Archivum Mathematicum

Eva Špániková
 Oscillatory properties of the solutions of differential system of neutral type

Archivum Mathematicum, Vol. 29 (1993), No. 3-4, 177--185

Persistent URL: http://dml.cz/dmlcz/107481

Terms of use:

© Masaryk University, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

OSCILLATORY PROPERTIES OF THE SOLUTIONS OF DIFFERENTIAL SYSTEM OF NEUTRAL TYPE

Eva Špániková

Abstract. The purpose of this paper is to obtain oscillation criterions for the differential system of neutral type.

In this paper we consider a differential system

$$
\begin{align*}
{\left[y_{i}(t)+a_{i}(t) y_{i}\left(g_{i}(t)\right)\right]^{\prime} } & =p_{i}(t) f_{i}\left(y_{i+1}\left(h_{i+1}(t)\right)\right), \quad i=1,2 \\
y_{3}^{\prime}(t) & =-p_{3}(t) f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \in R_{+}=[0, \infty) \tag{S}
\end{align*}
$$

The following conditions are always assumed to be fulfilled:
(a) $a_{i}: R_{+} \longrightarrow\left[0, \lambda_{i}\right], i=1,2$, are continuous, λ_{i} is a constant, $0<\lambda_{i}<1$.
(b) $g_{i}: R_{+} \longrightarrow R, i=1,2$, are continuous, $g_{i}(t) \leq t$ and $\lim _{t \rightarrow \infty} g_{i}(t)=\infty$.
(c) $h_{i}: R_{+} \longrightarrow R, \quad i=1,2,3$, are continuous and $\lim _{t \rightarrow \infty} h_{i}(t)=\infty$.
(d) $f_{i}: R \longrightarrow R, i=1,2,3$, are continuous and nondecreasing, $u f_{i}(u)>0$ for $u \neq 0$.
(e) $p_{i}: R_{+} \longrightarrow(0, \infty), \quad i=1,2,3$, are continuous and ${ }^{\infty} p_{j}(t) d t=\infty$ for $j=1,2$.
The purpose of this paper is to obtain oscillation criterions for the differential system of neutral type. This paper is generalization of the results obtained in the paper [2].

Let $t_{0} \geq 0$. Denote

$$
\tilde{t}_{0}=\min \left\{\inf _{t \geq t_{0}} g_{i}(t), \inf _{t \geq t_{0}} h_{j}(t), i=1,2, \quad j=1,2,3\right\}
$$

A function $y=\left(y_{1}, y_{2}, y_{3}\right)$ is a solution of the system (S), if there exists a $t_{0} \geq 0$ such that y is continuous on $\left[\tilde{t}_{0}, \infty\right), y_{1}(t)+a_{i}(t) y_{i}\left(g_{i}(t)\right), i=1,2$ and $y_{3}(t)$ are continuously differentiable on $\left[t_{0}, \infty\right)$ and y satisfies (S) on $\left[t_{0}, \infty\right)$.

[^0]Denote by W the set of all solutions $y=\left(y_{1}, y_{2}, y_{3}\right)$ of the system (S) which exist on some ray $\left[T_{y}, \infty\right) \subset R_{+}$and satisfy

$$
\sup _{i=1}^{3}\left|y_{i}(t)\right|: t \geq T \quad>0 \quad \text { for any } \quad T \geq T_{y} .
$$

A solution $y \in W$ is nonoscillatory if there exists a $T_{y} \geq 0$ such that its every component is different from zero for all $t \geq T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.

Denote
$h_{i}^{*}(t)=\min \left\{t, h_{i}(t)\right\}, \quad i=1,2,3$;
$\left.\gamma_{i}(t)=\sup \left\{s \geq 0, h_{i}^{*}(s) \leq t\right\}\right), t \geq 0, i=1,2,3 ;$
$\beta_{j}(t)=\sup \left\{s \geq 0, g_{j}(s) \leq t\right\}, \quad t \geq 0, j=1,2 ;$
$\gamma(t)=\max \left\{\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t), \beta_{1}(t), \beta_{2}(t)\right\} ;$

$$
\begin{equation*}
u_{i}(t)=y_{i}(t)+a_{i}(t) y_{i}\left(g_{i}(t)\right), \quad i=1,2 . \tag{1}
\end{equation*}
$$

