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ON A MODIFICATION OF RELATIONAL AXIOMS

JIRf KARASEK

Dedicated to Professor M. Novotny on the occasion of his seventieth birthday

0. INTRODUCTION

While axioms of binary relations are already stable, it cannot be said about
axioms of ternary relations. So, in [1] and [3], the reflexivity of ternary relations is
defined in the following way:

z,y,2 € G, card {z,y,2} <2= (z,y,2) ER

while in [7] it is defined more weakly:
relG = (z,z,z) €ER.

Similarly, the transitivity of ternary relations is defined in [1], [3], and [7] by the
condition:

(x,y,2) € R, (x,z,u) € R= (z,y,u) € R,
while in [11] by the requirement:

(z,z,y) €R, (y,z,u) € R= (x,z,u) € R.

In [13], the author has presented a general scheme of relational axioms for
relations of any arity (not necessarily finite). The aim of this paper is to give a
modification of that scheme yielding richer possibilities.

Let G, H be everywhere nonempty sets. By a relation (with the carrier G and
the inder set H) we understand a set R C G where G¥ denotes (as usually) the
set of all mappings of the set H into the set GG. N will denote the set of all positive
integers. For any n € N we denote (n] = {m € N; m < n}. In the case of a finite
set H of cardinality £ we shall not distinguish between mappings of the set H into
the set G and k-tuples of elements of the set (G. For any n € N we denote by 5,
the set of all permutations of the set (n], by S, (1) the set of all permutations of
the set (n] mapping 1 onto itself (preserving 1). For any ¢ € S, and m € N, ¢™
denotes the m-th iteration of the permutation ¢, for any ¢, ¥ € S,, ¥ denotes

the composition of the permutations ¢ and . id denotes the identical permutation
of the set (n].
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96 JIRI KARASEK

1. OPERATIONS WITH RELATIONS

1.1. Definition. Let n € N. Then the sequence of n + 1 sets K = {K;}7*! is
called an n-decomposition of the set H if

n+1
() U Ki=H,

i=1

(2) KiNKj=0forall i,je(n+1], i#j.
If, moreover,

(3) card K;= card K for all ¢, j € (n],
the n-decomposition K is called regular.

1.2. Definition. Let K = {K;}"*! be an n-decomposition of the set H. Then
the relation

Ex ={f€G"; f(K;) = f(K;) forall i,j€ (n]}
is called the diagonal with regard to K.

1.3. Remark. Let K = {K; ?:"'11 be an n-decomposition of the set H. Obviously,
then:

(1) If Kyy1 = H orn=1, then Ex = G*.

(2) If there exist 7, j € (n] such that K; # 0 = K;, then Ex = 0.

1.4. Definition. Let R C G be a relation, K = {K;}74]' an n-decomposition of
the set H, ¢ € S,,. Then we define the relation Rx , C GH by

R, = {fE G":3geR: FK) =
= g(Ky) forall i€ (n], f(Knp1) =9(Kng1)}.

Ry, is called the (K, ¢)-modification of the relation R.

1.5. Remark. Let R C G¥ be a relation, K = {K;}"4! an n-decomposition of
the set H. Clearly, then:

(1) R C Ry a; if, moreover, card K; <1 for all i € (n + 1],
then R = Ry iq.

(2) @K,Lp = @

(3) If there exist 7, j € (n] such that K; #0 = K;, ¢(i) = j
or ¢(j) =i, then Ry, = 0.

1.6. Example. Let R C G be a relation, H = {1,2} (i.e. R be binary), K =
{K;}3_,, K1 = {1}, K5 = {2}, and let ¢ be the permutation of the set (2] defined
by: ¢(1) = 2, ¢(2) = 1. Then Rx, = R™'. Hence, in this case, the (K,¢)-
modification of a binary relation coincides with its standard inverse.
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1.7. Definition. Let Ry,..., R, C G be relations, K = {K;}74}! an
n-decomposition of the set H. Then we define the relation (R; ... R,)x C G by

(Ry...Ry)x ={f € GH;3f; € R; for all i € (n] such that
J(K;) = fi(K;) for all i € (n],
F(Kpq1) = [i(Knq1) for all i € (n],
fz([{]) = f](ffz) for all 7,7 € (n]}

(Ry...Rn)k is called the composition of Ry,..., R, with regard to K.

1.8. Definition. Let R C G be a relation, K an n-decomposition of the set H.
Then we put

Ri = R,

Ry = (R...R)x,

w=(RP'R..RcU(RRET'R...R)cU---U
U(R...RRP? Yk

for any M € N, m > 3. R is called the m-th power of R with regard to K.

1.9. Example. Let Ry, Ry C G be relations, H = {1,2} (i.e. Ry, Rs be binary),
K ={K;}3_,, K1 = {1}, K5 = {2}. Then (R;R2)x = RiRs. Hence, in this case,
the composition with regard to K coincides with the standard composition of
binary relations.

