(z\left(t^{*}\right)\right)$. Obviously $\vartheta_{1}<\gamma_{1}<W\left(z\left(t^{*}\right)\right), \gamma_{1}>\gamma$. Put $t_{2}=$ $=\sup \left\{t \in\left[t_{1}, t^{*}\right]: z(t) \in \mathrm{Cl} K\left(0, \gamma_{1}\right)\right\}$. From (2.4) it follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{W(z(t)) \exp \left[-\int_{t_{2}}^{t} E(s) \mathrm{d} s\right]\right\} \leqq 0, \quad t \in\left[t_{2}, t^{*}\right]
$$

Integration over $\left[t_{2}, t^{*}\right]$ yields

$$
W\left(z\left(t^{*}\right)\right) \exp \left[-\int_{t_{2}}^{t^{*}} E(s) \mathrm{d} s\right]-W\left(z\left(t_{2}\right)\right) \leqq 0
$$

Using (2.1) and $W\left(z\left(t_{2}\right)\right)=\gamma_{1}$, we get

$$
W\left(z\left(t^{*}\right)\right) \leqq \gamma_{1} \exp \left[\int_{t_{2}}^{t^{*}} E(s) \mathrm{d} s\right] \leqq \gamma_{1} e^{x}<W\left(z\left(t^{*}\right)\right)
$$

and we have a contradiction. Therefore

$$
z(t) \in \mathrm{Cl} K(0, \beta) \quad \text { for } t \geqq t_{1} .
$$

Theorem 2. Let $\vartheta_{j}>0, \vartheta \leqq \lambda_{+}, s_{j} \in I, \delta_{j} \geqq 0$ for $j \in N$. Suppose there are functions $E_{j}(t) \in C(I)$ such that

$$
\begin{gathered}
\int_{t_{0}}^{\infty} E_{j}(s) \mathrm{d} s=-\infty \quad(j=2,3, \ldots), \\
\sup _{s, \leq s \leq t<\infty}-\int_{3}^{t} E_{j}(\xi) \mathrm{d} \xi=x_{j}<\infty \quad(j=1,2, \ldots),
\end{gathered}
$$

$$
\begin{equation*}
\vartheta_{j} e^{x_{j}}<\vartheta \quad(j=1,2, \ldots) \tag{2.5}
\end{equation*}
$$

$$
\text { BEHAVIOUR OF } t=G(t, z)[h(z)+g(t, z)]
$$

and,

$$
\begin{equation*}
G(t, z) \operatorname{Re}\left\{k h_{(0)}^{(n)}\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{j}(t) \tag{2.6}
\end{equation*}
$$

holds for $t \geqq s_{j}, z \in K\left(\vartheta_{j}, \vartheta\right),|z|>\delta_{j}, j \in N$. Denote

$$
\vartheta^{*}=\inf _{j \in N}\left[\vartheta_{j} e^{x_{j}}\right]
$$

If a solution $z(t)$ of (1.1) satisfies

$$
z\left(t_{1}\right) \in K\left(0, \vartheta e^{-x_{1}}\right)
$$

where $t_{1} \geqq s_{1}$, and

$$
\begin{equation*}
z(t) \notin B\left(0, \delta_{j}\right)-K\left(0, \vartheta_{j}\right) \tag{2.7}
\end{equation*}
$$

for all $t \geqq t_{1}$ for which $z(t)$ exists and all $j \in N$, then to any $\varepsilon, \vartheta^{*}<\varepsilon<\lambda_{+}$, there is a $T>0$ such that

$$
z(t) \in K(0, \varepsilon)
$$

for $t \geqq t_{1}+T$.
Proof. Put $\mathscr{M}_{j}=\left\{t \geqq s_{j}:|z(t)|>\delta_{j}, z(t) \in K\left(\vartheta_{j}, \vartheta\right)\right\}$. For $t \in \mathscr{M}_{j}$ we obtain

$$
W(z)=G(t, z) W(z) \operatorname{Re}\left\{k h_{(0)}^{(n)}\left[1+\frac{g(t, z)}{h(z)}\right]\right\}
$$