Lemma 1. ([1, Lemma 5]). Let $y_{i}(t)$ and $u_{i}(t)$ fulfil (1).
A) If $y_{i}(t) u_{i}^{\prime}(t)>0$ for $t \geq T_{1}$, then there exists $T_{2} \geq T_{1}$ such that

$$
\begin{equation*}
\left(1-\lambda_{i}\right)\left|u_{i}(t)\right| \leq\left|y_{i}(t)\right| \text { for } t \geq T_{2}, i=1,2 \tag{2}
\end{equation*}
$$

B) If $y_{i}(t) u_{i}^{\prime}(t)<0$ for $t \geq T_{1}$ and $\lim _{t \rightarrow \infty} u_{i}|(t)|=k_{i}>0$, then there exist $T_{3} \leq T_{1}$ and a constant $r_{i}: 0<r_{i}<1$ such that

$$
\begin{equation*}
r_{i}\left|u_{i}(t)\right| \leq\left|y_{i}(t)\right| \leq\left|u_{i}(t)\right| \quad \text { for } t \geq T_{3}, i=1,2 . \tag{3}
\end{equation*}
$$

Lemma 2. Let $y_{i}(t)$ and $u_{i}(t)$ fulfil (1) and $y_{i}(t) u_{i}^{\prime}(t)<0, i=1,2$ for $t \geq T_{1}$. If $\lim _{t \rightarrow \infty} u_{i}(t)=0$, then $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2$.

Proof of Lemma 2 is easy.
Theorem 1. Let the following conditions be satisfied:
(4) $x y f_{i}(x y) \geq K x y f_{i}(x) f_{i}(y) \quad(0<K=$ const. $) \quad i=1,2,3$.
(5) $h_{j}(t)$ are nondecreasing functions, $j=2,3$.
(6) $h_{3}\left(h_{2}\left(h_{1}(t)\right)\right) \leq t$.
(7) $\quad \underset{\gamma(0)}{\infty} p_{2}(t) f_{2} \quad{ }_{h_{3}(t)}^{\infty} p_{3}(s) d s \quad d t=\infty$.
(8) $\quad \underset{\gamma(\gamma(0))}{\infty} p_{3}(t) f_{3} \quad \begin{aligned} & h_{1}(t) \\ & \gamma(0)\end{aligned} p_{1}(s) f_{1} \quad{ }_{0}^{h_{2}(s)} p_{2}(x) d x \quad d s \quad d t=\infty$.
(9) $\quad 0_{0}^{\alpha} \frac{d t}{f_{3}\left(f_{1}\left(f_{2}(t)\right)\right)}<\infty, \quad 0_{0}^{-\alpha} \frac{d t}{f_{3}\left(f_{1}\left(f_{2}(t)\right)\right)}<\infty$ for every constant $\alpha>0$.

Then every solution $y \in W$ is either oscillatory or $\lim _{t \rightarrow \infty} y_{i}(t)=0, \quad i=1,2,3$.
Proof. Let $y \in W$ be a nonoscillatory solution of the system (S). Then there exists $t_{1} \geq 0$ such that each of its components is a constant sign on $\left[t_{1}, \infty\right)$. Without
loss of generality we may suppose that $y_{1}(t)>0$ for $t \geq t_{1}$. In the next we shall consider the following cases:
I) Let $y_{1}(t)>0, y_{3}(t)<0, t \geq t_{1}$.

In view of (S) and (1) we get

$$
\begin{equation*}
u_{1}(t)>0, \quad u_{2}^{\prime}(t)<0, \quad y_{3}^{\prime}(t)<0, \quad t \geq t_{2}=\gamma\left(t_{1}\right) \tag{10}
\end{equation*}
$$

Because $y_{3}(t)$ is negative and decreasing we have

$$
y_{3}\left(h_{3}(t)\right) \leq-C_{1}=y_{3}\left(t_{1}\right)<0, t \geq t_{3}=\gamma\left(t_{2}\right)
$$

The last inequality together (d) implies

$$
\begin{equation*}
f_{2}\left(y_{3}\left(h_{3}(t)\right)\right) \leq-C_{2}, \quad t \geq t_{3} \tag{11}
\end{equation*}
$$

where $-C_{2}=f_{2}\left(-C_{1}\right)<0$.
Integrating the second equation of (S) and then using (11), we have

$$
\begin{equation*}
u_{2}(t) \leq u_{2}\left(t_{3}\right)-C_{2} \quad{ }_{t_{3}}^{t} p_{2}(s) d s, \quad t \geq t_{3} \tag{12}
\end{equation*}
$$