1.10. Remark. Let Ry,..., R, C G¥ be relations, K = {Ki}?:‘l'll an
n-decomposition of the set H, let ¢ € S,,. Evidently, then:

(1) If K; = 0 for some i € (n], (Ry...Ru)x # 0, then K is regular and there
exist f; € R; for all j € (n] such that f;(H) = fp(H) for all j, k € (n].

(2) If K; = 0 for some ¢ € (n] and there exist j, k € (n] such that for each
J €R;, g€ Ry wehave f(H) # g(H), then (Ry...Ry)c = 0.

1.11. Notation. Let K = {K;}7% be an n-decomposition of the set H. Then K*
denotes the n-decomposition of the set H defined by K* = { K7 }74}!' where
K;pp1 forall i€ (n—1]
K'={ K; for i=n
Knpy1  for i=n+1
Further, * denotes the mapping of the set S, into itself assigning to any permu-
tation ¢ € Sy, the permutation ¢* € S,, defined by:
pli+1)—1 if de(n—-1,ei+1)#1
)= e)=1 i i=ap()£1

n otherwise
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1.12. Lemma. Let R, Ry,..., R, C G" be relations, K an n-decomposition of
the set H, let ¢ € S,,, m € N. Then:

(1) K= =K.

Proof is obvious.

1.13. Definition. Let R C G¥ be a relation, K an n-decomposition of the set
H, ¢ €S5,. Then we put

for any m € N, m > 2.

1.14. Lemma. Let R C G¥ be a relation, K an n-decomposition of the set H,
let ¢, ¢ € S,, m € N. Then:

(1) (Rl = Ripu-
(2) Rnl&tp = RKme'

Proof. (1) Let K = {Ki}?:‘i'll, let f € (Rk »)x,u. Then there exists g € Rx , such
that f(K;) = g(Ky)) for all i € (n], f(Kng1) = g(Kny1). As g € Riy, there
exists h € R such that g(K;) = h(K,q)) for all i € (n], 9(Kny1) = h(Kng1).
Thus, f(K;) = h(Key)@)) for all i € (n], f(Kng1) = h(Kpq1), and f € R py-

The converse inclusion can be shown similarly.

(2) Tt follows from (1).

1.15. Lemma. Let J be a nonempty set, R, R1,...,R,, R},...,R,,T,1; for
all j € J relations with the carrier (G and the index set H. Let K be an n-
decomposition of the set H, ¢ € Sy, r € N such that ¢" =id. Let k € (n], m € N.
Then:

(1) Ex =(Ex)k,o = (Ex...Ex)k.

(2) RC Rk, = Reia-

() (Be..Bx R Ex.. ok C R,

k-th place

(R Ro)i)xe 2 (Ro)ie - - (Ron))x 0 )i
If n <2 or K is regular, then (7) becomes the equality.
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(9) R; C R foralli € (n] imply (Ry...Ry)x C (R} ... R )x.
(10) R C T implies R C T,
(1) (Reo)f C (RP k.
(12) If n <2 or K is regular, then (11) becomes the equality.

Proof. The assertion folows directly from the definitions of the operations. For
example, let us prove (2) and (7).

(2) By 1.14 (2), we have R , = Ri,or = Rija- By 1.5 (1), RC Rid-

(7) Let K = {K;}70 Let f € (Rp(1)ke - - - (Rom))k,e k-
Then there exist f; € (R,())x,, for all i € (n] such that f(K;) = fi(K;) for all
i€ (], f(Kng1) = fi(Kpy1) for all 7 € (n], and f;(K;) = f;(K;) for all ¢, j € (n].
Hence, there exist g; € R, ;) for all i € (n] such that fi(K;) = g(K,(;)) for all
i,j € (n], fi(Kn41) = 9i(Kn41) for all ¢ € (n]. Now, let us conctruct a mapping
g € GH such that g(Kuuy) = gi(Ky)) for all i € (n],g(Knq1) = f(Kng1)-
Then g € (Ry...Ry)x, for go—1s) € R for all @ € (n], g(Ki) = g1 (K;)
for all i € (n], g(Knt1) = f(Kny1) = fw—l(i)(l(n+1) = gw—l(i)(l(n+1) for all
t € (n],gw—1(i)([(]’) = fw_l(i)([(ﬁp_l(j)) = fw_l(j)([(tp_l(i)) = gw—l(j)(Ki) for all
i,j € (n]. From this it follows that f € ((R1...Rn)x)k,e, for we have f(K;) =
fl(ffz) = gl([{W(l)) = g(ICV,(Z)) for all i € (n], f([(n+1) = g([(n_H).
1.16. Remark. The inclusions in (2), (3), (6), and (7) cannot, in general, be
replaced by the equalities. For example, let G = {a,b}, H = {1,2,3,4,5},K =
(KYe,, K1 = {1,2}, K2 = {3}, K3 = {4,5}, let R, = {(a,b,a,a,b)}, Ry =
{(a,a,a,a,a)}, Rs = {(a,b,a,a,a)} and let ¢ € Sz be such that ¢(1) = 2,
©(2) = 3, ¢(3) = L. Then ((R1R2R3)k )k, = {(a,a,a,a,b),(a,a,a,b,a)}, but
(Ros (Ro)ico( Ry ) = .

