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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 95 { 111ON A MODIFICATION OF RELATIONAL AXIOMSJi�r�� Kar�asekDedicated to Professor M. Novotn�y on the occasion of his seventieth birthday0. IntroductionWhile axioms of binary relations are already stable, it cannot be said aboutaxioms of ternary relations. So, in [1] and [3], the re
exivity of ternary relations isde�ned in the following way:x; y; z 2 G; card fx; y; zg � 2) (x; y; z) 2 Rwhile in [7] it is de�ned more weakly:x 2 G) (x; x; x) 2 R:Similarly, the transitivity of ternary relations is de�ned in [1], [3], and [7] by thecondition: (x; y; z) 2 R; (x; z; u) 2 R) (x; y; u) 2 R;while in [11] by the requirement:(x; z; y) 2 R; (y; z; u) 2 R) (x; z; u) 2 R:In [13], the author has presented a general scheme of relational axioms forrelations of any arity (not necessarily �nite). The aim of this paper is to give amodi�cation of that scheme yielding richer possibilities.Let G, H be everywhere nonempty sets. By a relation (with the carrier G andthe index set H) we understand a set R � GH where GH denotes (as usually) theset of all mappings of the set H into the set G. N will denote the set of all positiveintegers. For any n 2 N we denote (n] = fm 2 N ; m � ng. In the case of a �niteset H of cardinality k we shall not distinguish between mappings of the set H intothe set G and k-tuples of elements of the set G. For any n 2 N we denote by Snthe set of all permutations of the set (n], by Sn(1) the set of all permutations ofthe set (n] mapping 1 onto itself (preserving 1). For any ' 2 Sn and m 2 N , 'mdenotes the m-th iteration of the permutation ', for any ',  2 Sn, ' denotesthe composition of the permutations ' and  . id denotes the identical permutationof the set (n].1991 Mathematics Subject Classi�cation : 04A05, 08A02.Key words and phrases: relation, n-decomposition, diagonal, (K; ')-modi�cation, composi-tion, m-th power, m-th cyclic transposition, (p)-hull.Received May 20, 1992. 95



96 JI�R�I KAR�ASEK1. Operations with relations1.1. De�nition. Let n 2 N . Then the sequence of n + 1 sets K = fKign+1i=1 iscalled an n-decomposition of the set H if(1) n+1Si=1 Ki = H,(2) Ki \Kj = ; for all i; j 2 (n+ 1]; i 6= j.If, moreover,(3) card Ki= card Kj for all i; j 2 (n],the n-decomposition K is called regular .1.2. De�nition. Let K = fKign+1i=1 be an n-decomposition of the set H. Thenthe relation EK = ff 2 GH ; f(Ki) = f(Kj ) for all i; j 2 (n]gis called the diagonal with regard to K.1.3. Remark. Let K = fKign+1i=1 be an n-decomposition of the set H. Obviously,then:(1) If Kn+1 = H or n = 1, then EK = GH .(2) If there exist i; j 2 (n] such that Ki 6= ; = Kj , then EK = ;.1.4. De�nition. Let R � GH be a relation, K = fKign+1i=1 an n-decomposition ofthe set H, ' 2 Sn. Then we de�ne the relation RK;' � GH byRK;' = �f 2 GH ; 9g 2 R : f(Ki) == g(K'(i)) for all i 2 (n]; f(Kn+1) = g(Kn+1)g :RK;' is called the (K; ')-modi�cation of the relation R.1.5. Remark. Let R � GH be a relation, K = fKign+1i=1 an n-decomposition ofthe set H. Clearly, then:(1) R � RK;id; if, moreover, card Ki � 1 for all i 2 (n + 1],then R = RK;id.(2) ;K;' = ;.(3) If there exist i; j 2 (n] such that Ki 6= ; = Kj , '(i) = jor '(j) = i, then RK;' = ;:1.6. Example. Let R � GH be a relation, H = f1; 2g (i.e. R be binary), K =fKig3i=1, K1 = f1g, K2 = f2g, and let ' be the permutation of the set (2] de�nedby: '(1) = 2, '(2) = 1. Then RK;' = R�1. Hence, in this case, the (K; ')-modi�cation of a binary relation coincides with its standard inverse.



ON A MODIFICATION OF RELATIONAL AXIOMS 971.7. De�nition. Let R1; : : : ; Rn � GH be relations, K = fKign+1i=1 ann-decomposition of the set H. Then we de�ne the relation (R1 : : :Rn)K � GH by(R1 : : :Rn)K =ff 2 GH ; 9fi 2 Ri for all i 2 (n] such thatf(Ki) = fi(Ki) for all i 2 (n],f(Kn+1) = fi(Kn+1) for all i 2 (n],fi(Kj) = fj(Ki) for all i; j 2 (n]g.(R1 : : :Rn)K is called the composition of R1; : : : ; Rn with regard to K.1.8. De�nition. Let R � GH be a relation, K an n-decomposition of the set H.Then we put R1K = R;R2K = (R : : :R)K;RmK = (Rm�1K R : : :R)K [ (RRm�1K R : : :R)K [ � � �[[ (R : : :RRm�1K )Kfor any M 2 N , m � 3. RmK is called the m-th power of R with regard to K.1.9. Example. Let R1, R2 � GH be relations,H = f1; 2g (i.e. R1; R2 be binary),K = fKig3i=1, K1 = f1g, K2 = f2g. Then (R1R2)K = R1R2: Hence, in this case,the composition with regard to K coincides with the standard composition ofbinary relations.1.10. Remark. Let R1; : : : ; Rn � GH be relations, K = fKign+1i=1 ann-decomposition of the set H, let ' 2 Sn. Evidently, then:(1) If Ki = ; for some i 2 (n], (R1 : : :Rn)K 6= ;, then K is regular and thereexist fj 2 Rj for all j 2 (n] such that fj(H) = fk(H) for all j; k 2 (n].(2) If Ki = ; for some i 2 (n] and there exist j; k 2 (n] such that for eachf 2 Rj, g 2 Rk we have f(H) 6= g(H), then (R1 : : :Rn)K = ;.1.11. Notation. Let K = fKign+1i=1 be an n-decomposition of the set H. Then K�denotes the n-decomposition of the set H de�ned by K� = fK�i gn+1i=1 whereK�i = 8><>: Ki+1 for all i 2 (n� 1]K1 for i = nKn+1 for i = n+ 1Further, � denotes the mapping of the set Sn into itself assigning to any permu-tation ' 2 Sn the permutation '� 2 Sn de�ned by:'�(i) = 8><>: '(i + 1)� 1 if i 2 (n� 1]; '(i+ 1) 6= 1'(1) � 1 if i = n; '(1) 6= 1n otherwise