Using (2.6) we get

$$
\begin{equation*}
W(z(t)) \leqq E_{j}(t) W(z(t)) \tag{2.8}
\end{equation*}
$$

By Theorem 1 we have $z(t) \in K(\vartheta)$ for $t \geqq t_{1}$. Let $\varepsilon, \vartheta^{*}<\varepsilon<\lambda_{+}$be given. Without loss of generality it may be supposed that $\varepsilon<\vartheta$. Choose a fixed positive integer j such that

$$
\vartheta_{j} e^{x_{j}}<\varepsilon .
$$

Put $\sigma=\max \left[s_{j}, t_{1}\right]$. Let $T>\left|s_{j}-s_{1}\right|$ be such that

$$
\int_{\sigma}^{t} E_{j}(s) \mathrm{d} s<\ln \frac{\varepsilon}{2 \vartheta}
$$

for $t \geqq t_{1}+T$. Clearly $t_{1}+T>\sigma$.
We claim that $z(t) \in K(\varepsilon)$ for $t \geqq t_{1}+T$. If it is not the case, there exists a $t^{*} \geqq$ $\geqq t_{1}+T$ for which

$$
\begin{equation*}
z\left(t^{*}\right) \notin K(\varepsilon) . \tag{2.9}
\end{equation*}
$$

Using Theorem 1 we have

$$
z(t) \in K\left(\varepsilon e^{-x \jmath}, \vartheta\right) \cup\left[K\left(\varepsilon e^{-x \jmath}\right)-\{0\}\right]=K\left(\vartheta_{j}, \vartheta\right)
$$

for $t \in\left[\sigma, t^{*}\right]$. In view of (2.7), $|z(t)|>\delta_{j}$. The inequality (2.8) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{W(z(t)) \exp \left[-\int_{\sigma}^{t} E_{j}(s) \mathrm{d} s\right]\right\} \leqq 0, \quad t \in \mathscr{M}_{j}
$$

Integration over $\left[\sigma, t^{*}\right]$ yields

$$
W\left(z\left(t^{*}\right)\right) \exp \left[-\int_{\sigma}^{*} E_{j}(s) \mathrm{d} s\right]-W(z(\sigma)) \leqq 0 .
$$

Therefore

$$
W\left(z\left(t^{*}\right)\right) \leqq W(z(\sigma)) \exp \left[\int_{\sigma}^{t^{*}} E_{j}(s) \mathrm{d} s\right] \leqq \vartheta \frac{\varepsilon}{2 \vartheta}=\frac{\varepsilon}{2}<\varepsilon,
$$

which contradicts (2.9) and proves $z(t) \in K(\varepsilon)$ for $t \geqq t_{1}+T$.
Analogously we can prove the following two theorems corresponding to the case $\vartheta \geqq \lambda_{-}$:

Theorem 1^{\prime}. Let $\delta \geqq 0, \vartheta \geqq \lambda_{\text {_. }}$. Suppose there is a function $E(t) \in C(I)$ such that

$$
\begin{gathered}
\sup _{t_{0} \leq s \leq t<\infty} \int_{s}^{t} E(\xi) \mathrm{d} \xi=x<\infty, \\
\vartheta e^{x}<\vartheta_{1}<\infty
\end{gathered}
$$

and

$$
-G(t, z) \operatorname{Re}\left\{k h_{(0)}^{(n)}\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E(t)
$$

holds for $t \geqq t_{0}, z \in K\left(\vartheta_{1}, \vartheta\right),|z|>\delta$.
If a solution $z(t)$ of (1.1) satisfies

$$
z\left(t_{1}\right) \in \mathrm{Cl} K(\infty ; \gamma)
$$

where $t_{1} \geqq t_{0}, \vartheta<\gamma e^{-x}<\infty$ and

$$
z(t) \notin B(0, \delta)-K\left(\infty, \vartheta_{1}\right)
$$

for all $t \geqq t_{1}$ for which $z(t)$ exists, then

$$
z(t) \in \mathrm{Cl} K(\infty, \beta) \quad \text { for } t \geqq t_{1},
$$

where $\beta=e^{-x} \min \left[\gamma, \vartheta_{1}\right]$.
Theorem 2'. Let $\vartheta \geqq \lambda_{-}, \vartheta_{j}<0, s_{j} \in I, \delta_{j} \geq 0$ for $j \in N$. Suppose there are functions $E_{j}(t) \in C\left[t_{0}, \infty\right)$ such that