1.17. Definition. Let R C G¥ be a relation, K an n-decomposition of the set
H, let # € S, be the permutation defined by:

. {i—l—l for all i € (n — 1]
7(i) =

1 fori=n
Then we define:

'Ric = R x,
mRK — 1(m_1RK)K

for any m € N, m > 2. ™Ry is called the m-th cyclic transposition of R with
regard to K.

1.18. Lemma. Let R, Ry,..., R, C GY be relations, K an n-decomposition of
the set H. Then:

(1) 'Rk ='Ry-.
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(3) H(Ri- Ro))x 2 (H(Ra)i - - (R (Ra)ic )k
(4) Ifn <2 orK isregular, then (3) becomes the equality.

Proof. (1) follows from the fact that #* = .
(2), (3), and (4) follow from 1.15 (1), (7), and (8).

1.19. Lemma. Let J be a nonempty set, R, T, T for all j € J be relations with
the carrier G and the index set H. Let K be an n-decomposition of the set H.
Then:

(1) RC"Rg.

(2) RCT implies 'Ry C' Tx.
ERIVESTRCN
(4) 1(]9 Tj)k C ]Djl(T])K

Proof. The assertion follows from 1.15 (2), (4), (5), and (6).

2. PROPERTIES OF RELATIONS

2.1. Definition. Let R C G be a relation, K = {K;}H! an n-decomposition of
the set H, ¢ € S,,. Then R is called

(1) reflexive (irreflexive) with regard to K if Ex C R
(R NEx = @),

(2) symmetric (asymmetric, antisymmetric) with regard to K and ¢ if
Rr,, C R(RN R, = 0, RN Rr,, C Ex),

(3) transitive (atransitive) with regard to K if R2 C R
(RN RE =0 for any m € N,m > 2),

(4) complete with regard to K if f € GH, f(K;) # f(K;) for all 4,5 € (n],
¢ # j imply the existence of ¢ € S, such that f € Rx y,

(5) regular with regard to K if f € R, g € G| f(K;) = g(K;) for all i € (n+1]
imply ¢ € R.

2.2. Remark. Let R C G be a relation, K = {K;}78}' an n-decomposition of
the set H. If card K; < 1 for all i € (n + 1], then R is clearly regular with regard
to K.

2.3. Lemma. Let R Ry, ..., R, C G be relations, K an n-decomposition of the
set H, let ¢ € S,, m & N, m > 2. Then:
(1) Ex,Rk o, (R1...Rp)x, and R are regular with regard to K
(2) If R is symmetric with regard to K and ¢, then Rx , = R and R is regular
with regard to K.
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Proof. (1) is evident.
( ) Let R be symmetric with regard to K and ¢. By 1.15 (2) and (4), R
CRTlC -+ C Rk, C Rfor any r € N such that ¢” =id. Thus Rg , =
The rest follovvs from (1).

<
R.

2.4. Lemma. Let J be a nonempty set, jo € J, R, T} for all j € J relations with
the carrier G and the index set H. Let K be an n-decomposition of the set H,
¢ € Sp, r € N be such that ¢" =id. Then:

(1) If R is regular with regard to K, then R = R ,
(2) IfT} is regular with regard to K for each j € J {_]0} then

(ﬂT)m— N Tk e

jeJ jeJ

Proof. The inclusions C result from 1.15 (2) and (6). Using regularity one can
easily prove the converse ones.

2.5. Theorem. Let J be a nonempty set, jo € J. Let R, Ry,..., R,,T; for all
j € J be relations with the carrier GG and the index set H. Let K be an n-
decomposition of the set H, ¢ € S,,. Then:

(1) IfT;, is reflexive with regard to K, then |J T} is reflexive with regard to

jeJ
K.
(2) IfR,R1,..., Ry, and T} for all j € J are reflexive with regard to K, then
(N I;, Ri,e, and (R1 ... Ry,)x are reflexive with regard to K.
jeJ
3) IfT; for all j € J are regular with regard to K, then T; and T; are
J g 8 J J
jEJ jeJ
regular with regard to K.
(4) If R and T; for all j € J are irreflexive (symmetric) with regard to K (and
@), then |J T;, () I;, and Ry, have the same property.
jeJ jeJ
(5) If R and T} for all j € J are transitive with regard to K, then [ T; and
jeJ
Ry , are transitive with regard to K.
(6) If R and T}, are atransitive (asymmetric, antisymmetric) with regard to

K (and @), then (| T; and Ry, have the same property.
jEJ
(7) If R and T;, are complete with regard to K, then |J T; and Rk , are
jeJ
complete with regard to K.