98 JI�R�I KAR�ASEK1.12. Lemma. Let R;R1; : : : ; Rn � GH be relations, K an n-decomposition ofthe set H, let ' 2 Sn, m 2 N . Then:(1) K �����|{z}ntimes = K.(2) EK = EK� .(3) RK;' = RK�;'� .(4) (R1 : : :Rn)K = (R2 : : :RnR1)K� .(5) RmK = RmK� .Proof is obvious.1.13. De�nition. Let R � GH be a relation, K an n-decomposition of the setH, ' 2 Sn. Then we put R1K;' = RK;';RmK;' = (Rm�1K;' )K;'for any m 2 N , m � 2.1.14. Lemma. Let R � GH be a relation, K an n-decomposition of the set H,let ',  2 Sn, m 2 N . Then:(1) (RK;')K; = RK;' .(2) RmK;' = RK;'m .Proof. (1) Let K = fKign+1i=1 , let f 2 (RK;')K; . Then there exists g 2 RK;' suchthat f(Ki) = g(K (i)) for all i 2 (n], f(Kn+1) = g(Kn+1). As g 2 RK;', thereexists h 2 R such that g(Ki) = h(K'(i)) for all i 2 (n], g(Kn+1) = h(Kn+1).Thus, f(Ki) = h(K(' )(i)) for all i 2 (n], f(Kn+1) = h(Kn+1), and f 2 RK;' .The converse inclusion can be shown similarly.(2) It follows from (1).1.15. Lemma. Let J be a nonempty set, R;R1; : : : ; Rn, R01; : : : ; R0n; T; Tj forall j 2 J relations with the carrier G and the index set H. Let K be an n-decomposition of the set H, ' 2 Sn, r 2 N such that 'r =id. Let k 2 (n], m 2 N .Then:(1) EK = (EK)K;' = (EK : : :EK)K.(2) R � RrK;' = RK;id.(3) (EK : : :EK R"k-th placeEK : : :EK)K � RK;id.(4) R � T implies RK;' � TK;'.(5) ( Sj2JTj)K;' = Sj2J(Tj)K;'.(6) ( Tj2JTj)K;' � Tj2J(Tj)K;'.(7) ((R1 : : :Rn)K)K;' � ((R'(1))K;' : : : (R'(n))K;')K.(8) If n � 2 or K is regular, then (7) becomes the equality.



ON A MODIFICATION OF RELATIONAL AXIOMS 99(9) Ri � R0i for all i 2 (n] imply (R1 : : :Rn)K � (R01 : : :R0n)K.(10) R � T implies RmK � TmK .(11) (RK;')mK � (RmK )K;'.(12) If n � 2 or K is regular, then (11) becomes the equality.Proof. The assertion folows directly from the de�nitions of the operations. Forexample, let us prove (2) and (7).(2) By 1.14 (2), we have RrK;' = RK;'r = RK;id. By 1.5 (1), R � RK;id.(7) Let K = fKign+1i=1 . Let f 2 ((R'(1))K;' : : : (R'(n))K;')K.Then there exist fi 2 (R'(i))K;' for all i 2 (n] such that f(Ki) = fi(Ki) for alli 2 (n], f(Kn+1) = fi(Kn+1) for all i 2 (n], and fi(Kj) = fj(Ki) for all i; j 2 (n].Hence, there exist gi 2 R'(i) for all i 2 (n] such that fi(Kj) = g(K'(j)) for alli; j 2 (n], fi(Kn+1) = gi(Kn+1) for all i 2 (n]. Now, let us conctruct a mappingg 2 GH such that g(K'(i)) = gi(K'(i)) for all i 2 (n]; g(Kn+1) = f(Kn+1).Then g 2 (R1 : : :Rn)K, for g'�1(i) 2 Ri for all i 2 (n], g(Ki) = g'�1(i)(Ki)for all i 2 (n], g(Kn+1) = f(Kn+1) = f'�1(i)(Kn+1) = g'�1(i)(Kn+1) for alli 2 (n]; g'�1(i)(Kj) = f'�1(i)(K'�1(j)) = f'�1(j)(K'�1(i)) = g'�1(j)(Ki) for alli; j 2 (n]. From this it follows that f 2 ((R1 : : :Rn)K)K;', for we have f(Ki) =fi(Ki) = gi(K'(i)) = g(K'(i)) for all i 2 (n], f(Kn+1) = g(Kn+1).1.16. Remark. The inclusions in (2), (3), (6), and (7) cannot, in general, bereplaced by the equalities. For example, let G = fa; bg;H = f1; 2; 3; 4;5g;K =fKjg4i=1, K1 = f1; 2g, K2 = f3g, K3 = f4; 5g, let R1 = f(a; b; a; a; b)g, R2 =f(a; a; a; a; a)g, R3 = f(a; b; a; a; a)g and let ' 2 S3 be such that '(1) = 2,'(2) = 3, '(3) = 1. Then ((R1R2R3)K)K;' = f(a; a; a; a; b); (a; a; a; b; a)g, but((R2)K;'(R3)K;'(R1)K;') = ;.1.17. De�nition. Let R � GH be a relation, K an n-decomposition of the setH, let � 2 Sn be the permutation de�ned by:�(i) = � i+ 1 for all i 2 (n � 1]1 for i = n :Then we de�ne: 1RK = RK;� ;mRK = 1(m�1RK)Kfor any m 2 N , m � 2. mRK is called the m-th cyclic transposition of R withregard to K.1.18. Lemma. Let R;R1; : : : ; Rn � GH be relations, K an n-decomposition ofthe set H. Then:(1) 1RK = 1RK� .



