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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 153 { 160PSEUDOCOMPLEMENTED ORDERED SETSRadom��r Hala�sAbstract. The aim of this paper is to transfer the concept of pseudocomplementfrom lattices to ordered sets and to prove some basic results holding for pseudocom-plemented ordered sets.For some well-known results on pseudocomplemented lattices see e.g. T. Ka-tri�n�ak [1].Let (A;�) be an ordered set A with the order relation �. Let B � A be asubset of A. The lower cone L(B) of the set B is the set:L(B) = fx 2 A : x � b for all b 2 Bg;the upper cone U (B) is de�ned analogously:U (B) = fx 2 A : b � x for all b 2 Bg :If there is not danger of misunderstanding, we shall write briey LU (B) (orUL(B)) instead of L(U (B)) (or U (L(B))). If B = fb1; : : : ; bng, we shall writeL(b1; : : : ; bn) instead of L(B) and dually for the upper cone of B.J. Rach�unek and I. Chajda studied in [2] the concept of modular and distributiveordered sets. Recall that an ordered set (A;�) ismodular if 8a; b; c 2 A : a � c) L(c; U (a; b)) = LU (a; L(b; c));distributive if 8a; b; c 2 A : L(U (a; b); c) = LU (L(a; c); L(b; c));w-distributive if 8a; b; c 2 A : L(U (a; b); c) � LU (a; L(b; c)).Remark. It can be shown that every distributive set is w-distributive. These twoconcepts are equivalent in lattices (see [5], x4, Lemma 10).I. Chajda in [3] introduced and studied the concept of complemented orderedset: an ordered set (A;�) is complemented if 8a 2 A 9b 2 A : LU (a; b) = A andUL(a; b) = A. Then the element b is called a complement of the element a. Every(w)- distributive and complemented ordered set is called (w-) boolean.1991 Mathematics Subject Classi�cation : 06A99.Key words and phrases: pseudocomplemented, (w)- distributive, modular, complemented or-dered set.Received December 19, 1991.



154 RADOM�IR HALA�SDe�nition 1. An ordered set (A;�) with the least element 0 is called pseu-docomplemented if for every a 2 A there exists an element a� 2 A such thatL(a; a�) = f0g and if L(a; x) = f0g for some x 2 A, then x � a�. The element a�is called the pseudocomplement of the element a.Remark. A pseudocomplemented ordered set has the greatest element 1. Thiselement is the pseudocomplement of the element 0.Example 1. (see [3]): The ordered set in Fig. 1 is complemented, pseudocomple-mented and boolean, and it is not a lattice.�AAAAAAAAAd� '''''c� 1 = 0�hhhhhb�� � � ��'''''x AAAAAAAAAhhhhha �hhhhha�  x�''''' AAAAAAAAA�hhhhhhhhhhhh�hhhhhhhhhhhh�444444444444 �444444444444 � 0 = 1������b AAAAAAAAA d44444 cFig. 1Example 2. The ordered set in Fig. 2 is pseudocomplemented, but not comple-mented, not distributive and it is not a lattice.�NNNNNNNNN ��������� y = x� = a�AAAAA 1 = 0�� � � ��a[[[[[[[[d �b''''''''c �[[[[[[[[[b� = y� = x ���������0 = c� = d� = 1�Fig. 2