Proof. The assertions (1) and (3) are evident, the others follow from 1.5 (2),
1.14 (1), 1.15 (1), (4) - (6), (9) - (11), 2.3 (1), and 2.4 (2).
2.6. Theorem. Let Ry,..., R, C G¥ be relations, let K be an n-decomposition,
¢ € Sp. Let Ry, ..., Ry be symmetric with regard to K and .
(1) If(Ry...Ry)k is symmetric with regard to K and ¢, then (Ry ... Rp)x D
(Rw(l) .. 'Rtp(n))K~
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(2) If n <2 or K is regular, then (R; ... Ry)x is symmetric with regard to K
and ¢ if and only if (Ry ... Rp)k 2 (Ry1y - Ry))k-

Proof. The statements result from 1.15 (7) - (9) and 2.3 (2).

2.7. Lemma. Let R C GY be a relation, K an n-decomposition of the set H,
¢ € Sp. Then:

(1) If R is reflexive (irreflexive, transitive, atransitive, complete, regular) with
regard to K, then it has the same property with regard to K*.

(2) If R is symmetric (asymmetric, antisymmetric) with regard to K and ¢,
then it has the same property with regard to K* and ¢*.

Proof. For regularity the assertion is obvious, and for the other properties it

follows from 1.12 (2), (3), and (5).

2.8. Definition. Let R C G be a relation, K an n-decomposition of the set H.
Then R is called:
(1) eyclic (acyclic, anticyclic) with regard to K if it is symmetric (asymmetric,
antisymmetric) with regard to K and =,
(2) symmetric (asymmetric, antisymmetric) with regard to K if it is symmet-
ric with regard to K and ¢ for any ¢ € S, (asymmetric, antisymmetric
with regard to K and ¢ for any odd permutation ¢ € S,).

2.9. Lemma. Let R C GY be a relation, K an n-decomposition of the set H.
Then:

(1) 'Rx is regular with regard to K.

(2) If R is cyclic or symmetric with regard to K, then it is regular with regard
to K.

Proof. (1) follows from 2.3 (1).
(2) follows from 2.3 (2).

2.10. Lemma. Let J be a nonempty set, jo € J. Let R and T for all j € J be
relations with the carrier G and the index set H, K an n-decomposition of the set
H. Then:

(1) If R is regular with regard to K, then R =" Rg.

(2) If T; is regular with regard to K for all j € J — {jo}, then '( () Tj)x =

JjeJ
N (T«
JjeJ

Proof. (1) follows from 2.4 (1).
(2) follows from 2.4 (2).

2.11. Remark. Let R C G be a relation, K an n-decomposition of the set H.
Evidently, then 'Ry = "t! Ry.
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2.12. Theorem. Let R C G be a relation, K an n-decomposition of the set H.
Then:

(1) R is a symmetric with regard to K if and only if it is cyclic with regard
to K and symmetric with regard to K and ¢ for any ¢ € S,(1).

(2) Ifnisodd and R is cyclic with regard to K, then R is asymmetric (antisym-
metric) with regard to K if and only if it is asymmetric (antisymmetric)
with regard to K and ¢ for any odd permutation ¢ € S,(1).

Proof. (1) 7 = ”: Let R be symmetric with regard to K. Then it is symmetric
with regard to K and ¢ for any ¢ € S, consequently for any ¢ € S,(1) and for
p=T.

7 <=7 Let R be cyclic with regard to K and symmetric with regard to K and ¢ for
any ¢ € Sn(1). Let ¥ € S,,. Denote (1) = k, o = #* ¥+, Then ¢ € 5, (1) and
= 78"1p. By 1.14 (1) and 1.15 (4), we have R y = Ry zr-1, = (Ric,n )i ri-2 C
Ry zv—24 = (R n)ic pr-3p C Ry gr-s, = -+ C R, € R. Thus R is symmetric
with regard to K and ¢ for any ¢ € 5,,.

(2)” = 7: Let R be asymmetric (antisymmetric) with regard to K. Then it

is asymmetric (antisymmetric) with regard to K and ¢ for any odd permutation
¢ € S, consequently for any odd permutation ¢ € S,(1).
7 &< 7: Let R be asymmetric (antisymmetric) with regard to K and ¢ for any
odd permutation ¢ € Sy(1). Let ¢ € S, be odd. If we again denote ¥(1) = &,
o = 7" 1y we have ¢ € S, (1) and ¢ = 7¥~Lyp. Clearly 7 is even, thus ¢ is odd.
By 2.3 (2), R;Qﬂ— = R, S0 that, by 1.14 (1), RK#; = RKﬁk—lw = (RKVﬂ—);Qﬂ.k—zw =
Ry zrv-2, = (R x )i er-3, = Ry zr-s, = -+ = R, p. From this it follows that
RN Ri,v = RN Rx,o = 0(C Ex). Hence R is asymmetric (antisymmetric) with
regard to K and 1 for any odd permutation ¢ € S,.