100 JI�R�I KAR�ASEK(2) EK =1 (EK)K.(3) 1((R1 : : :Rn)K)K � (1(R2)K : : :1(Rn)K1(R1)K)K.(4) If n � 2 or K is regular, then (3) becomes the equality.Proof. (1) follows from the fact that �� = �.(2), (3), and (4) follow from 1.15 (1), (7), and (8).1.19. Lemma. Let J be a nonempty set, R, T , Tj for all j 2 J be relations withthe carrier G and the index set H. Let K be an n-decomposition of the set H.Then:(1) R � nRK:(2) R � T implies 1RK �1 TK:(3) 1( Sj2J Tj)K = Sj2J 1(Tj)K:(4) 1( Tj2J Tj)K � Tj2J 1(Tj)K:Proof. The assertion follows from 1.15 (2), (4), (5), and (6).2. Properties of relations2.1. De�nition. Let R � GH be a relation, K = fKign+1i=1 an n-decomposition ofthe set H, ' 2 Sn. Then R is called(1) re
exive (irre
exive) with regard to K if EK � R(R \EK = ;),(2) symmetric (asymmetric, antisymmetric) with regard to K and ' ifRK;' � R(R \RK;' = ;, R \RK;' � EK),(3) transitive (atransitive) with regard to K if R2K � R(R \RmK = ; for any m 2 N;m � 2),(4) complete with regard to K if f 2 GH , f(Ki) 6= f(Kj ) for all i; j 2 (n],i 6= j imply the existence of  2 Sn such that f 2 RK; ,(5) regular with regard to K if f 2 R, g 2 GH , f(Ki) = g(Ki) for all i 2 (n+1]imply g 2 R.2.2. Remark. Let R � GH be a relation, K = fKign+1i=1 an n-decomposition ofthe set H. If card Ki � 1 for all i 2 (n + 1], then R is clearly regular with regardto K.2.3. Lemma. Let R;R1; : : : ; Rn � GH be relations, K an n-decomposition of theset H, let ' 2 Sn, m 2 N , m � 2. Then:(1) EK; RK;'; (R1 : : :Rn)K, and RmK are regular with regard to K(2) If R is symmetric with regard to K and ', then RK;' = R and R is regularwith regard to K.



ON A MODIFICATION OF RELATIONAL AXIOMS 101Proof. (1) is evident.(2) Let R be symmetric with regard to K and '. By 1.15 (2) and (4), R �RrK;' � Rr�1K;' � � � � � RK;' � R for any r 2 N such that 'r =id. Thus RK;' = R.The rest follows from (1).2.4. Lemma. Let J be a nonempty set, j0 2 J;R; Tj for all j 2 J relations withthe carrier G and the index set H. Let K be an n-decomposition of the set H,' 2 Sn, r 2 N be such that 'r =id. Then:(1) If R is regular with regard to K, then R = RrK;'.(2) If Tj is regular with regard to K for each j 2 J � fj0g, then( Tj2J Tj)K;' = Tj2J(Tj)K;'.Proof. The inclusions � result from 1.15 (2) and (6). Using regularity one caneasily prove the converse ones.2.5. Theorem. Let J be a nonempty set, j0 2 J . Let R;R1; : : : ; Rn; Tj for allj 2 J be relations with the carrier G and the index set H. Let K be an n-decomposition of the set H, ' 2 Sn. Then:(1) If Tj0 is re
exive with regard to K, then Sj2J Tj is re
exive with regard toK.(2) If R;R1; : : : ; Rn, and Tj for all j 2 J are re
exive with regard to K, thenTj2J Tj , RK;', and (R1 : : :Rn)K are re
exive with regard to K.(3) If Tj for all j 2 J are regular with regard to K, then Sj2J Tj and Tj2J Tj areregular with regard to K.(4) If R and Tj for all j 2 J are irre
exive (symmetric) with regard to K (and'), then Sj2J Tj , Tj2J Tj , and RK;' have the same property.(5) If R and Tj for all j 2 J are transitive with regard to K, then Tj2J Tj andRK;' are transitive with regard to K.(6) If R and Tj0 are atransitive (asymmetric, antisymmetric) with regard toK (and '), then Tj2J Tj and RK;' have the same property.(7) If R and Tj0 are complete with regard to K, then Sj2J Tj and RK;' arecomplete with regard to K.Proof. The assertions (1) and (3) are evident, the others follow from 1.5 (2),1.14 (1), 1.15 (1), (4) - (6), (9) - (11), 2.3 (1), and 2.4 (2).2.6. Theorem. Let R1; : : : ; Rn � GH be relations, let K be an n-decomposition,' 2 Sn. Let R1; : : : ; Rn be symmetric with regard to K and '.(1) If (R1 : : :Rn)K is symmetric with regard to K and ', then (R1 : : :Rn)K �(R'(1) : : :R'(n))K.