PSEUDOCOMPLEMENTED ORDERED SETS 155Proposition 1. Let (A;�) be a pseudocomplemented ordered set.Then 8 a; b 2 A : a � b) b� � a�; a��� = a�.Proof. Let a� or b� be the pseudocomplements of the elements a or b, respec-tively. Then L(a; a�) = L(b; b�) = f0g and a � b implies L(a) = L(a; b). Further,L(a; b�) = L(a; b; b�) = f0g. According to De�nition 1, the element a� is the great-est element with the property L(a; a�) = f0g. Hence b� � a�. The proof of thesecond claim is analogous. �Let (A;�) b a pseudocomplemented ordered set. Denote by B(A) = fx 2A : x = x��g. For B � A let L�(B) = fx� : x 2 L(B)g and U�(B) = fx� : x 2U (B)g and B� = fx� : x 2 Bg.Proposition 2. 8 a; b 2 B(A) : U (a; b) \ B(A) = L�(a�; b�),L(a; b) \ B(A) = U�(a�; b�).Proof. Let x 2 U (a; b) \ B(A). Then x = x��, a � x, b � x. By Proposition 1,x� � a�, x� � b�, hence x� 2 L(a�; b�) and x = x�� 2 L�(a�; b�). Conversely, letx 2 L�(a�; b�). Then x = c�, where c � a�, c � b�. By Proposition 1, a�� � c�,b�� � c�, x = c� = c��� = x��. Hence x 2 B(A). But a; b 2 B(A), therefore a � c�,b � c� and x 2 U (a; b). The proof of the second claim is dual. �Proposition 3. Let (A;�) be a pseudocomplemented ordered set. Then the setB(A) with the induced order is a uniquely complemented ordered set.Proof. First we prove that for every a 2 B(A) the element a� is a complement ofthe element a:L(a; a�) = f0g, hence UL(a; a�) = U (0) = B(A); according to Proposition 2,LU (a; a�) = LL�(a�; a��) = L(0�) = L(1) = B(A)). Hence a� is a complement ofthe element a in the set B(A). By the de�nition of pseudocomplement, a� is theunique complement of a. �The proof of the next statement is derived from the following lemma:Lemma 1. Let A be a pseudocomplemented ordered set, x; y; z 2 A; B, C � A.Then the statements (i), (ii), (v), (vii), (viii), (ix) are valid in A and (iii), (iv), (vi)are valid in B(A):(i) L(x; z) � LU (x; L(y; z));(ii) L(x; y; U (x�; y�)) = f0g;(iii) U�(B) = L(B�) and L�(B) = U (B�);(iv) L(x; z; UU�(x; L(y; z))) = f0g;(v) L(y; z) � LU (x; L(y; z));(vi) L(y; z; UU�(x; L(y; z))) = f0g;(vii) L(x;B) = f0g ) L(B) � L(x�);(viii) L(B;C) = f0g ) L(B) � LL�(C).Proof. (i) U (x; L(y; z)) = U (x) \ UL(y; z) � U (x), hence LU (x; L(y; z)) �LU (x) = L(x) � L(x; z).(ii) Let y 2 L(x; z; U (x�; z�)). Then y � x, y � z, y 2 LU (x�; z�). Hencey � k for every k 2 A such that x� � k, z� � k. According to Proposition 1 it



156 RADOM�IR HALA�Sholds x� � y�, z� � y� and therefore y � y�. Then L(y; y�) = L(y) = f0g, hencey = 0.(iii) By Proposition 2, we have8 a 2 B : U�(a; a) = U�(a) = L(a�; a�) = L(a�) :But U�(B) = (\iU (bi))� = (\iU�(bi)) = \iL(b�i ) = L([i fb�i g) = L(B�).The proof of the second claim is dual.(iv) By (i), LU (x; L(y; z)) � L(x; z), hence U (x; L(y; z)) � UL(x; z); thenU�(x; L(y; z)) � U�L(x; z). This implies the inclusion UU�(x; L(y; z)) �UU�L(x; z) and then LUU�(x; L(y; z)) � LUU�L(x; z). The right side of thelast inclusion is equal to LUU�L(x; z) = LULL�(x; z) = LL�(x; z) accordingto (iii), and by Proposition 2 the set LL�(x; z) is equal to LU (x�; z�). Hence,L(x; z; UU�(x; L(y; z)) � L(x; z) \ LU (x�; z�) = L(x; z; U (x�; z�)) = f0g by (ii).(v) U (x; L(y; z)) = U (x) \ UL(y; z) � UL(y; z), hence LU (x; L(y; z)) �LUL(y; z) = L(y; z).(vi) By (v) it holds: L(y; z) � LU (x; L(y; z)), hence UL(y; z) � U (x; L(y; z));then U�L(y; z) � U�(x; L(y; z)) and therefore UU�L(y; z) � UU�(x; L(y; z)); itimplies LUU�L(y; z) � LUU�(x; L(y; z)). But the left side of the last inclusionis equal to LU (y�; z�) for the same reason as in the proof of (iv). ThereforeL(y; z; UU�(x; L(y; z))) � L(y; z; U (y�; z�)) = f0g.(vii) If y 2 L(B), then y � b for all b 2 B. Hence L(y) � L(B). ThenL(x; y) = L(x) \ L(y) � L(x) \ L(B) = L(x;B) = f0g, therefore L(x; y) = f0g.But according to the de�nition of pseudocomplement y � x� and thus y 2 L(x�).(viii) Let y 2 L(C). Then L(y) � L(C) and therefore L(y;B) = L(y)\L(B) �L(B;C) = f0g. According to (vii) L(B) � L(y�) for all y 2 L(C). This impliesL(B) � \iL(y�i ), where yi 2 L(C). The right side of the last inclusion is equal toL([i fy�i g) = LL�(C).Further, let x; y; z 2 B(A) and lower and upper cones be in B(A).Now, by (iv) and (vii) we obtain(1) L(z; UU�(x; L(y; z))) � L(x�) ;and by (vi) and (vii) we have(2) L(z; UU�(x; L(y; z))) � L(y�) :From (1) and (2) it is clear, that L(z; UU�(x; L(y; z))) � L(x�; y�). This im-plies L(z; UU�(x; L(y; z)); L�(x�; y�)) � L(x�; y�) \ LL�(x�; y�) = L(x�; y�) \LU (x; y) = L(x�; y�; U (x; y)) = f0g, hence(3) L(z; UU�(x; L(y; z)); L(x�; y�)) = f0g :