2.13. Theorem. Let J be a nonempty set, jo € J. Let R, T; for all j € J be
relations with the carrier G and the index set H. Let K be an n-decomposition of
the set H, ¢ € S,,. Then:
(1) If R and T; for all j € J are cyclic with regard to K, then |J T, () Tj,
jeJ jeJ
and ! Rx are cyclic with regard to K.
If, moreover, mpm = ¢, then Ry , is cyclic with regard to K, too.
(2) If R and T} for all j € J are symmetric with regard to K, then |J T},

JjeJ
N Tj, Rx,,, and ' Ric are symmetric with regard to K.
jeJ
(3) If R and T}, are acyclic (anticyclic) with regard to K, then (| T; and
jeJ

'Rx have the same property. If, moreover, ¢ = pm, then Ry , has the
same property, too.
(4) If T}, is asymmetric (antisymmetric) with regard to K, then () T; has
jeJ
the same property.
(5) If R is asymmetric (antisymmetric) with regard to K and n < 2 or ¢ =id,
then Ry , has the same property.
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(6) If R is complete with regard to K, then ' Rx is complete with regard to
K.

Proof. (1) By 2.5 (4), U 7;, () T}, and ! R are cyclic with regard to K. Let R

JjeJ JjEJ
be cyclic with regard to K, mpm = ¢, and let f € '(Ric,»)xc. Let K = {K;}M 4L By
1.14 (1), we have '(Rx,)x = R, pr. Consequently, f € Ric or, thus there exists
g € R such that f(K;) = g(K(pn))) for all i € (n], f(Kng1) = 9(Kng1). As R
is cyclic with regard to K, we have, by 2.3 (2), 'Rx = R. Hence g € 'R, conse-
quently there exists A € R such that g(K;) = h(Ky ;) for all i € (n], g(Knq1) =
h(Kpy1). Thus, there exists h € R such that f(K;) = M K(rpr)i)) = R(Kyq)) for
alli € (n], f(Kn41) = h(Kp41), and f € Ri . Hence '(Ri »)x C R, and R,
is cyclic with regard to K.

(2) follows from 2.3 (2) and 2.5 (4).
(3) By 2.5 (6), () 7; and 'Ry are acyclic (anticyclic) with regard to K. Let

jeJ
R be acyclic (anticyclic) with regard to K, 7p = ¢n. Admit that Rg , is not
acyclic (anticyclic) with regard to K. Then there exists f € R, N'(Rx o) (f €
RKWﬂl(RKW)K—EK). Let K = {[\72 ?:-I_ll. By 1.14 (1), we have 1(RK,Lp)K = RK,WT’
consequently there exist g,h € R such that f(K;) = g(Ky@)) = A(K(pm)s)) for
all i € (n], f(Kny1) = g(Kng1) = M(Kng1). As mp = o, we have g(K,;)) =
h(K(rp)oy) for all @ € (n], g(Knt1) = hM(Knq1), thus g(K;) = h(HKgq))for all
i € (n], g(Kny1) = h(Knt1). Hence ¢ € 1Rx. We obtain ¢ € RN 1Rx. In the
case of acyclicity we get a contradiction. In the case of anticyclicity there exist
i,j € (n] such that f(K;) # f(Kj), consequently g(K,)) # g(Ky()), so that
g € RN'Rx — Ex and we again obtain a contradiction.

The reamining assertions can be proved similarly with the use of 1.14 (1),

2.5 (6), and (7).

2.14. Remark. (1) The condition mepm = ¢ is obviously satisfied exactly by the
permutations @1, ..., ¢, € S, given by

k—i+1 for all i€ (]

sok(i):{k+n_i+1 for all i € (n] — (k]

for any k € (n].
(2) The condition mp = @ is obviously satisfied exactly by all the iterations of
.

2.15. Lemma. Let n € N. Then:

(1) The mapping * of the set S, into itself is a bijection.
(2) If ¢ € S, then the permutations ¢, ¢* have the same sign.

Proof is evident.
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2.16. Theorem. Let R C G be a relation, K an n-decomposition of the set H.
If R has any of the properties defined in 2.8 with regard to K, then it has the same
property with regard to K*.

Proof. Let R be cyclic (acyclic, anticyclic) with regard to K. Then it is symmetric
(asymmetric, antisymmetric) with regard to K and 7, consequently, by 2.7 (2), it
has the same property with regard to KX* and #* = x. Thus, R is cyclic (acyclic,
anticyclic) with regard to K*.

Let R be symmetric with regard to K. Then it is symmetric with regard to K
and ¢ for any ¢ € S,. By 2.7 (2), it is symmetric with regard to KX* and ¢* for
any ¢ € S, as well. By 2.15 (1), it is symmetric with regard to K* and ¢ for any
¢ € Sp, thus it is symmetric with regard to K£*.