102 JI�R�I KAR�ASEK(2) If n � 2 or K is regular, then (R1 : : :Rn)K is symmetric with regard to Kand ' if and only if (R1 : : :Rn)K � (R'(1) : : :R'(n))K.Proof. The statements result from 1.15 (7) - (9) and 2.3 (2).2.7. Lemma. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Then:(1) If R is re
exive (irre
exive, transitive, atransitive, complete, regular) withregard to K, then it has the same property with regard to K�.(2) If R is symmetric (asymmetric, antisymmetric) with regard to K and ',then it has the same property with regard to K� and '�.Proof. For regularity the assertion is obvious, and for the other properties itfollows from 1.12 (2), (3), and (5).2.8. De�nition. Let R � GH be a relation, K an n-decomposition of the set H.Then R is called:(1) cyclic (acyclic, anticyclic) with regard to K if it is symmetric (asymmetric,antisymmetric) with regard to K and �,(2) symmetric (asymmetric, antisymmetric) with regard to K if it is symmet-ric with regard to K and ' for any ' 2 Sn (asymmetric, antisymmetricwith regard to K and ' for any odd permutation ' 2 Sn).2.9. Lemma. Let R � GH be a relation, K an n-decomposition of the set H.Then:(1) 1RK is regular with regard to K.(2) If R is cyclic or symmetric with regard to K, then it is regular with regardto K.Proof. (1) follows from 2.3 (1).(2) follows from 2.3 (2).2.10. Lemma. Let J be a nonempty set, j0 2 J . Let R and Tj for all j 2 J berelations with the carrier G and the index set H, K an n-decomposition of the setH. Then:(1) If R is regular with regard to K, then R = nRK.(2) If Tj is regular with regard to K for all j 2 J � fj0g, then 1( Tj2J Tj)K =Tj2J 1(Tj)K.Proof. (1) follows from 2.4 (1).(2) follows from 2.4 (2).2.11. Remark. Let R � GH be a relation, K an n-decomposition of the set H.Evidently, then 1RK = n+1RK.



ON A MODIFICATION OF RELATIONAL AXIOMS 1032.12. Theorem. Let R � GH be a relation, K an n-decomposition of the set H.Then:(1) R is a symmetric with regard to K if and only if it is cyclic with regardto K and symmetric with regard to K and ' for any ' 2 Sn(1).(2) If n is odd andR is cyclic with regard toK, then R is asymmetric (antisym-metric) with regard to K if and only if it is asymmetric (antisymmetric)with regard to K and ' for any odd permutation ' 2 Sn(1).Proof. (1) " ) ": Let R be symmetric with regard to K. Then it is symmetricwith regard to K and ' for any ' 2 Sn, consequently for any ' 2 Sn(1) and for' = �."( ": Let R be cyclic with regard to K and symmetric with regard to K and ' forany ' 2 Sn(1). Let  2 Sn. Denote  (1) = k, ' = �n�k+1 . Then ' 2 Sn(1) and = �k�1'. By 1.14 (1) and 1.15 (4), we haveRK; = RK;�k�1' = (RK;�)K;�k�2' �RK;�k�2' = (RK;�)K;�k�3' � RK;�k�3' = � � � � RK;' � R. Thus R is symmetricwith regard to K and  for any  2 Sn.(2)" ) ": Let R be asymmetric (antisymmetric) with regard to K. Then itis asymmetric (antisymmetric) with regard to K and ' for any odd permutation' 2 Sn, consequently for any odd permutation ' 2 Sn(1)." ( ": Let R be asymmetric (antisymmetric) with regard to K and ' for anyodd permutation ' 2 Sn(1). Let  2 Sn be odd. If we again denote  (1) = k,' = �n�k+1 , we have ' 2 Sn(1) and  = �k�1'. Clearly � is even, thus ' is odd.By 2.3 (2), RK;� = R, so that, by 1.14 (1), RK; = RK;�k�1' = (RK;�)K;�k�2' =RK;�k�2' = (RK;�)K;�k�3' = RK;�k�3' = � � � = RK; '. From this it follows thatR \RK;  = R \RK; ' = ;(� EK). Hence R is asymmetric (antisymmetric) withregard to K and  for any odd permutation  2 Sn.2.13. Theorem. Let J be a nonempty set, j0 2 J . Let R, Tj for all j 2 J berelations with the carrier G and the index set H. Let K be an n-decomposition ofthe set H, ' 2 Sn. Then:(1) If R and Tj for all j 2 J are cyclic with regard to K, then Sj2J Tj, Tj2J Tj ,and 1RK are cyclic with regard to K.If, moreover, �'� = ', then RK;' is cyclic with regard to K, too.(2) If R and Tj for all j 2 J are symmetric with regard to K, then Sj2J Tj ,Tj2J Tj , RK;', and 1RK are symmetric with regard to K.(3) If R and Tj0 are acyclic (anticyclic) with regard to K, then Tj2J Tj and1RK have the same property. If, moreover, �' = '�, then RK;' has thesame property, too.(4) If Tj0 is asymmetric (antisymmetric) with regard to K, then Tj2J Tj hasthe same property.(5) If R is asymmetric (antisymmetric) with regard to K and n � 2 or ' =id,then RK;' has the same property.