$$
\int_{t_{0}}^{\infty} E_{j}(s) \mathrm{d} s=-\infty \quad(j=2,3, \ldots)
$$

$$
\begin{gathered}
\sup _{s, \leq s \leq t<\infty} \int_{s}^{t} E_{j}(\xi) \mathrm{d} \xi=x_{j}<\infty \quad(j=1,2, \ldots), \\
\vartheta e^{x j}<\vartheta_{j} \quad(j=1,2, \ldots)
\end{gathered}
$$

and,

$$
-G(t, z) \operatorname{Re}\left\{k h_{(0)}^{(n)}\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{j}(t)
$$

holds for $t \geqq s_{j}, z \in K\left(\vartheta_{j}, \vartheta\right),|z|>\delta_{j}, j \in N$. Denote

$$
\vartheta^{*}=\sup _{j \in N}\left[\vartheta_{j} e^{-x_{j}}\right]
$$

If a solution $z(t)$ of (1.1) satisfies

$$
z\left(t_{1}\right) \in K\left(\infty, \vartheta e^{x_{1}}\right)
$$

where $t_{1} \geqq s_{1}$, and

$$
z(t) \notin B\left(0, \delta_{j}\right)-K\left(\infty, \vartheta_{j}\right)
$$

for all $t \geqq t_{1}$ for which $z(t)$ exists and all $j \in N$, then to any $\varepsilon, \lambda_{-}<\varepsilon<\vartheta^{*}$, there is $a T>0$ such that

$$
z(t) \in K(\infty, \varepsilon)
$$

for $t \geqq t_{1}+T$.

3. APPLICATION TO THE EQUATION $\dot{z}=q(t, z)-p(t) z^{2}$

Supposing that $q \in \tilde{C}(I \times C), p \in \tilde{C}(I)$ and $a \in C, a \neq 0$, the equation

$$
\begin{equation*}
\dot{z}=q(t, z)-p(t) z^{2} \tag{3.1}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+g(t, z)] \tag{3.2}
\end{equation*}
$$

where $h(z)=-a z^{2}, G(t, z)=1$ and $g(t, z)=q(t, z)+a z^{2}-p(t) z^{2}$. In view of [1, Example 1], where $\Omega=C, b=-a$, we get $h^{\prime}(z)=-2 a z, h^{\prime \prime}(z)=-2 a$, $n=2, W(z)=\exp \left[\operatorname{Re}\left(2 \bar{a} z^{-1}\right)\right], \lambda_{+}=\lambda_{-}=1, k=-\bar{a}$. The sets $\hat{K}(\lambda)$, where $0<\lambda<\lambda_{+}=1$ or $1=\lambda_{-}<\lambda<\infty$, are circles with centres $\frac{\bar{a}}{\ln \lambda}$ and radii $\frac{|a|}{|\ln \lambda|}, K(0,1)=\{z \in C: \operatorname{Re}(a z)<0\}, K(\infty, 1)=\{z \in C: \operatorname{Re}(a z)>0\}$.

For $a \in C, a \neq 0, A>0, B>0, \delta \in\left(0, \frac{\pi}{4}\right]$ denote

$$
\Omega_{A, B}(a)=\left\{z \in C:-A \operatorname{Re}\left[a^{2} z^{2}\right]-B\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|>0\right\}
$$

J. KALAS

$$
\Omega_{\delta}(a)=\left\{z=\mu e^{i \varphi}: \mu \in R-\{0\}, \operatorname{Arg} \bar{a}+\frac{\pi}{2}-\delta<\varphi<\operatorname{Arg} \bar{a}+\frac{\pi}{2}+\delta\right\}
$$