PSEUDOCOMPLEMENTED ORDERED SETS 157Further, we use (viii), where we put B = fzg [ L�(x�; y�), C = UU�(x; L(y; z)).We obtain inclusion L(z; L�(x�; y�)) � LL�UU�(x; L(y; z)). Using (iii) and Propo-sition 2, we obtain L(z; U (x; y)) = L(z; L�(x�; y�)) � LL�UU�(x; L(y; z)) =LUU�U�(x; L(y; z)) = LULU (x; L(y; z)) = LU (x; L(y; z)), hence(4) L(z; U (x; y)) � LU (x; L(y; z))so B(A) is a w-distributive ordered set.By Proposition 3, B(A) is uniquely complemented, hence the following Theoremholds:Theorem 1. The set B(A) with the induced order is a w-boolean ordered set.De�nition 2. A pseudocomplemented distributive ordered set A is called a Stoneordered set if it satis�es the condition:8 a 2 A : U (a�; a��) = f1g :Example 3. The set visualized in Fig. 3 is a pseudocomplemented ordered setwhich is not a lattice and not a Stone ordered set, but it is a distributive orderedset. �hhhhh 1 = 0�44444� ��b� = aAAAAAAAAA d�b = a�c �44444 hhhhh0 = 1� = c� = d�Fig. 3Example 4. The ordered set in Fig. 4 is a Stone ordered set, which is not alattice.



158 RADOM�IR HALA�S�NNNNNNNNu [[[[[ 1��������''''' x� � � ��4444444444hhhhhva �444444444444444 �hhhhh y���������� �444444 ���������� ��������� 0'''''b NNNNNNNN d[[[[[ cFig. 4Theorem 2. Let A be a pseudocomplemented distributive ordered set. Then thefollowing conditions are equivalent:(i) A is a Stone ordered set(ii) If x; a; b 2 A, then L(a; b; x) = f0g implies L(x) � LU (a�; b�).Proof. (ii))(i) Let b = a� in the condition (ii). Then L(a; a�; x) = f0g for allx 2 A. Hence L(x) � LU (a�; a��) for arbitrary x 2 A. Let x = 1. Then A =L(1) � LU (a�; a��). This implies A = LU (a�; a��) and f1g = U (A) = U (a�; a��).(i))(ii) Let x 2 A, L(a; b; x) = f0g. according to (vii), it is valid: L(b; x) �L(a�). Then L(b; x; a��) � L(a�; a��) = f0g and hence L(b; x; a��) = f0g. Now,using (vii) again, we'll obtain: L(x; a��) � L(b�). Then L(x) = L(x) \ A =L(x) \ LU (a�; a��) = L(x; U (a�; a��)). By distributivity of A, L(x; U (a�; a��)) =LU (L(x; a�); L(x; a��)) and L(x; a�) � L(a�); L(x; a��) � L(b�). ThereforeLU (L(x; a�); L(x; a��)) � LU (L(a�); L(b�)) = LU (a�; b�),hence L(x) � LU (a�; b�). �De�nition 3. Let A be an ordered set. The set B � A is called a �lter in A ifthe following condition holds:a; b 2 B ) UL(a; b) � B :Let A be a Stone ordered set. Denote by D(A) = fa 2 A; a� = 0g.Proposition 4. The set D(A) is a �lter in a Stone ordered set A.Proof. If a; b 2 D(A), then a� = b� = 0. Now, let z 2 UL(a; b) for some elementz 2 A; then we can prove:L(z) � L(a; b), thus f0g = L(z; z�) � L(a; b; z�) and L(a; b; z�) = f0g. By Theo-rem 2, L(z�) � LU (a�; b�) = L(0) = 0, thus z� = 0. �



PSEUDOCOMPLEMENTED ORDERED SETS 159Proposition 5. Let A be a Stone ordered set. Then(i) 8a 2 A : L(a��; U (a; a�)) = L(a);(ii) 8a 2 A : U (a; a�) � D(A).Proof. (i) Using distributivity of the set A, we get:L(a��; U (a; a�)) = LU (L(a��; a); L(a��; a�)) = L(a��; a), but a � a�� for all a 2 Aand L(a; a��) = L(a).(ii) If z 2 U (a; a�), then a � z. Due to Proposition 1 it is valid: z� � a�, z� � a��and L(z�) � L(a�; a��) = f0g, thus z� = 0. �Example 5. Let's consider an ordered set visualized in Fig. 5. It is a Stone orderedset and it is not a lattice. The set B(A) of this ordered set is equal toB(A) = f0; 1; a; b; c; d; x; x�; a�; b�; c�; d�g;D(A) = f1; tg. For A in Example 4, wehave B(A) = A and D(A) = f1g. �1 = 0��AAAAAAAAAd� '''''c� thhhhhb�� � � ��'''''x AAAAAAAAAhhhhha �hhhhha�  x�''''' AAAAAAAAA�hhhhhhhhhhhh�hhhhhhhhhhhh�444444444444 �444444444444 � 0 = 1� = t������b AAAAAAAAA d44444 cFig. 5Therefore, the lower cone of an arbitrary element a of a Stone ordered set ispossible to express as a lower cone of the set B, which is the union of some elementof B(A) and some subset of D(A).De�nition 4. An ordered set A is called a Brouwer ordered set if for all elementsa; b 2 A there exists the greatest element b : a 2 A satisfying the conditionL(a; x) � L(b), x 2 A.



160 RADOM�IR HALA�SProposition 6. Every Brouwer ordered set A is distributive.Proof. Let D = U (L(a; b); L(a; c)); a; b; c 2 A, d 2 D. Then x � d, y � d forall elements x 2 L(a; b), y 2 L(a; c), hence L(d) � L(a; b), L(d) � L(a; c) andb � d : a, c � d : a, hence U (b; c) � U (d : a). Then L(a; U (b; c)) � L(a; U (d : a)) =L(a; (d : a)) � L(d). But d is an arbitrary element from D, hence it is valid:L(a; U (b; c)) � \iL(d) = L(D) = LU (L(a; b); L(a; c)). But the opposite inclusionis always valid in A and A is distributive. �Remark. An ordered set depicted in Fig. 3 is a Brouwer set which is not lattice.References[1] Katri�n�ak, T., Pseudokomplement�are Halbverb�ande, Mat. �cas. SAV 18, 121-143.[2] Rach�unek, J., Chajda, I., Forbidden con�gurations for distributive and modular ordered sets,Order 5 (1989), 407-423.[3] Chajda, I., Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25-34.[4] Rach�unek, J., Larmerov�a, J., Translations of modular and distributive ordered sets, ActaUniv. Palack�y (Olomouc) 91 (1988), 13-23.[5] Gr�atzer, G., General lattice theory, Moscow, 1982.Radom��r Hala�sDepartment of Algebra and GeometryPalack�y UniversityT�r. Svobody 26771 46 Olomouc, CZECH REPUBLIC
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