104 JI�R�I KAR�ASEK(6) If R is complete with regard to K, then 1RK is complete with regard toK.Proof. (1) By 2.5 (4), Sj2J Tj , Tj2J Tj , and 1RK are cyclic with regard to K. Let Rbe cyclic with regard to K, �'� = ', and let f 2 1(RK;')K. Let K = fKign+1i=1 . By1.14 (1), we have 1(RK;')K = RK;'�. Consequently, f 2 RK;'�, thus there existsg 2 R such that f(Ki) = g(K('�)(i)) for all i 2 (n], f(Kn+1) = g(Kn+1). As Ris cyclic with regard to K, we have, by 2.3 (2), 1RK = R. Hence g 2 1RK, conse-quently there exists h 2 R such that g(Ki) = h(K�(i)) for all i 2 (n], g(Kn+1) =h(Kn+1). Thus, there exists h 2 R such that f(Ki) = h(K(�'�)(i)) = h(K'(i)) forall i 2 (n], f(Kn+1) = h(Kn+1), and f 2 RK;'. Hence 1(RK;')K � RK;' and RK;'is cyclic with regard to K.(2) follows from 2.3 (2) and 2.5 (4).(3) By 2.5 (6), Tj2J Tj and 1RK are acyclic (anticyclic) with regard to K. LetR be acyclic (anticyclic) with regard to K, �' = '�. Admit that RK;' is notacyclic (anticyclic) with regard to K. Then there exists f 2 RK;' \ 1(RK;')K (f 2RK;'\1(RK;')K�EK). Let K = fKign+1i=1 . By 1.14 (1), we have 1(RK;')K = RK;'�,consequently there exist g; h 2 R such that f(Ki) = g(K'(i)) = h(K('�)(i)) forall i 2 (n], f(Kn+1) = g(Kn+1) = h(Kn+1). As �' = '�, we have g(K'(i)) =h(K(�')(i)) for all i 2 (n], g(Kn+1) = h(Kn+1), thus g(Ki) = h(K�(i))for alli 2 (n], g(Kn+1) = h(Kn+1). Hence g 2 1RK. We obtain g 2 R \ 1RK. In thecase of acyclicity we get a contradiction. In the case of anticyclicity there existi; j 2 (n] such that f(Ki) 6= f(Kj ), consequently g(K'(i)) 6= g(K'(j)), so thatg 2 R \ 1RK �EK and we again obtain a contradiction.The reamining assertions can be proved similarly with the use of 1.14 (1),2.5 (6), and (7).2.14. Remark. (1) The condition �'� = ' is obviously satis�ed exactly by thepermutations '1; : : : ; 'n 2 Sn given by'k(i) = � k � i+ 1 for all i 2 (k]k + n� i + 1 for all i 2 (n]� (k]for any k 2 (n].(2) The condition �' = '� is obviously satis�ed exactly by all the iterations of�.2.15. Lemma. Let n 2 N . Then:(1) The mapping � of the set Sn into itself is a bijection.(2) If ' 2 Sn, then the permutations '; '� have the same sign.Proof is evident.



ON A MODIFICATION OF RELATIONAL AXIOMS 1052.16. Theorem. Let R � GH be a relation, K an n-decomposition of the set H.If R has any of the properties de�ned in 2.8 with regard to K, then it has the sameproperty with regard to K�.Proof. Let R be cyclic (acyclic, anticyclic) with regard to K. Then it is symmetric(asymmetric, antisymmetric) with regard to K and �, consequently, by 2.7 (2), ithas the same property with regard to K� and �� = �. Thus, R is cyclic (acyclic,anticyclic) with regard to K�.Let R be symmetric with regard to K. Then it is symmetric with regard to Kand ' for any ' 2 Sn. By 2.7 (2), it is symmetric with regard to K� and '� forany ' 2 Sn as well. By 2.15 (1), it is symmetric with regard to K� and ' for any' 2 Sn, thus it is symmetric with regard to K�.Let R be asymmetric (antisymmetric) with regard to K. Then it is asymmetric(antisymmetric) with regard to K and ' for any odd permutation ' 2 Sn. By2.7 (2), it is asymmetric (antisymmetric) with regard to K� and '� for any oddpermutation ' 2 Sn as well. By 2.15 (1) and (2), it is asymmetric (antisymmetric)with regard to K� and ' for any odd permutation ' 2 Sn, hence it is asymmetric(antisymmetric) with regard to K�.3. Hulls of relations3.1. De�nition. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Let (p) be any of the properties de�ned in 2.1 or 2.8. A relation Q � GHis called the (p)-hull of R with regard to K (and ') if(1) R � Q,(2) Q has the property (p),(3) if T � GH is any relation having the property (p) and such that R � T ,then Q � T .3.2. Remark. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Let (p) be any of the properties de�ned in 2.1 or 2.8. Obviously, then Rhas the property (p) if and only if there exists the (p)-hull Q of R with regard toK (and ') and R = Q.3.3. Lemma. Let R; T � GH be relations, K an n-decomposition of the set H,' 2 Sn. Let (p) be any of the properties de�ned in 2.1 or 2.8, R(p) (T (p)) the(p)-hull of R (T ) with regard to K (and '). Then R � T implies R(p) � T (p).Proof. Let R � T . We have T � T (p). Thus R � T (p). As T (p) has the property(p), we obtain R(p) � T (p).3.4. De�nition. Let R � GH be a relation, K an n-decomposition of the set H.Then we de�ne 1RK = R;mRK = m�1RK [ (m�1RK)2K