From (12) and (e) for $t \rightarrow \infty$ we obtain $\lim _{t \rightarrow \infty} u_{2}(t)=-\infty$. Then with regard to Lemma 1 we have $\lim _{t \rightarrow \infty} y_{2}(t)=-\infty$ and $y_{2}(t) \leq-C_{3}<0, \quad t \geq t_{4} \geq t_{3}$,

$$
\begin{gather*}
f_{1}\left(y_{2}\left(h_{2}(t)\right)\right) \leq-C_{4}, \quad t \geq t_{5}=\gamma\left(t_{4}\right) \tag{13}\\
\text { where }-C_{4}=f_{1}\left(-C_{3}\right)<0
\end{gather*}
$$

Integrating the first equation of (S) and then using (13) and (e), we get $\lim _{t \rightarrow \infty} u_{1}(t)=$ $-\infty$, which contradicts (16). The case I) cannot occur.

IIa) Let $y_{1}(t)>0, y_{2}(t)<0, y_{3}(t)>0, t \geq t_{1}$.
In view of (S) and (1) we get

$$
\begin{align*}
& u_{1}(t)>0, \quad u_{2}(t)<0, \tag{14}\\
& u_{1}^{\prime}(t)<0, \quad u_{2}^{\prime}(t)>0, \quad y_{3}^{\prime}(t)<0, \quad t \geq t_{2}=\gamma\left(t_{1}\right) .
\end{align*}
$$

We shall prove that $\lim _{t \rightarrow \infty} u_{i}(t)=0, i=1,2$ and $\lim _{t \rightarrow \infty} y_{3}(t)=0$.
Let $\lim _{t \rightarrow \infty} u_{2}(t)=-k_{2}<0$. In view of Lemma 1 there exists $t_{3} \geq t_{2}$ such that $y_{2}(t) \leq-C_{5}, t \geq t_{3}$, where $C_{5}=r_{2} \cdot k_{2}>0$. We have

$$
\begin{equation*}
f_{1}\left(y_{2}\left(h_{2}(t)\right)\right) \leq f_{1}\left(-C_{5}\right)<0, \quad t \geq t_{4}=\gamma\left(t_{3}\right) \tag{15}
\end{equation*}
$$

Integrating the first equation of (S) and then using (15) and (e), we get $\lim _{t \rightarrow \infty} u_{1}(t)=$ $-\infty$, which contradicts (14) and hence $\lim _{t \rightarrow \infty} u_{2}(t)=0$. Lemma 2 implies that $\lim _{t \rightarrow \infty} y_{2}(t)=0$. Analogously we can show that $\lim _{t \rightarrow \infty} y_{3}(t)=0$.

Let $\lim _{t \rightarrow \infty} u_{1}(t)=k_{1}>0$. Lemma 1 implies that there exist $t_{5} \geq t_{2}$ and a constant $C_{6}=r_{1} \cdot k_{1}>0$ such that $y_{1}(t) \geq C_{6}$ for $t \geq t_{5}$. Then we get

$$
\begin{equation*}
f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geq C_{7}, \quad t \geq t_{6}=\gamma\left(t_{5}\right), \quad \text { where } C_{7}=f_{3}\left(C_{6}\right)>0 \tag{16}
\end{equation*}
$$

Integrating the third equation of (S) from t to ∞ and then using (16) we have

$$
y_{3}(t) \geq C_{7} \quad{ }_{t}^{\infty} p_{3}(s) d s, \quad t \geq t_{6}
$$

Then in view of (d), (4) and the last inequality we get

$$
\begin{equation*}
f_{2}\left(y_{2}\left(h_{3}(t)\right)\right) \geq K f_{2}\left(C_{7}\right) f_{2} \quad{ }_{h_{3}(t)}^{\infty} p_{3}(s) d s \quad, \quad t \geq t_{7}=\gamma\left(t_{6}\right) \tag{17}
\end{equation*}
$$

Integrating the second equation of (S) and then using (17) we get

$$
u_{2}(t) \geq u_{2}\left(t_{7}\right)+K f_{2}\left(C_{7}\right) \quad{ }_{t_{7}}^{t} p_{2}(z) f_{2} \quad{ }_{h_{3}(z)}^{\infty} p_{3}(s) d s \quad d z, \quad t \geq t_{7}
$$

By virtue of (7), the last inequality implies for $t \rightarrow \infty$ that $\lim _{t \rightarrow \infty} u_{2}(t)=\infty$, which contradicts (14). Therefore $\lim _{t \rightarrow \infty} u_{1}(t)=0$ and $\lim _{t \rightarrow \infty} y_{1}(t)=0$.