Let R be asymmetric (antisymmetric) with regard to K. Then it is asymmetric
(antisymmetric) with regard to X and ¢ for any odd permutation ¢ € S,. By
2.7 (2), it is asymmetric (antisymmetric) with regard to £* and ¢* for any odd
permutation ¢ € S, as well. By 2.15 (1) and (2), it is asymmetric (antisymmetric)
with regard to K* and ¢ for any odd permutation ¢ € S,, hence it is asymmetric
(antisymmetric) with regard to K*.

3. HULLS OF RELATIONS

3.1. Definition. Let R C G¥ be a relation, K an n-decomposition of the set H,
© € Sp. Let (p) be any of the properties defined in 2.1 or 2.8. A relation @ C G#
is called the (p)-hull of R with regard to K (and ¢) if
() RCQ,
(2) @ has the property (p),
(3) if T C G¥ is any relation having the property (p) and such that R C 7T,
then Q C T

3.2. Remark. Let R C G¥ be a relation, K an n-decomposition of the set I,
¢ € Sp. Let (p) be any of the properties defined in 2.1 or 2.8. Obviously, then R
has the property (p) if and only if there exists the (p)-hull @ of R with regard to
K (and ¢) and R = Q.

3.3. Lemma. Let R, T C G¥ be relations, K an n-decomposition of the set H,
¢ € Sn. Let (p) be any of the properties defined in 2.1 or 2.8, R(P) (T®)) the
(p)-hull of R (T) with regard to K (and ). Then R C T implies R®) C T®),

Proof. Let R CT. We have T'C 7). Thus R C 7). As T?) has the property
(p), we obtain R®) C T(®),

3.4. Definition. Let R C G¥ be a relation, K an n-decomposition of the set H.
Then we define

1RK = Ra
mRK = m—lRK U (m—lRK)IzC
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for any m € N, m > 2.

3.5. Remark. Let R C G¥ be a relation, K an n-decomposition of the set H.
Clearly, then
m Bl C my1 Ri

for any m € N.

3.6. Theorem. Let R C G¥ be a relation, K an n-decomposition of the set H.
Let ¢ € S,,, r € N be such that ¢" =id. Then the following relations exist:

(1) the reflexive hull R%) of R with regard to K and we have R%) = RUFx,
(2) the symmetric hull Rgcs,)w of R with regard to K and ¢ and we have

REC)@ = U RK )

i=1

(3) the transitive hull R%) of R with regard to K and we have

RY = DZRK,

i=1
(4) the regular hull R;é]) of R with regard to K and we have

R%): KLP

Proof. (1) is evident.
2) Put @Q = Ri . By 1.15 (2), we have R C R} _, consequently R C @.
K, K,

By 115 (5), we get Qo = (U R e = U 7 = U R, U (R o)k By
2.3 (1), Ri,e is regular Wlth regard to K, thus, by 2. 4 ( ), RKW = (RK,w);C,¢~
Hence, we obtain Qx,, = U R}CW = @ and @ is symmetric with regard to K and
@. Let T C G be a relalti:oln symmetric With regard to K and ¢ and such that
R CT. Then, by 1.15 (4), Q = U R o C U TZ », C© T, for T'is symmetric with
regard to K and go, and we have R;C)w =Q.

(3) Put Q = 'UliRK. Clearly R = 1R C Q. Let f € Q%. Let K = {K;}71.

Then there exists f; € @ for each i € (n] such that f(K;) = f;(K;) for all ¢ € (n],
F(Knt1) = filKpga) for all i € (n], fi(K;) = f;(K;) for all 4, j € (n]. There exists
Ji € N for each i € (n] such that f; € ;,Rx for all ¢ € (n].

From this it follows that f € (j, Rk ...;, RBx)x. Denote jo = max{ji,...,jn}. By
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3.5, we have ;,Rx C ; Rx for all i € (n]. By 1.15 (9), f € (;,Rx...juRx)x =

joR%: Ciot1Re C U iRx = Q. Thus Q% C @ and @ is transitive with regard to
i=1

K. Let T be transitive with regard to K and such that R C T Using 1.15 (10), it

is easy to prove by induction that ;Rx C T for any ¢ € N. Hence @ = |J ;Rx C

=1

'!1 T =T, and we have R%) = Q.

(4) The statement follows from 1.15 (2), (4), 2.3 (1), and 2.4 (1).

3.7. Remark. Let R C G be a relation, K an n-decomposition of the set H.
Choosing ¢ =id in 3.6 (4), we obtain

R;é]) = Rxid.

3.8. Theorem. Let R C G¥ be a relation, K an n-decomposition of the set H,
w € Sy. Then:
(1) If R is complete (regular, symmetric, antisymmetric) with regard to K
(and ), then R%) has the same property.
(2) If n <2 and R is both transitive and regular with regard to K, then R%)
is transitive with regard to K.
(3) R;é,)w is regular with regard to K.
(4) If R is reflexive (irreflexive, complete) with regard to K, then Rgcs,)w has
the same property.
(5) If R is reflexive (complete, regular) with regard to K, then R%) has the
same property.
(6) If R is symmetric with regard to K and ¢ and n < 2 or K is regular, then
R%) is symmetric with regard to K and .
(7) If R has any of the properties defined in 2.1, then R;é]) has the same
property.

