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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 197 { 220ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS IIJan ChrastinaAbstract. Elements of general theory of in�nitely prolongedunderdetermined sys-tems of ordinary di�erential equations are outlined and applied to the equivalence ofone-dimensional constrained variational integrals. The relevant in�nite-dimensionalvariantof Cartan'smoving framemethod expressed in quite elementary terms provesto be surprisingly e�cient in solution of particular equivalence problems, however,most of the principal questions of the general theory remains unanswered. Newconcepts of Poincar�e-Cartan form and Euler-Lagrange system without Lagrangemultiplies appearing as a mere by-product seem to be of independent interest inconnection with the 23rd Hilbert problem.After the previous part [3] exhibiting some advantages of a certain unorthodoxapproach to the equivalence of variational problems on examples, we pluck upthe currage to outline our task in full generality. In the space of variables x; y

is(i = 1; : : : ; m ; s = 0; 1; : : : ), we have a variational integral(1) Z
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198 JAN CHRASTINAin the copy-space of capital variables X ; Y

is (i = 1; : : : ; m ; s = 0; 1 : : : ). Then thequestion can be raised whether an invertible transformation exists that changesthe original data (1), (2) into the capital ones (3). However, this is not the truesetting for two reasons. First, only the subspace of admissible points satisfying (2)and the capital counterpart are in reality important (and not their behaviour in theambient space of all variables). Second, even on this subspace, a mere \conditionalequivalence" of variational integrals is interesting since the arguments in f ; F areof a special kind (see below).In order to delete the �rst trouble, only the points satisfying (2) should betaken to constitute the correct underlying space. It is to be noted that the latter(in�nite-dimensional) space endoved with the restrictions of the contact forms
#

is � dy

is � y

is+1 dx (the system #

is � 0 serves for a coordinate-free transcriptionof the relations y

is � d

s
y

i
=dx

s) can be characterized in abstract terms and weshall speak of a di�ety . In the correct setting of the problem, this di�ety is tobe identi�ed with the relevant \capital di�ety" by an invertible mapping betweenthe new underlying spaces. In more detail, every (restriction of the) form #

is isto be changed into (the restriction of) a linear combination of the capital contactforms �js = d Y

js � Y

js+1 dX .As the second trouble is concerned, one can observe that if � is such a 1-formthat the value of the integral R � is equal to R f dx for all admissible curves then
� = f dx + �a

is #

is (�nite sum) for appropriate functions a

is. It follows that in thecorrect setting of equivalence problems, every such � is to be transformed into acertain capital counterpart � = F dX +�A

is�is.Continuing [3], our approach is rather elementary and avoids the common ma-chinery of G -structures [6,9]. We try to �nd certain quite de�nite forms �
� =

f dx + ��a is #

is, �! is � ��a ijsr #

jr (so called speci�cations) that constitute a coframe(the Frenet coframe) and can be intrinsically related to the given data. If is quiteclear that they are changed into the relevant capital counterparts ��, �
is by theequivalence transformations (if the latter exist). In this sense, the equivalenceproblem in \in principle" resolved if the Frenet coframe is known. (In particular,a lot of other functions and di�erential forms which are corresponding to the rel-evant capital counterparts can be derived by the well-known methods, �rst of allfrom the developments of d

�
� , d �! is in terms of the Frenet coframe. We omit theseinvestigations since they are of a purely technical nature.)We shall also mention the divergence equivalence problem by assuming that amere di�erential d� is changed into d �, that is, the above form � is transformedinto � + dH (H is unknown in advance). On the contrary, there are subordinatedequivalences if certain additional objects are selected for invariants in advance.From our point of view, the classical setting of equivalence is of the latter kindsince it is developed in an apriori prescribed (�nite-dimensional) space of variables.Our reasonings will be carried out in real C

1-smooth category near genericpoints where ranks of certain matrices are locally constant, submanifolds are em-bedded, certain functions do not change sign, various modules over the ring F ofall C

1-smooth functions have free bases which turn into bases of R-linear spacesafter taking the values at a point (the generalized regularity concept, cf. Section



ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 1991), etc. We shall not specify the de�nition domains. The common tools of classicalanalysis will be used in a somewhat unusual in�nite-dimensional case but it doesnot cause any di�culties here (cf. however [4]). But the terminology and notationdi�er from the common usage and for this reason, the introductory part (Sections1-9) should be followed with a certain care. The body of the paper is devoted toparticular and self-contained examples of the equivalence problems, the concludingSections briey mention 23rd Hilbert problem and some related topics.Ordinary differential equations1. Some fundamental concepts, [4]. We shall deal with the space R1 of allin�nite sequences t
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200 JAN CHRASTINA3. Normal �ltrations. On the graded module Grad 
� = �
`+1
= 
`, the oper-ator L@ induces a homomorphism @ de�ned by
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 (e.g., in 
�1). It follows that 
�1 = R(
) isindependent of the choice of the �ltration. It may be proved that 
�1 is com-pletely integrable, i.e., it has a basis consisting of total di�erentials. (See [5] for aconceptual proof but the direct approach using the above basis !

is is quite easy andtherefore omitted here. It is to be noted that R(
) can be related to the conceptof \accessible points" of the optimal regulation theory.)The above forms !

j(r) will be called the initial ones. Their total number � (
) =�j r (a �nite sum, cf. (5)) is independent of the choice of the �ltration. In fact, if
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` (
`) = � (
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ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 2014. A particular case. If � (
) = 1, we have only one initial form !

1(0) uniquelydetermined up to a nonvanishing factor from F and a summand from R(
). Thisform has a typical property (in the family of all forms of 
) namely that theforms !

1k � Lk@ !

1(0) (k = 0; 1; : : : ) provide a basis of 
= R(
). It follows that !

1(0)does not depend on the choice of the normal �ltration or, in equivalent terms, thenormal �ltration 
� of 
 is unique. (Consequently, for the case � = 1, the normal�ltrations of various di�eties are changed one into the other by the equivalencetransformations. The fact was stated in [3] without proof and expressed by thephrase \the order of derivatives is preserved".)5. Example. The di�eties may be regarded as abstract substitutes for the in�n-itely prolonged underdetermined systems of ordinary di�erential equations whena de�nite choice of dependent and independent variables is not appointed. Insteadof (a simple but lengthy) discussion of this principle (which can be carried overto partial di�erential equations, cf. [4,10] and the next Part III), we shall presentsome illustrative examples.Denoting rather by x; z ; y 0 ; y 1 ; : : : the coordinates in R1, we introduce thesubmodule 
 � � generated by the forms � = dz � g dx (g = g (x; z ; y 0 ; : : : ; y k) 2 Fis given), # s � dy s� y s+1 dx (s = 0; 1; : : : ). Clearly 
? consists of all multiplies of
@ = @ =@ x + g @ =@ z +�y s+1 @ =@ y s. Since(8) L@ � = dg � @ g dx = g z � +�g s # s ; L@ # s � # s+1(g s � @ g =@ y s), we have a di�ety with the �ltration consisting of the terms
` � f# 0 ; : : : ; # `�1g (` � k ); 
` � f� ; # 0 ; : : : ; # `�1g (` > k ):The di�ety 
 (or better, the Pfa�'s system ! � 0 (! 2 
)) represents the in�niteprolongation of the equation dz =dx = g (x; z ; y ; : : : ; d

k
y =dx

k) in the obvious sense:the variables y s stand for the derivatives d

s
y =dx

s and the derivatives d

s
z =dx

s �
@

s�1
g (s � 1) need not be adjoint to the coordinates since they are expressed byother variables.Assume k � 1 and g k 6= 0. Then the classes [� ]; [# k�1] 2 
k

= 
k�1 satisfy
@ [� ] = g k � [# k], @ [# k�1] = [# k] (cf. (8)), hence @ [� � g k � k�1] = 0 2 
k+1

= 
k and
� is not a normal �ltration. But one may put �
` � 
` (` > k ) and apply (7) toobtain the desired terms �
k
;