Obviously,

$$
\Omega_{\Lambda, B}(a) \subset \Omega_{\pi / 4}(a)=\left\{z \in C: \operatorname{Re}\left(a^{2} z^{2}\right)<0\right\}
$$

for any $A, B>0$, and, to any $A, B>0$ there exists a $\delta_{0} \in\left(0, \frac{\pi}{4}\right)$ such that

$$
\Omega_{\delta}(a)=\Omega_{A, B}(a) \quad \text { for } \delta \in\left(0, \delta_{0}\right]
$$

First we shall prove the following lemma:
Lemma 1. Assume there are $a \in C$ and $C \geqq 0$ such that

$$
\begin{equation*}
\operatorname{Re}[\bar{a} p(t)]>0 \quad \text { for } t \in I \tag{3.3}
\end{equation*}
$$

$$
\begin{align*}
& \underset{t \rightarrow \infty}{\liminf } \operatorname{Re}[\bar{a} p(t)]>0, \quad \underset{t \rightarrow \infty}{\lim \sup }|\operatorname{Im}[\bar{a} p(t)]|<\infty, \tag{3.4}\\
& \operatorname{Re}[a q(t, z)] \geqq-C\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right| \quad \text { for } t \in I, z \in \Omega_{\pi / 4}(a) \tag{3.5}
\end{align*}
$$

- and

$$
\begin{equation*}
q(t, 0) \neq 0 \quad \text { for } t \in I \tag{3.6}
\end{equation*}
$$

Then every solution $z(t)$ of (3.1) satisfying at $t_{1} \geqq t_{0}$ the condition $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$ fulfils $\operatorname{Re}[a z(t)] \geqq 0$ for all $t>t_{1}$ for which $z(t)$ exists.

Moreover, $\operatorname{Re}[a z(t)]>0$ provided $z(t) \neq 0$.
Proof. Choose $A, B>0$ so that

$$
\operatorname{Re}[\bar{a} p(t)] \geqq|a|^{2} A, \quad|\operatorname{Im}[\bar{a} p(t)]| \leqq|a|^{2}(B-C)
$$

for $t \geqq t_{1}$. There exists $\delta_{0} \in\left(0, \frac{\pi}{4}\right)$ with the property $\Omega_{\delta_{0}}(a) \subset \Omega_{A, B}(a)$. For $t \geqq t_{1}$ such that $z=z(t) \in \Omega_{\delta_{0}}(a)$ we obtain

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Re}[a z(t)] & =\operatorname{Re}[a \dot{z}(t)]=\operatorname{Re}[a q(t, z)]-\operatorname{Re}\left[a p(t) z^{2}\right]= \\
& =\operatorname{Re}[a q(t, z)]-|a|^{-2} \operatorname{Re}\left[\bar{a} p(t) a^{2} z^{2}\right]= \\
& =\operatorname{Re}[a q(t, z)]-|a|^{-2}\left\{\operatorname{Re}[\bar{a} p(t)] \operatorname{Re}\left[a^{2} z^{2}\right]-\right. \\
& \left.-\operatorname{Im}[\bar{a} p(t)] \operatorname{Im}\left[a^{2} z^{2}\right]\right\} \geqq-C\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|-A \operatorname{Re}\left[a^{2} z^{2}\right]- \\
& -(B-C)\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right| \geqq-A \operatorname{Re}\left[a^{2} z^{2}\right]-B\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|>0 .
\end{aligned}
$$

If $z(t)=0$ we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Re}[a z(t)]=\operatorname{Re}[a q(t, 0)]>0
$$

$$
\text { BEHAVIOUR OF } \dot{z}=G(f, z)[h(z)+g(t, z)]
$$

or

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Re}[a z(t)]=\operatorname{Re}[a q(t, 0)]=0 \tag{3.7}
\end{equation*}
$$

Because of (3.6) we conclude that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Im}[a z(t)]=\operatorname{Im}[a q(t, 0)] \neq 0
$$

in the case (3.7). In view of the fact that $\operatorname{Re}[a z]=0$ implies $z \in \Omega_{\delta_{0}}(a) \cup\{0\}$, we get $\operatorname{Re}[a z(t)] \geqq 0$ for all $t \geqq t_{1}$ for which $z(t)$ is defined. Clearly, $\operatorname{Re}[a z(t)]>0$ if $z(t) \neq 0$.