Proof. (1) follows from 1.15 (1), (5), 2.3 (1), 2.5 (3), (7), and 3.6 (1).

(2) Let n < 2 and R be both transitive and regular with regard to K. The case
of n = 1 is trivial. Let n = 2. Let f € (R%)),ZC = (RUEx)%. Let K = {K;}2_
Then there exist fi1, fa € RU Ex such that f(K1) = f1(K1), f(K2) = fa(K3
f(K3) = fi(K3) = f2(K3), fi(K2) = f2(K1). If fi, fo € R, then f € (RR)x
RL C RCRY.If fi, fo € Ex, then, by 1.15 (1), f € (Ex Ex)x = EZ = Ex
R%)~ If fi € R, fo € Ex, then f(K1) = fi(K1), f(K2) = fa(K2) = fa(Ky)
fi(K2), f(K3) = fi(K3). As R is regular with regard to K and f, € R, we have
feRrC R%). The case of fi € Ex, fo € R is analogous. Thus (R;g)),zC C R%),
and R%) is transitive with regard to K.

(3), (4), and (5) follow from 1.5 (2), 1.15 (1), (2), 2.3 (1), 2.4 (2), 2.5 (3), (7),
3.5, and 3.6 (2) and (3).

~—
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(6) Let R be symmetric with regard to K and ¢ and let n < 2 or K be regular.
We shall prove by induction that ; Rx is symmetric with regard to K and ¢ for
any ¢ € N. For i = 1 it is true, for 1 Rx = R. Let ;_1 Rx be symmetric with regard
to K and ¢ for some i € N, i > 2. By 2.6 (2), (;—1 Rx)% is symmetric with regard
to K and ¢, consequently, by 2.5 (4), ; R = ;—1Rx U (;—1Rx)% is symmetric with
regard to K and ¢. Thus, again by 2.5(4), R%) = | iRk is symmetric with regard

i=1
to K and ¢ as well.

(7) follows from 2.5 (2), (4)-(7), 3.6 (4), and 3.7.

3.9. Corollary. Let R C G be a relation, K an n-decomposition of the set H,
¢ € Sp. Then:

(1) (B, = (B

(2) (R(T )(g) (R(g))(f)

(3) (R( s) )(g) (R(g))( s)

(4) <R<j>><g> = (R

(5) (') < (RO

(6) If n <2 or K is regular, then (R (t))( *) C (R( ) )(t)
(7) If n <2 and R is regular, then (R(t))(r) (R(T))(t)

Proof. As R C R;C)w, we have, by 3.3, R(T) C (R( *) )(T), and again by 3.3,
(R%))EC,)LP C ((REC,L)%))EC,)W By 3.8 (1), (R;C’)w)%) is symmetric with regard to
K and ¢, consequently, by 3.2, ((RECS,)AP)%))ECS,)LP = (Rgé,)ap)%)' Thus, (R%))Eé)w C

(RSCS)@)%)' Similarly we can prove the converse inclusion as well as the other inclu-
sions.

3.10. Remark. The inclusions in 3.9 (5) and (6) cannot, in general, be replaced
by the equalities (see [13], 3.7).

3.11. Corollary. Let R C G be a relation, K an n-decomposition of the set H
w € Sy. Then:

(1) (R(T))(f) ((R(f))(r))(f)

(2) If n <2 or K is regular, then (R( *) )(t) ((R(t))( *) )(t)

Proof. (1) Similarly as in the proof of 3.9 we get (R%))%) C ((R%))%))%). By
3.9 (5), (R(t))(r) C (R(T))(), consequently, by 3.3 and 3.2, ((R%))%))%) C
((R(T))(f))(f) (R(T))(f) Thus (R(T))(f) ((R(f))(r))(f)
(2) can be proved analogously
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3.12. Theorem. Let R C G be a relation, K an n-decomposition of the set H.
Then the following relations exist:

(1) the cyclic hull R;Cc) of R with regard to K and we have
R%)::LJiRK’
i=1

(2) the symmetric hull R;Cd) of R with regard to K and we have

R = | Rre
PES

Proof. (1) As R;Cc) = RECS,)W we have, by 3.6 (2), R;Cc) =U Rﬁcyﬂ = U 'Rk.
i=1 i=1

(2) Put Q = |J Ri,e- By 1.5 (1), we have R C Riia C |J Ri,po = Q. Let

PYES, PESR
¥ € S,. By 1.15 (5) and 1.14 (1), Q;le = ( U RK,w)K,zp = U (RKW)K#; =
PYES, PESR

U Riey- But Ry C |J Rk, for each ¢ € S,, so that we get Qx g =
PESR XESn

U Rrew € U Riy =@, and @ is symmetric with regard to K and 4 for any
PESR XESn
Y € S,, thus symmetric with regard to K. Now, let R C T where T is symmetric

with regard to K. Then, by 1.15 (4), @ = |J Rk, € U Tk, CT. Hence Q is
PESR PES
the symmetric hull of R with regard to K.