106 JI�R�I KAR�ASEKfor any m 2 N , m � 2.3.5. Remark. Let R � GH be a relation, K an n-decomposition of the set H.Clearly, then mRK � m+1RKfor any m 2 N .3.6. Theorem. Let R � GH be a relation, K an n-decomposition of the set H.Let ' 2 Sn, r 2 N be such that 'r =id. Then the following relations exist:(1) the re
exive hull R(r)K of R with regard to K and we have R(r)K = R[EK,(2) the symmetric hull R(s)K;' of R with regard to K and ' and we haveR(s)K;' = r[i=1RiK;';(3) the transitive hull R(t)K of R with regard to K and we haveR(t)K = 1[i=1 iRK;(4) the regular hull R(g)K of R with regard to K and we haveR(g)K = RrK;':Proof. (1) is evident.(2) Put Q = rSi=1RiK;'. By 1.15 (2), we have R � RrK;', consequently R � Q.By 1.15 (5), we get QK;' = ( rSi=1RiK;')K;' = rSi=1Ri+1K;' = rSi=2RiK;' [ (RK;')rK;'. By2.3 (1), RK;' is regular with regard to K, thus, by 2.4 (1), RK;' = (RK;')rK;'.Hence, we obtain QK;' = rSi=1RiK;' = Q and Q is symmetric with regard to K and'. Let T � GH be a relation symmetric with regard to K and ' and such thatR � T . Then, by 1.15 (4), Q = rSi=1RiK;' � rSi=1T iK;' � T , for T is symmetric withregard to K and ', and we have R(s)K;' = Q.(3) Put Q = 1Si=1 iRK. Clearly R = 1RK � Q. Let f 2 Q2K. Let K = fKign+1i=1 .Then there exists fi 2 Q for each i 2 (n] such that f(Ki) = fi(Ki) for all i 2 (n],f(Kn+1) = fi(Kn+1) for all i 2 (n], fi(Kj) = fj(Ki) for all i; j 2 (n]. There existsji 2 N for each i 2 (n] such that fi 2 jiRK for all i 2 (n].From this it follows that f 2 (j1RK : : : jnRK)K. Denote j0 = maxfj1; : : : ; jng. By



ON A MODIFICATION OF RELATIONAL AXIOMS 1073.5, we have jiRK � j0RK for all i 2 (n]. By 1.15 (9), f 2 (j0RK : : : j0RK)K =j0R2K � j0+1RK � 1Si=1 iRK = Q. Thus Q2K � Q and Q is transitive with regard toK. Let T be transitive with regard to K and such that R � T . Using 1.15 (10), itis easy to prove by induction that iRK � T for any i 2 N . Hence Q = 1Si=1 iRK �1Si=1T = T , and we have R(t)K = Q.(4) The statement follows from 1.15 (2), (4), 2.3 (1), and 2.4 (1).3.7. Remark. Let R � GH be a relation, K an n-decomposition of the set H.Choosing ' =id in 3.6 (4), we obtainR(g)K = RK;id:3.8. Theorem. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Then:(1) If R is complete (regular, symmetric, antisymmetric) with regard to K(and '), then R(r)K has the same property.(2) If n � 2 and R is both transitive and regular with regard to K, then R(r)Kis transitive with regard to K.(3) R(s)K;' is regular with regard to K.(4) If R is re
exive (irre
exive, complete) with regard to K, then R(s)K;' hasthe same property.(5) If R is re
exive (complete, regular) with regard to K, then R(t)K has thesame property.(6) If R is symmetric with regard to K and ' and n � 2 or K is regular, thenR(t)K is symmetric with regard to K and '.(7) If R has any of the properties de�ned in 2.1, then R(g)K has the sameproperty.Proof. (1) follows from 1.15 (1), (5), 2.3 (1), 2.5 (3), (7), and 3.6 (1).(2) Let n � 2 and R be both transitive and regular with regard to K. The caseof n = 1 is trivial. Let n = 2. Let f 2 (R(r)K )2K = (R [ EK)2K. Let K = fKig3i=1.Then there exist f1; f2 2 R [ EK such that f(K1) = f1(K1), f(K2) = f2(K2),f(K3) = f1(K3) = f2(K3), f1(K2) = f2(K1). If f1; f2 2 R, then f 2 (RR)K =R2K � R � R(r)K . If f1; f2 2 EK, then, by 1.15 (1), f 2 (EKEK)K = E2K = EK �R(r)K . If f1 2 R, f2 2 EK, then f(K1) = f1(K1), f(K2) = f2(K2) = f2(K1) =f1(K2), f(K3) = f1(K3). As R is regular with regard to K and f1 2 R, we havef 2 R � R(r)K . The case of f1 2 EK, f2 2 R is analogous. Thus (R(r)K )2K � R(r)K ,and R(r)K is transitive with regard to K.(3), (4), and (5) follow from 1.5 (2), 1.15 (1), (2), 2.3 (1), 2.4 (2), 2.5 (3), (7),3.5, and 3.6 (2) and (3).