Remark. If the condition (3.6) of Lemma 2 is replaced by $\operatorname{Re}[a q(t, 0)]>0$, we get the assertion $\operatorname{Re}[a z(t)]>0$ for all $t>t_{1}$ for which $z(t)$ exists.

The next lemma will be useful in our further considerations.
Lemma 2. Let $\delta>0, a_{1}, a_{2} \in C$ and let a_{1}, a_{2} be linearly independent. If $a=$ $=\left(a_{1}+a_{2}\right) / 2$,

$$
\begin{equation*}
1<\alpha \leqq \exp \left[\delta^{-1} \min _{m=1,2}\left(\left|a_{m}\right|\left|\operatorname{Im} \frac{a_{3-m}}{a_{m}}\right|\right)\right] \tag{3.8}
\end{equation*}
$$

and

$$
\operatorname{Re}\left[a_{m} z\right]>0 \quad(m=1,2), \quad \text { then } \quad z \notin B(0, \delta)-K(\infty, \alpha)
$$

Proof. Since $\operatorname{Re}\left[a_{m} z\right]>0(m=1,2)$ implies $\operatorname{Re}[a z]>0$, it is sufficient to prove that $\delta \leqq \min \left[\left|z_{1}\right|,\left|z_{2}\right|\right]$, where $z_{m} \neq 0$ is the intersection of $\hat{K}(\alpha)$ with the line $\operatorname{Re}\left[a_{m} z\right]=0$.

Supposing

$$
W\left(z_{m}\right)=\exp \left\{\operatorname{Re}\left[2 \bar{a} z_{m}^{-1}\right]\right\}=\alpha \quad \text { and } \quad \operatorname{Re}\left[a_{m} z_{m}\right]=0
$$

there exists a $\tau_{m} \in \boldsymbol{R}$ such that

$$
z_{m}=i \bar{a}_{m} \tau_{m} \quad \text { and } \quad \operatorname{Re} \frac{2 \bar{a}}{i \bar{a}_{m} \tau_{m}}=\ln \alpha
$$

Hence

$$
\tau_{m}=[\ln \alpha]^{-1} \operatorname{Re} \frac{\bar{a}_{3-m}}{i \bar{a}_{m}}
$$

and

$$
z_{m}=\frac{i \bar{a}_{m}}{\ln \alpha} \operatorname{Re} \frac{\bar{a}_{3-m}}{i \bar{a}_{m}}=-\frac{i \bar{a}_{m}}{\ln \alpha} \operatorname{Im} \frac{a_{3-m}}{a_{m}}
$$

Therefore

$$
\left|z_{m}\right|=\frac{\left|a_{m}\right|}{|\ln \alpha|}\left|\operatorname{Im} \frac{a_{3-m}}{a_{m}}\right|
$$

In view of (3.8) we obtain $\delta \leqq \min \left[\left|z_{1}\right|,\left|z_{2}\right|\right]$.
Applying Theorem 2^{\prime} and using Lemma 1 and Lemma 2 we obtain
Theorem 3. Suppose there are $a_{1}, a_{2} \in C$ linearly independent such that the following inequalities are fulfilled for $m=1,2$:

$$
\begin{gather*}
\operatorname{Re}\left[\bar{a}_{m} p(t)\right]>0 \quad \text { for } t \in I, \tag{3.9}\\
\liminf _{t \rightarrow \infty} \operatorname{Re}\left[\bar{a}_{m} p(t)\right]>0, \quad \underset{t \rightarrow \infty}{\lim \sup \left|\operatorname{Im}\left[\bar{a}_{m} p(t)\right]\right|<\infty,} \\
\operatorname{Re}\left[a_{m} q(t, z)\right] \geqq 0 \quad \text { for } t \in I, z \in C, \\
\operatorname{Re}\left[a_{m} q(t, 0)\right]>0 \quad \text { for } t \in I .
\end{gather*}
$$

Assume there exists $D(t) \in C(I)$ such that

$$
|q(t, z)| \leqq D(t) \quad \text { for } t \geqq t_{0}, z \in C
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty^{-}} D(t)=0 \tag{3.13}
\end{equation*}
$$