IIb) Let $y_{1}(t)>0, y_{2}(t)>0, y_{3}(t)>0, t \geq \stackrel{t \rightarrow \infty}{t_{1}}$.
In view of (S) and (1) we have

$$
\begin{aligned}
& u_{1}(t)>0, \quad u_{2}(t)>0 \\
& u_{1}^{\prime}(t)>0, \quad u_{2}^{\prime}(t)>0, \quad y_{3}^{\prime}(t)<0, \quad t \geq t_{2}=\gamma\left(t_{1}\right) .
\end{aligned}
$$

Integrating the second equation of (S) we get

$$
\begin{align*}
u_{2}(t)-u_{2}\left(t_{2}\right) & =\stackrel{t}{t_{2}} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) d s, \quad t \geq t_{2} \quad \text { and } \\
u_{2}\left(h_{2}(t)\right) & \geq{ }_{h_{2}(t)}^{t_{2}} p_{2}(s) f_{2}\left(y_{3}\left(h_{3}(s)\right)\right) d s, \quad t \geq t_{3}=\gamma\left(t_{2}\right) \tag{18}
\end{align*}
$$

In view of Lemma 1 there exists $t_{4} \geq t_{3}$ such that

$$
\begin{equation*}
\left(1-\lambda_{2}\right) u_{2}\left(h_{2}(t)\right) \leq y_{2}\left(h_{2}(t)\right), \quad t \geq t_{4} . \tag{19}
\end{equation*}
$$

Using (d), (4), (5), (18), (19) and the monotonicity of $f_{2}\left(y_{3}\left(h_{3}(s)\right)\right)$, we get

$$
\begin{aligned}
y_{2}\left(h_{2}(t)\right) \geq\left(1-\lambda_{2}\right) f_{2}\left(y_{3}\left(h_{3}\left(h_{2}(t)\right)\right)\right) & \begin{array}{c}
t_{2} \\
h_{2}(t) \\
t_{2}(s) d s, \quad t \geq t_{4} \quad \text { and } \\
f_{1}\left(y_{2}\left(h_{2}(t)\right)\right)
\end{array} C_{8} f_{1}\left(f_{2}\left(h_{3}\left(h_{2}(t)\right)\right)\right) f_{1}
\end{aligned}{\begin{array}{c}
h_{2}(t)
\end{array} p_{2}(s) d s \quad, \quad t \geq t_{4},}^{t_{2}} \quad l
$$

where $C_{8}=K^{2} f_{1}\left(1-\lambda_{2}\right)>0$.
Integrating the first equation of (S) and then using the last inequality, we have

$$
\begin{gather*}
u_{1}(t) \geq C_{8}{ }_{t_{4}}^{t} p_{1}(s) f_{1}\left(f_{2}\left(y_{3}\left(h_{3}\left(h_{2}(s)\right)\right)\right)\right) f_{1} \quad{ }^{t_{2}(s)} p_{2}(x) d x \quad d s \tag{20}\\
t \geq t_{4} .
\end{gather*}
$$

Using (6), (20) and the monotonicity of $f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)$ we get

$$
\begin{gather*}
u_{1}\left(h_{1}(t)\right) \geq C_{8} f_{1}\left(f_{2}\left(y_{3}(t)\right)\right){ }_{t_{4}}^{h_{1}(t)} p_{1}(s) f_{1} \quad{ }_{t_{2}}^{h_{2}(s)} p_{2}(x) d x \quad d s \tag{21}\\
t \geq t_{5}=\gamma\left(t_{4}\right)
\end{gather*}
$$

In view of Lemma 1 there exists $t_{6} \geq t_{5}$ such that

$$
\begin{equation*}
\left(1-\lambda_{1}\right) u_{1}\left(h_{1}(t)\right) \leq y_{1}\left(h_{1}(t)\right), \quad t \geq t_{6} \tag{22}
\end{equation*}
$$