108 JI�R�I KAR�ASEK(6) Let R be symmetric with regard to K and ' and let n � 2 or K be regular.We shall prove by induction that iRK is symmetric with regard to K and ' forany i 2 N . For i = 1 it is true, for 1RK = R. Let i�1RK be symmetric with regardto K and ' for some i 2 N , i � 2. By 2.6 (2), (i�1RK)2K is symmetric with regardto K and ', consequently, by 2.5 (4), iRK = i�1RK [ (i�1RK)2K is symmetric withregard to K and '. Thus, again by 2:5(4), R(t)K = 1Si=1 iRK is symmetric with regardto K and ' as well.(7) follows from 2.5 (2), (4)-(7), 3.6 (4), and 3.7.3.9. Corollary. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Then:(1) (R(r)K )(s)K;' = (R(s)K;')(r)K .(2) (R(r)K )(g)K = (R(g)K )(r)K .(3) (R(s)K;')(g)K = (R(g)K )(s)K;'.(4) (R(t)K )(g)K = (R(g)K )(t)K .(5) (R(t)K )(r)K � (R(r)K )(t)K .(6) If n � 2 or K is regular, then (R(t)K )(s)K;' � (R(s)K;')(t)K .(7) If n � 2 and R is regular, then (R(t)K )(r)K = (R(r)K )(t)K .Proof. As R � R(s)K;', we have, by 3.3, R(r)K � (R(s)K;')(r)K , and again by 3.3,(R(r)K )(s)K;' � ((R(s)K;')(r)K )(s)K;'. By 3.8 (1), (R(s)K;')(r)K is symmetric with regard toK and ', consequently, by 3.2, ((R(s)K;')(r)K )(s)K;' = (R(s)K;')(r)K . Thus, (R(r)K )(s)K;' �(R(s)K;')(r)K . Similarly we can prove the converse inclusion as well as the other inclu-sions.3.10. Remark. The inclusions in 3.9 (5) and (6) cannot, in general, be replacedby the equalities (see [13], 3.7).3.11. Corollary. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Then:(1) (R(r)K )(t)K = ((R(t)K )(r)K )(t)K .(2) If n � 2 or K is regular, then (R(s)K;')(t)K = ((R(t)K )(s)K;')(t)K .Proof. (1) Similarly as in the proof of 3.9 we get (R(r)K )(t)K � ((R(t)K )(r)K )(t)K . By3.9 (5), (R(t)K )(r)K � (R(r)K )(t)K , consequently, by 3.3 and 3.2, ((R(t)K )(r)K )(t)K �� ((R(r)K )(t)K )(t)K = (R(r)K )(t)K . Thus, (R(r)K )(t)K = ((R(t)K )(r)K )(t)K .(2) can be proved analogously.



ON A MODIFICATION OF RELATIONAL AXIOMS 1093.12. Theorem. Let R � GH be a relation, K an n-decomposition of the set H.Then the following relations exist:(1) the cyclic hull R(c)K of R with regard to K and we haveR(c)K = n[i=1 iRK;(2) the symmetric hull R(d)K of R with regard to K and we haveR(d)K = ['2Sn RK;':Proof. (1) As R(c)K = R(s)K;� , we have, by 3.6 (2), R(c)K = nSi=1RiK;� = nSi=1 iRK.(2) Put Q = S'2Sn RK;'. By 1.5 (1), we have R � RK;id � S'2Sn RK;' = Q. Let 2 Sn. By 1.15 (5) and 1.14 (1), QK; = ( S'2Sn RK;')K; = S'2Sn(RK;')K; =S'2Sn RK;' . But RK;' � S�2SnRK;� for each ' 2 Sn, so that we get QK; =S'2Sn RK;' � S�2Sn RK;� = Q, and Q is symmetric with regard to K and  for any 2 Sn, thus symmetric with regard to K. Now, let R � T where T is symmetricwith regard to K. Then, by 1.15 (4), Q = S'2Sn RK;' � S'2Sn TK;' � T . Hence Q isthe symmetric hull of R with regard to K.3.13. Remark. Let R � GH be a relation, K = fKign+1i=1 an n-decomposition ofthe set H. Obviously, then:R(c)K = ff 2 GH ; 9k 2 (n]; g 2 R : f(Ki) = g(K�k(i))for all i 2 (n]; f(Kn+1) = g(Kn+1)g;R(d)K = ff 2 GH ; 9' 2 Sn; g 2 R : f(Ki) = g(K'(i))for all i 2 (n]; f(Kn+1) = g(Kn+1)g:3.14. Theorem. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Then:(1) If R is cyclic with regard to K and �'� = ', then R(s)K;' is cyclic withregard to K.(2) If R has any of the properties de�ned in 2.8, then R(g)K has the sameproperty.(3) R(c)K and R(d)K are regular with regard to K.