Then any solution $z(t)$ of (3.1) satisfying $\operatorname{Re}\left[a_{m} z\left(t_{1}\right)\right]>0(m=1,2)$, where $t_{1} \geqq t_{0}$ satisfies the condition

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

Moreover, $\operatorname{Re}\left[a_{m} z(t)\right]>0(m=1,2)$ for $t \geqq t_{1}$.
Proof. Put $a=\left(a_{1}+a_{2}\right) / 2$. Choose $\vartheta=\lambda_{-}=1, s_{1}=t_{1}$,

BEHAVIOUR OF $\dot{z}=\boldsymbol{G}(t, z)[h(z)+g(t, z)]$

$$
\delta_{1}=2 \sqrt{|a| \frac{\max _{t \in I} D(t)}{\min _{t \in I} \operatorname{Re}[\vec{a} p(t)]}}, \quad \delta_{j}=j_{1}^{-1} \quad(j=2,3, \ldots),
$$

$\vartheta_{j}=\exp \left\{\delta_{j}^{-1} \min \left[\left|a_{m}\right|\left|\operatorname{Im}\left(a_{3-m} a^{-1}\right)\right|\right]\right\}, x_{j}=0, E_{j}(t)=2|a| \delta_{j}^{-2} D(t)-$ $-2 \operatorname{Re}[\bar{a} p(t)]$. For $j \geqq 2$ let $s_{j} \geqq t_{0}$ be such that $E_{j}(t)<0$ for $t \geqq s_{j}$. Then $-G(t, z) \operatorname{Re}\left\{k h^{\prime \prime}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\}=2 \operatorname{Re}\left[\bar{a} z^{-2} q(t, z)\right]-2 \operatorname{Re}[\bar{a} p(t)] \leqq E_{j}(t)$ for $t \geqq s_{j}, z \in K\left(\vartheta_{j}, \vartheta\right),|z|>\delta_{j}$. Further it holds that $\vartheta<\vartheta_{j}$ and $\vartheta^{*}=\sup _{j \in \boldsymbol{N}} \vartheta_{j}=$ $=\infty$. In view of Lemma 1 and following Remark we have $\operatorname{Re}\left[a_{m} z(t)\right]>0(m=$ $=1,2$) for all $t \geqq t_{1}$ for which $z(t)$ exists. By use of Lemma 2 we infer that

$$
z(t) \notin B\left(0, \delta_{j}\right)-K\left(\infty, \vartheta_{j}\right)
$$

for all $t \geqq t_{1}$ for which $z(t)$ exists and all $j \in N$. Applying Theorem 2^{\prime} we find out that to any $\varepsilon, 1<\varepsilon<\infty$ there is a $T>0$ such that $z(t) \in K(\infty, \varepsilon)$ for $t \geqq t_{1}+T$, which implies

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

The replacement of the condition (3.13) by

$$
\begin{equation*}
\int_{t_{0}}^{\infty} D(t) \mathrm{d} t<\infty \tag{3.14}
\end{equation*}
$$

leads to the following theorem:
Theorem 4. Let the assumptions of Theorem 3 be fulfilled with the exception that (3.13) is replaced by (3.14). Then the conclusion of Theorem 3 remains true.

Proof. Set $a=\left(a_{1}+a_{2}\right) / 2, \vartheta=\lambda_{-}=1, s_{1}=t_{1}$,

$$
\begin{gathered}
\delta_{1}=\sigma \sqrt{2|a| \int_{t_{0}}^{\infty} D(t) \mathrm{d} t,} \\
\delta_{j}=\min _{m=1,2}\left[\left|a_{m}\right|\left|\operatorname{Im}\left(a_{3-m} a_{m}^{-1}\right)\right|\right] / j \quad(j=2,3, \ldots), \\
\vartheta_{j}=\exp \left\{\delta_{j}^{-1} \min \left[\left|a_{m}\right| \mid \operatorname{Im}\left(a_{3-m} a_{m}^{-1}\right)\right]\right\} \quad(j=1,2, \ldots),
\end{gathered}
$$

where

$$
\begin{equation*}
\sigma=2 \max \left\{\ln ^{-1 / 2} W\left(z\left(t_{1}\right)\right), \frac{\sqrt{2|a| \int_{t_{0}}^{\infty} D(t) \mathrm{d} t}}{\min _{m=1,2}\left[\left|a_{m}\right|\left|\operatorname{Im}\left(a_{3-m} a_{m}^{-1}\right)\right|\right]}\right\} \tag{3.15}
\end{equation*}
$$