In view of (d), (4), (21) and (22) we have

$$
\begin{align*}
& f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geq C_{9} f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right) \times \tag{23}\\
& \times f_{3} \quad{ }_{t_{4}} \quad p_{1}(s) f_{1} \quad t_{2} \quad p_{2}(x) d x \quad d s \quad, \quad t \geq t_{6},
\end{align*}
$$

where $C_{9}=K^{2} f_{3}\left(\left(1-\lambda_{1}\right) C_{8}\right)>0$. Multiplying (23) by $\frac{p_{3}(t)}{f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right)}$, using the third equation of (S) and then integrating from t_{6} to t, we get

$$
\begin{align*}
& { }^{t_{6}} \frac{y_{3}^{\prime}(z) d z}{f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(z)\right)\right)\right)} \geq \tag{24}\\
& { }^{t}(z) \\
& p_{1}(s) f_{1} \quad{ }_{2}(s) \quad p_{2}(x) d x \quad d s \quad d z, \quad t \geq t_{6}
\end{align*}
$$

The inequality (24) for $t \rightarrow \infty$ gives a contradiction to (8) with (9). This case cannot occur. The proof of Theorem 1 is complete.

Theorem 2. Suppose that (4), (5), (6), (7) hold and in addition

$$
\begin{equation*}
f_{3}\left(f_{1}\left(f_{2}(t)\right)\right)=t \tag{25}
\end{equation*}
$$

$$
{ }_{\gamma(\gamma(0))}^{\infty} p_{3}(t) \quad f_{3} \quad{ }_{\gamma(0)}^{h_{1}(t)} p_{1}(s) f_{1} \quad{ }_{0}^{h_{2}(s)} p_{2}(x) d x \quad d s \quad \begin{gather*}
1-\varepsilon \tag{26}\\
\end{gather*} d t=\infty
$$

where $0<\varepsilon<1$. Then the conclusion of Theorem 1 holds.
Proof. Let $y \in W$ be a nonoscillatory solution of the system (S). As in the proof of Theorem 1, we get three cases: I), IIa) and IIb). In the cases I) and IIa) we proceed in the same way as in the proof of Theorem 1. Consider now the case IIb). In this case the inequality (23) holds. Using (25), (23) implies
(27) $f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geq C_{9} y_{3}(t) f_{3} \quad{ }_{t_{4}} \quad p_{1}(s) f_{1} \quad{ }_{t_{2}} \quad p_{2}(x) d x \quad d s \quad>0$,

$$
t \geq t_{6}
$$

Raising (27) to the ($1-\varepsilon$) power $(0<\varepsilon<1$) we obtain

$$
\begin{array}{cc}
{\left[C_{9} y_{3}(t)\right]^{1-\varepsilon}} & f_{3} \tag{28}
\end{array}{ }_{t_{4}}^{h_{1}(t)} p_{1}(s) f_{1}{ }^{h_{2}(s)} p_{2}(x) d x \quad d s{ }^{1-\varepsilon} \leq
$$

Lemma 1 together (d) implies that there exist $t_{7} \geq t_{6}$ and a constant $D_{1}>0$ such that

$$
\begin{equation*}
f_{3}\left(y_{1}\left(h_{1}(t)\right)\right) \geq D_{1}, \quad t \geq t_{7} \tag{29}
\end{equation*}
$$

Now (29) implies

$$
\begin{equation*}
\left[f_{3}\left(y_{1}\left(h_{1}(t)\right)\right)\right]^{1-\varepsilon} \leq D_{2} f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \geq t_{7} \tag{30}
\end{equation*}
$$

where $D_{2}=D_{1}^{-\varepsilon}>0$.
Combining (28) with (30), we get

$$
\left[\begin{array}{cccc}
{\left[C_{9} y_{3}(t)\right]^{1-\varepsilon}} & f_{3} & p_{1}(t) & p_{1}(s) f_{1} \quad{ }_{t_{4}} \quad p_{2}(x) d x \quad d s \tag{31}
\end{array}\right.
$$

Multiplying (31) by $p_{3}(t)\left[C_{9} y_{3}(t)\right]^{\varepsilon-1}$, using the third equation of (S), integrating from t_{7} to t and then using the fact that $y_{3}(t)$ is positive and decreasing, we have

$$
\begin{aligned}
{ }_{{ }_{t_{7}}^{t}}^{p_{3}(z)} & f_{3} \quad{ }_{t_{4}(t)}^{h_{1}} p_{1}(s) f_{1} \quad{ }^{t_{2}(s)} p_{2}(x) d x \quad d s{ }^{1-\varepsilon} d z \leq \\
& \leq D_{2}\left(C_{9}\right)^{\varepsilon-1} \cdot \varepsilon^{-1} \cdot\left[y_{3}\left(t_{7}\right)\right]^{\varepsilon}<\infty, \quad t \geq t_{7},
\end{aligned}
$$

which contradicts (26). Therefore the case IIb) cannot occur. The proof of Theorem 2 is complete.