110 JI�R�I KAR�ASEK(4) If R is re
exive (irre
exive, complete, symmetric) with regard to K, thenR(c)K has the same property.(5) If R is symmetric with regard to K and ' and '�' = �, then R(c)K issymmetric with regard to K and '.(6) If n is odd and R is asymmetric (antisymmetric) with regard to K, thenR(c)K has the same property.(7) If R is re
exive (irre
exive, complete) with regard to K, then R(d)K has thesame property.Proof. (1), (2), (3), and (4) follow from 2.5 (3), 2.13 (1) - (4), 2.14 (1), 3.6 (2),(4), 3.7, 3.12 (1), and (2).(5) Let R be a symmetric with regard to K and ', let '�' = �. Let f 2(1RK)K;'. Let K = fKign+1i=1 . By 1.14 (1), we have (1RK)K;' = RK;�'. Con-sequently, there exists g 2 R such that f(Ki) = g(K(�')(i)) for all i 2 (n],f(Kn+1) = g(Kn+1). By 2.3 (2), RK;' = R, thus g 2 RK;'. Hence, there existsh 2 R such that g(Ki) = h(K'(i)) for all i 2 (n], g(Kn+1) = h(Kn+1). Summariz-ing, we get f(Ki) = h(K('�')(i)) = h(K�(i)) for all i 2 (n], f(Kn+1) = h(Kn+1),thus f 2 RK;� = 1RK. Hence (1RK)K;' � 1RK and 1RK is symmetric with regardto K and '. It is easy to show by induction that iRK is symmetric with regard to Kand ' for any i 2 N . Now, by 3.12 (1) and 2.5 (4), we obtain that R(c)K = nSi=1 1RKis symmetric with regard to K and '.(6) Let R be asymmetric (antisymmetric) with regard to K. Admit that R(c)Kdoes not have the same property. There exists an odd permutation  2 Sn suchthat R(c)K \ (R(c)K )K; 6= ; (R(c)K \ (R(c)K )K; * EK). Let K = fKign+1i=1 . Let f 2R(c)K \ (R(c)K )K; (f 2 R(c)K \ (R(c)K )K; � EK). Then there exists g 2 R(c)K suchthat f(Ki) = g(K (i)) for all i 2 (n], f(Kn+1) = g(Kn+1). As f; g 2 R(c)K thereexist, by 3.13, k; l 2 (n] and h;m 2 R such that f(Ki) = h(K�k(i)) for all i 2 (n],f(Kn+1) = h(Kn+1); g(Ki) = m(K�l(i)) for all i 2 (n], g(Kn+1) = m(Kn+1).Since n is odd, � is even and also �k, �l are even. As  is odd, � = �l (�k)�1is odd, too. Thus, we have h(Ki) = m(K(�l (�k)�1)(i)) = m(K�(i)) for all i 2 (n],h(Kn+1) = m(Kn+1). Hence h 2 R \ RK;� for an odd permutation � 2 Sn. Inthe case of asymmetry we obtain a contradiction. In the case of antisymmetrywe have f 62 EK, thus there exist i; j 2 (n] such that f(Ki) 6= f(Kj), so thath(K�k(i)) = f(Ki) 6= f(Kj ) = h(K�k(j)) and h 62 EK. Hence h 2 R \RK;� � EE ,which is a contradiction, too.(7) follows from 2.5 (1), (4), (7), and 3.12 (2).3.15. Corollary. Let R � GH be a relation, K an n-decomposition of the set H,' 2 Sn. Then:(1) (R(c)K )(r)K � (R(r)K )(c)K .(2) (R(c)K )(g)K = (R(g)K )(c)K .(3) (R(d)K )(r)K � (R(r)K )(d)K .



ON A MODIFICATION OF RELATIONAL AXIOMS 111(4) (R(d)K )(s)K;' = (R(s)K;')(d)K = R(d)K .(5) (R(d)K )(g)K = (R(g)K )(d)K .(6) (R(c)K )(d)K = (R(d)K )(c)K = R(d)K .(7) If ' is such that '�' = �, then(R(c)K )(s)K;' � (R(s)K;')(c)K :(8) If ' is such that �'� = ', then(R(s)K')(c)K � (R(c)K )(s)K;':Proof. The statement follows from 3.14 analogously as 3.9 follows from 3.8.3.16. Corollary. Let R � GH be a relation, K an n-decomposition of the set H.Then:(1) ((R(c)K )(r)K )(c)K = (R(r)K )(c)K .(2) ((R(d)K )(r)K )(d)K = (R(r)K )(d)K .Proof is analogous to that of 3.11.References[1] Chajda I., Nov�ak V., On extensions of cyclic orders, �Cas. p�est. mat. 110 (1985), 116-121.[2] Nov�ak V., Cyclically ordered sets, Czech. Math. Journ. 32 (1982), 460-473.[3] Nov�ak V., Novotn�y M., On determination of a cyclic order, Czech. Math. Journ. 33 (1983),555-563.[4] Nov�ak V., On some minimal problem, Arch. Math. 20 (1984), 95-99.[5] Nov�ak V., Novotn�y M., Dimension theory for cyclically and cocyclically ordered sets, Czech.Math. Journ. 33 (1983), 647-653.[6] Nov�ak V., Cuts in cyclically ordered sets, Czech Math. Journ. 34 (1984), 322-333.[7] Nov�ak V., Operations on cyclically ordered sets, Arch. Math. 20 (1984), 133-139.[8] Nov�ak V., Novotn�y M., On a power of cyclically ordered sets, �Cas. p�est. mat. 109 (1984),421-424.[9] Nov�ak V., Novotn�y M., Universal cyclically ordered sets, Czech. Math. Journ. 35 (1985),158-161.[10] Nov�ak V., On a power of relational structures, Czech. Math. Journ. 35 (1985), 167-172.[11] Novotn�y M., Ternary structures and groupoids, Czech. Math. Journ. 41 (1991), 90-98.[12] �Slapal J., On relations of type �, Z. Math. Logik Grundlagen Math. 34 (1988), 563-573.[13] �Slapal J., On relations, Czech Math. Journ. 39 (1989), 198-214.Ji�r�� Kar�asekTechnick�a 2616 69 Brno, Czechoslovakia
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