3.13. Remark. Let R C G be a relation, K = {K;}F! an n-decomposition of
the set H. Obviously, then:

R ={feG™3ke(n],g€R: f(K:) = g(Knngi)
for all i€ (n], f(Knt1) = ¢(Knt1)},

RO ={fea"3peSngeR: f(K;) = g(Kuu)
for all i€ (n], f(Knt1) = ¢(Kny1)}

3.14. Theorem. Let R C G be a relation, K an n-decomposition of the set H,
¢ € Sp. Then:

(1) If R is cyclic with regard to K and mpm = ¢, then Rgcs,)w is cyclic with

regard to K.
2) If R has any of the properties defined in 2.8, then R(g) has the same
( v prop , 5

property.

(3) R;Cc) and R;{d) are regular with regard to K.
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(4) If R is reflexive (irreflexive, complete, symmetric) with regard to K, then
R;Cc) has the same property.

(5) If R is symmetric with regard to K and ¢ and pmp = w, then R;Cc) is
symmetric with regard to K and ¢.

(6) Ifn is odd and R is asymmetric (antisymmetric) with regard to K, then
R;Cc) has the same property.

(7) If R is reflexive (irreflexive, complete) with regard to K, then R;Cd) has the
same property.

Proof. (1), (2), (3), and (4) follow from 2.5 (3), 2.13 (1) - (4), 2.14 (1), 3.6 (2),
(4), 3.7, 3.12 (1), and (2).

(5) Let R be a symmetric with regard to K and ¢, let prp = 7. Let f €
('Ri)x . Let K = {K;}"*!. By 1.14 (1), we have (*Rx)x,, = Ri ryp. Con-
sequently, there exists g € R such that f(K;) = g(K(re)) for all i € (n],
f(Knt1) = g(Kng1). By 2.3 (2), Ri,, = R, thus g € Ry . Hence, there exists
h € R such that g(K;) = h(K ) for all i € (n], 9(Knq1) = h(Kpnq1). Summariz-
ing, we get f(K;) = h(K(prp)i)) = MEqx)) for all i € (n], f(Kny1) = h(Kng1),
thus f € Ric,r = ' Rx. Hence ('Ri)x.» C 'Rk and ! Ry is symmetric with regard
to K and ¢. It is easy to show by induction that ? Rx is symmetric with regard to K

and ¢ for any ¢ € N. Now, by 3.12 (1) and 2.5 (4), we obtain that R;Cc) = U 'Rk

i=1
i1s symmetric with regard to K and ¢.

(6) Let R be asymmetric (antisymmetric) with regard to K. Admit that R;Cc)
does not have the same property. There exists an odd permutation ¢ € .S,, such
that RS N (R # 0 (R N (R )y ¢ Ex). Let K = {K;}'H Let f €
R;Cc) N (R;Cc));cylp (f € R;Cc) N (R;Cc));gylp — Fx). Then there exists g € R;Cc) such
that f(K;) = g(Kyq)) for all i € (n], f(Kny1) = g(Kny1). As fog € R;Cc) there
exist, by 3.13, k,l € (n] and h,m € R such that f(K;) = h(Krx;)) for all i € (n],
F(Kng1) = WM Kpy1),9(K;) = m(Kﬂz(i)) for all i € (n], ¢(Knt1) = m(Kpy1).
Since n is odd, 7 is even and also 7%, 7' are even. As 1 is odd, y = 71'11/)(71"“)_1
is odd, too. Thus, we have h(K;) = m(K riyrr)-1)s)) = m(Kyi) for all i € (n],
h(Kp41) = m(Kp41). Hence h € RN Ry for an odd permutation y € S,. In
the case of asymmetry we obtain a contradiction. In the case of antisymmetry
we have f ¢ Ex, thus there exist ¢,j € (n] such that f(K;) # f(Kj;), so that
h([{ﬂ.k(l)) = f([fz) + f([{]) = h([{ﬂ.k(])) and h ¢ Ex. Hence h € RN Rx — Eg,
which 1s a contradiction, too.

(7) follows from 2.5 (1), (4), (7), and 3.12 (2).

3.15. Corollary. Let R C G be a relation, K an n-decomposition of the set H

¢ € Sp. Then:
(1) (')
(2) (R
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(4) (R(d))gc,w (R( 5) )(d) R(d)
(5) (R (d))gc (R(g))(d)

(6) (R(C)) () (R(d))(c) R(d)

7) If ¢ is such that pwe = 7, then
(7) If o TP =

(BN, € (R
(8) If ¢ is such that wpm = ¢, then

(REDE C (R

N

Proof. The statement follows from 3.14 analogously as 3.9 follows from 3.8.

3.16. Corollary. Let R C G be a relation, K an n-decomposition of the set H .
Then:

Proof is analogous to that of 3.11.
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