For $j \geqq 2$ let $s_{j} \geqq t_{0}$ be such that

$$
2|a| \sup _{z j \leqq s \leq t<\infty} \int_{s}^{t} D(\xi) d \xi \leqq \delta_{j}^{2}
$$

Put

$$
\begin{gathered}
E_{j}(t)=2|a| \delta_{j}^{-2} D(t)-2 \operatorname{Re}[a p(t)], \\
x_{j}=\sup _{s_{j} \leq s \leq t<\infty} \int_{s}^{t} E_{j}(\xi) \mathrm{d} \xi .
\end{gathered}
$$

Then $\vartheta e^{x_{1}} \leqq e^{\sigma-2}<\vartheta_{1}, \vartheta e^{x_{j}}=e^{x_{j}} \leqq e<\vartheta_{j}(j=2,3, \ldots)$,

$$
\vartheta^{*}=\sup _{j \in N}\left[\vartheta_{j} \mathrm{e}^{-x_{j}}\right] \geqq \sup _{j \in N}\left[\vartheta_{j} \mathrm{e}^{-1}\right]=\sup _{j \in N} \mathrm{e}^{j-1}=\infty
$$

and

$$
-G(t, z) \operatorname{Re}\left\{k h^{\prime \prime}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\}=2 \operatorname{Re}\left[\bar{a} z^{-2} q(t, z)\right]-2 \operatorname{Re}[\bar{a} p(t)] \leqq E_{j}(t)
$$

In view of (3.15) we have $W\left(z\left(t_{1}\right)\right)>e^{\sigma^{-2}}$, whence $z\left(t_{1}\right) \in K\left(\infty, \vartheta e^{x_{1}}\right)$. Analogously as in the proof of Theorem 3 we infer that $\operatorname{Re}\left[a_{m} z(t)\right]>0$ and $z(t) \notin B\left(0, \delta_{j}\right)$ -$-K\left(\infty, \vartheta_{j}\right)$ for all $t \geqq t_{1}$ for which $z(t)$ exists. The application of Theorem 2^{\prime} yields the desired result.

Remark. In a special case $p(t)=1, q(t, z)=q(t)$ the conditions (3.9)-(3.12) are reduced to $\operatorname{Re} a_{m}>0, \operatorname{Re}\left[a_{m} q(t)\right]>0(m=1,2)$ and we can put $D(t)=$ $=|q(t)|$. Thus we get some results of M. Ráb [6].

REFERENCES

[1] J. Kalas, On a "Liapunov-like" function for an equation $\dot{z}=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 18 (1982), 65-76.
[2] J. Kalas, Asymptotic nature of solutions of the equation $\dot{z}=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 20 (1984), 83-94.
[3] J. Kalas, Some results on the asymptotic behaviour of the equation $\dot{z}=f(t, z)$ with a complexvalued function f, Arch. Math. (Brno) 21 (1985), 195-199.
[4] J. Kalas, Contributions to the asymptotic behaviour of the equation $\dot{z}=f(t, z)$ with a complexvalued function f, to appear.
[5] C. Kulig, On a system of differential equations, Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat. Zeszyt 9, 77 (1963), 37-48.
[6] M. Ráb, Equation $Z^{\prime}=A(t)-Z^{2}$, coefficient of which has a small modulus, Czech. Math. J. 21 (96) 1971, 311-317.
[7] M. Ráb, Geometrical approach to the study of the Riccati differential equation with complexvalued coefficients, J. Diff. Equations 25 (1977), 108-114.
[8] Z. Tesał̌ová, The Riccati differential equation with complex-valued coefficients and application to the equation $x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0$, Arch. Math. (Brno) 18 (1982), 133-143.

J. Kalas

Department of Mathematics,
J. E. Purkyne University

66295 Brno, Janáckoovo nám. 2a
Czechoslooakia

