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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 119 { 122A CHARACTERIZATION OF KRULLRINGS WITH ZERO DIVISORSFranz Halter-KochAbstract. It is proved that a Marot ring is a Krull ring if and only if its monoidof regular elements is a Krull monoid.It was �rst noticed by L. Skula [7] that a domain R is a Krull domain if andonly if the multiplicative monoid R n f0g is a Krull monoid (or, equivalently,admits a divisor theory). For independent proofs and historical remarks see [1]and [3].In this note we extend the above-mentioned result to Krull rings with zerodivisors as treated in [4]. All rings in this note are commutative and possess aunit element. If R is a ring, we denote by R� the monoid of regular elementsof R , by R� the group of invertible elements of R and by T (R) a totalquotient ring of R ; clearly, T (R)� = T (R)� . For a prime ideal P of R , we setR(P ) = (R� n P )�1R � T (R) . Throughout, we shall assume that R is a Marotring, and we shall use the Marot property in the following form.Lemma. A ring R is a Marot ring if and only if the following condition issatis�ed: (M) � For any two R-submodules M1;M2 of T (R);M1 \ T (R)� =M2 \ T (R)� 6= ; implies M1 =M2:Proof. By [4], Theorem 7.1, R is a Marot ring if and only if every regular R-submodule of T (R) is generated by its regular elements. Therefore every Marotring satis�es (M) .Now let R be a ring satisfying (M) and let M � T (R) be a regular R-submodule. Let M0 � M be the R-submodule generated by M \ T (R)� ; itsatis�es M0 \ T (R)� =M \ T (R)� 6= ; , and therefore M0 = M . �For the valuation theory of monoids and the theory of Krull monoids we referto [3]. The main result of this note is the following Theorem.1991 Mathematics Subject Classi�cation : 13F05.Key words and phrases: Krull ring, Marot ring, divisor theory, essential valuation, discreterank one valuation ring.Received February 8, 1993. 119



120 FRANZ HALTER{KOCHTheorem. Let R be a Marot ring. Then R is a Krull ring if and only if R�is a Krull monoid.Proof of the Theorem (Part 1). Let R be a Krull ring. Then there existsa set 
 of rank one valuations v : T (R) ! Z[ f1g such that R = fx 2T (R) j v(x) � 0 for all v 2 
g and, for any x 2 T (R)�; v(x) = 0 for allbut �nitely many v 2 
 . If v 2 
 , then v(x) 2 Z for all x 2 T (R)� , andv� = vjT (R)� : T (R)� ! Z is a valuation of R� . The set fv� j v 2 
g is ade�ning set of valuations of R� , and therefore R� is a Krull monoid. �The proof of the non-trivial part of the Theorem rests on the following Propo-sition.Proposition. Let R be a Marot ring, v : T (R)� !Z an essential valuation ofR� , and let P / R be the ideal generated by fx 2 R� j v(x) > 0g .i) If n 2 N; x1; : : : ; xn 2 R�; �1; : : : ; �n 2 R and x = �1x1+� � �+�nxn 2 R� ,then v(x) � minfv(x1); : : : ; v(xn)g .ii) P is a prime ideal of R , thenR(P ) \ T (R)� = �x 2 T (R)� j v(x) � 0	 ;PR(P ) \ T (R)� = �x 2 T (R)� j v(x) > 0	and R�(P ) = �x 2 T (R)� j v(x) = 0	 :iii) R(P ) is a discrete rank one valuation ring.Proof. i)We may suppose that n � 2 and v(x1) = minfv(x1); : : : ; v(xn)g . For2 � � � n , we have x�11 x� 2 T (R)�; v(x�11 x�) � 0 , and since v is essential forR� , there exists an element z� 2 R� such that v(z�) = 0 and z�x�11 x� 2 R� .Putting z = z2 � : : :�zn 2 R� , we obtain v(z) = 0; zx�11 ��x� 2 R for 2 � � � n ,and hence zx�11 x = �1z + nX�=2 zx�11 ��x� 2 R� ;consequently, 0 � v(zx�11 x) = �v(x1) + v(x) , and the assertion follows.ii) By i), we obtain P \R� = fx 2 R� j v(x) > 0g :For any x; y 2 R�; xy 2 P implies 0 < v(xy) = v(x) + v(y) , and sincev(x) � 0; v(y) � 0 , we conclude v(x) > 0 or v(y) > 0 , i.e. x 2 P or y 2 P .Hence P is a prime ideal by [4], Theorem 7.10.By construction, every x 2 R(P )\T (R)� satis�es v(x) � 0; x 2 PR(P )\T (R)�implies v(x) > 0 , and x 2 R�(P ) implies v(x) = 0 . For the converse, letx 2 T (R)� be an element satisfying v(x) � 0 . Since v is essential for R� , there



A CHARACTERIZATION OF KRULL RINGS WITH ZERO DIVISORS 121exists some z 2 R� such that xz 2 R� and v(z) = 0 . This implies z =2 P ,and consequently x = xzz 2 R(P ) . If v(x) > 0 , then v(xz) = v(x) > 0 , whencexz 2 P and x 2 PR(P ) . If v(x) = 0 , then x and x�1 both lie in R(P ) ,whence x 2 R�(P ) .iii)By [6], Proposition 22, we must prove that PR(P ) is the only regular primeideal of R(P ) , and that it is an invertible ideal.Let t 2 T (R)� be an element satisfying v(t) = 1 . By ii), t 2 PR(P ) , and weclaim that PR(P ) = R(P )t . Clearly, it is su�cient to prove that PR(P )\T (R)� �R(P )t . If x 2 PR(P )\T (R)� , then v(x) > 0 and hence v(xt�1) = v(x)�1 � 0 ,which implies xt�1 2 R(P ) and x 2 R(P )t . Being a regular principal ideal,PR(P ) is invertible.If Q/R(P ) is a regular prime ideal and x 2 Q\T (R)� , then v(x) > 0 by ii).This implies v(tv(x)x�1) = 0 , hence tv(x)x�1 = e 2 R�(P ) and tv(x) = xe 2 Q ,whence t 2 Q and PR(P ) � Q . Since (R(P ) nPR(P ))\T (R)� = R�(P ) , the idealPR(P ) is a maximal regular ideal, and therefore PR(P ) = Q . �Proof of the Theorem (Part 2). Let R� be a Krull monoid and 
 the setof essential valuations of R� . For v 2 
 , let Pv / R be the ideal generated byfx 2 R� j v(x) > 0g . By the Proposition, Pv is a prime ideal and R(Pv) is adiscrete rank one valuation ring. Therefore it is su�cient to prove thatR = \v2
R(Pv) ;and every x 2 T (R)� lies in R�(Pv) for all but �nitely many v 2 
 .By [3], Satz 1, 
 is a de�ning set of valuations for R� , which means thatR� = fx 2 T (R)� j v(x) � 0 for all v 2 
g and, for all x 2 T (R)�; v(x) = 0for all but �nitely many v 2 
 . By the Proposition, this impliesR� = \v2
R(Pv) \ T (R)�;and hence R = \v2
R(Pv)by the Lemma; furthermore, if x 2 T (R)� , then x 2 R�(Pv) for all but �nitelymany v 2 
 . �Remark. That the monoid of regular elements of a Krull ring is a Krull monoid,was already observed in [2]. Yet another characterization of Krull rings with zerodivisors was given in [5].
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