Theorem 3. Suppose that (4), (7), (9) hold and in addition

$$
\begin{gather*}
h_{2}(t) \geq t, \quad h_{3}(t) \leq t \tag{32}\\
\infty_{\gamma(\gamma(0))}^{\infty} p_{3}(t) f_{3} \quad{ }_{\gamma(0)}^{h(t)} p_{1}(s) f_{1} \quad{ }_{0}^{s} p_{2}(x) d x \quad d s \quad d t=\infty
\end{gather*}
$$

where $h(t)=h_{1}^{*}(t)=\min \left\{t, h_{1}(t)\right\}$. Then the conclusion of Theorem 1 holds.
Proof. Let $y \in W$ be a nonoscillatory solution of the system (S). Further proceeding in the same way as in the proof of Theorem 2, we consider only the case IIb). Lemma 1 together (d) and (4) implies that there exists $t_{3} \geq t_{2}$ such that

$$
\begin{equation*}
f_{1}\left(y_{2}\left(h_{2}(t)\right)\right) \geq D_{3} f_{1}\left(u_{2}\left(h_{2}(t)\right)\right), \quad t \geq t_{3}, \tag{34}
\end{equation*}
$$

where $D_{3}=K f_{1}\left(1-\lambda_{2}\right)>0$. Using (32), (34) and the monotonicity of $f_{1}\left(u_{2}(t)\right)$ on $\left[t_{3}, \infty\right)$ the first equation of (S) implies

$$
\begin{equation*}
u_{1}^{\prime}(t) \geq D_{3} p_{1}(t) f_{1}\left(u_{2}(t)\right), \quad t \geq t_{3} \tag{35}
\end{equation*}
$$

In view of (32) and the monotonicity of $f_{2}\left(y_{3}(t)\right)$ on $\left[t_{3}, \infty\right)$, the second equation of (S) implies

$$
\begin{equation*}
u_{2}^{\prime}(t) \geq p_{2}(t) f_{2}\left(y_{3}(t)\right), \quad t \geq t_{3} \tag{36}
\end{equation*}
$$

Analogously as (35) we have

$$
\begin{equation*}
y_{3}^{\prime}(t) \leq-D_{4} p_{3}(t) f_{3}\left(u_{1}(h(t))\right), \quad t \geq t_{3}, \tag{37}
\end{equation*}
$$

where $D_{4}=K f_{3}\left(1-\lambda_{1}\right)>0$.
In view of (35), (36), (37), we modify the system (S) to the form

$$
\begin{array}{r}
u_{1}^{\prime}(t) \geq D_{3} p_{1}(t) f_{1}\left(u_{2}(t)\right) \tag{*}\\
u_{2}^{\prime}(t) \geq p_{2}(t) f_{2}\left(y_{3}(t)\right) \\
y_{3}^{\prime}(t) \leq-D_{4} p_{3}(t) f_{3}\left(u_{1}(h(t))\right), \quad t \geq t_{3}
\end{array}
$$

System (S^{*}) implies

$$
\begin{equation*}
u_{1}(t) \geq D_{3} \quad{ }_{t_{3}}^{t} p_{1}(s) f_{1}\left(u_{2}(s)\right) d s, \quad t \geq t_{3} \quad \text { and } \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
u_{2}(s) \geq{ }_{t_{3}}^{s} p_{2}(x) f_{2}\left(y_{3}(x)\right) d x, \quad s \geq t_{3} \tag{39}
\end{equation*}
$$

In view of (d), (4) and the monotonicity of $f_{2}\left(y_{3}(x)\right)$ on $\left[t_{3}, \infty\right)$, from (39) we have

$$
\begin{equation*}
f_{1}\left(u_{2}(s)\right) \geq K f_{1}\left(f_{2}\left(y_{3}(s)\right)\right) f_{1} \quad{ }_{t_{3}}^{s} p_{2}(x) d x \quad, \quad s \geq t_{3} \tag{40}
\end{equation*}
$$

Combining (38) with (40), we get

$$
\begin{equation*}
u_{1}(t) \geq K D_{3} \quad{ }_{t_{3}}^{t} p_{1}(s) f_{1}\left(f_{2}\left(y_{3}(s)\right)\right) f_{1} \quad{ }_{t_{3}}^{s} p_{2}(x) d x \quad d s, \quad t \geq t_{3} \tag{41}
\end{equation*}
$$

Using (d), (4), the monotonicity of $f_{1}\left(f_{2}\left(y_{3}(s)\right)\right)$ on $\left[t_{3}, \infty\right)$ and (41), we have

$$
\begin{align*}
& f_{3}\left(u_{1}(h(t))\right) \geq \tag{42}\\
& \geq D_{5} f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right) f_{3} \quad{ }_{t_{3}(t)}^{h(s)} p_{1}(s) f_{1} p_{2}(x) d x \quad d s \quad, \\
& \\
& t \geq t_{4}
\end{align*}
$$

where $D_{5}=K^{2} f_{3}\left(K D_{3}\right)>0$.
Multiplying (42) by $D_{4} p_{3}(t)\left[f_{3}\left(f_{1}\left(f_{2}\left(y_{3}(t)\right)\right)\right)\right]^{-1}$, integrating from t_{4} to t, using the third inequality of $\left(S^{*}\right)$ and (9), for $t \rightarrow \infty$ we get

$$
\begin{gathered}
D_{4} D_{5}{ }_{t_{4}}^{t} p_{3}(z) f_{3} \quad{ }_{t_{3}}{ }^{h(z)} p_{1}(s) f_{1} \quad{ }_{t_{3}}^{s} p_{2}(x) d x \quad d s \quad d z \leq \\
\leq{ }_{y_{3}(t)}^{y_{3}\left(t_{4}\right)} \frac{d z}{f_{3}\left(f_{1}\left(f_{2}(z)\right)\right)}<\infty
\end{gathered}
$$

which contradicts (33). Therefore the case IIb) cannot occur. The proof of Theorem 3 is complete.
Theorem 4. Suppose that (4), (7), (25), (32) hold and in addition

$$
\begin{gather*}
{ }_{\gamma(\gamma(0))}^{\infty} p_{3}(t) \quad f_{3} \quad{ }_{\gamma(0)}^{h(t)} p_{1}(s) f_{1} \quad{ }_{0}^{s} p_{2}(x) d x \quad d s{ }^{1-\varepsilon} d t=\infty \tag{43}\\
0<\varepsilon<1
\end{gather*}
$$

where $h(t)=h_{1}^{*}(t)$. Then the conclusion of Theorem 1 holds.
We can prove Theorem 4 analogously as Theorem 2 and Theorem 3.
Remark. Theorem 1 - Theorem 4 we can easily extend for the following system:

$$
\begin{aligned}
& {\left[y_{i}(t)+a_{i}(t) y_{i}\left(g_{i}(t)\right)\right]^{\prime} }=(-1)^{\nu_{i}} p_{i}(t) f_{i}\left(y_{i+1}\left(h_{i+1}(t)\right)\right), \quad i=1,2 \\
& y_{3}^{\prime}(t)=(-1)^{\nu_{3}} p_{3}(t) f_{3}\left(y_{1}\left(h_{1}(t)\right)\right), \quad t \in R_{+} \\
& \nu_{j} \in\{0,1\} \quad j=1,2,3 \quad \text { and } \quad \nu_{1}+\nu_{2}+\nu_{3} \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

References

[1] Marušiak, P., Oscillatory properties of functional differential systems of neutral type, Czech Math. J. (to appear).
[2] Špániková, E., Oscillatory properties of solutions of three-dimensional differential systems with deviating arguments, Acta Math. Univ. Comen. LIV-LV (1988), 173-183.

Eva Špániková
Department of Mathematics VŠDS
J. M. Hurbana 15
01026 Z̆ilina, SLOVAK REPUBLIC

[^0]: 1991 Mathematics Subject Classification: 34K15, 34K40.
 Key words and phrases: the differential system of neutral type, oscillatory solution, nonoscillatory solution.

 Received September 16, 1992
 Research was supported by the Grant Agency for Science no. 1/990163/92.