�
k�1
; : : : of the normal improvement �
�. After somecalculations (cf. [3, Section 7]), the �nal result is as follows. If we denote

b i � g i+1 + (g z � @ )g i+2 + � � �+ (g z � @ )k�i�1 g k (i = k � 1; : : : ; �1);

� 0 = � � b k�1 # k�1 � � � � � b 0 # 0 ;then L@ � 0 = g z � 0 + b �1 # 0 and two subcases are to be distinguished. If b �1 6= 0,then we may put(9) �
` � 0 (` < 0);

�
0 = f� 0g;

�
` = f� 0 ; # 0 ; : : : ; # `�1g (` � 1)



202 JAN CHRASTINAwith the initial form !

1(0) = � 0. If b �1 = 0, we may put(10) �
` � 0(` < �1);

�
�1 = f� 0g;

�
` = f� 0 ; # 0; : : : ; # `g(` � 0)with the initial form !

1(0) = # 0. (In the latter case clearly @ cd� 0 = L@ � 0 = g z � 0implies d� 0 �= g z dx ^ � 0 (modulo all # s) and analysing the identity d

2
� 0 = 0, onecan even obtain d� 0 �= 0 (modulo � 0). It follows by Frobenius theorem that � 0 isa multiple of total di�erential.) Since � (
) = 1, other normal �ltrations do notexist.6. Example. Denoting by x; y

is (i = 1; : : : ; m ; s = 0; 1; : : : ) the coordinates inR1, we introduce the submodule 
 � � generated by all contact forms #

is �
dy

is � y

is+1 dx . Clearly 
? consists of all multiples of the vector �eld @ = @ =@ x +�y

is+1 @ =@ y

is. The submodules 
` � 0 (` < 0), 
` (` � 0) generated by all formsLk@ #

i = #

ik (k � ` ) provide a normal �ltration of 
. This di�ety 
 representsthe empty system of di�erential equations for the functions y

1(x ); : : : ; y

m(x ). Itis well-known as the one dimensional \in�nite order jet space", cf. [10]. However,an important remark is to be pointed out: neither the choice of coordinates x; y

is,nor the choice of the basis #

js, nor the above mentioned normal �ltration 
� areof intrinsical sense from our point of view. Only the submodule 
 � � is the truegiven object.7. Variational problems. Returning to general theory and the notation of Sec-tions 1-4, let � 2 � be a given form (the Lagrange density). We introduce the(constrained) variational integral(11) Z
p

�
� ! extremum ; p

�
! � 0 (! 2 
);where p : t

i � t

i(� ), a � � � b , is ranging over the family of curves in the underly-ing space (and the di�ety 
 realizes the constraints). Following some reasonablearguments [5,7], such a curve p is called an extremal if p

�
! � 0 (! 2 
) andmoreover(12) p

�
Z cd (� + �! ) = 0for an appropriate form �! 2 
 and all vector �elds Z . In principle, this form �!may depend on the choice of p . In practice, it can be selected from a certain �nite-dimensional submodule of 
, that is, it depends on some auxiliary variables (thephase variables in the terminology of [7]). In this approach, (12) is equivalent to thecommon Euler-Lagrange system with Lagrange multiplies. Beyond all expectation,the auxility variables can be completely eliminated.8. Theorem. To a given � 2 �, there is a universal form �! 2 
 such that (12)is valid for all extremals p . (Then � + �! may be called the Poincar�e-Cartan formand e

j(r) appearing in (14) may be regarded as Euler-Lagrange operators, cf. [5].)
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� be a �xed normal �ltration of 
. Recall the relevant initial forms
!

j(r), the special basis !

is satisfying L@ !

is � !

is+1 of 
= R(
), and choose a basis
dh

1
; : : : ; dh

c of R(
). Let x 2 F satis�es dx =2 
. We may normalize the vector
@ 2 
? by @ x = 1 and then d f

�= @ f dx (modulo 
) for every f 2 
.Assume that a curve p is nearly an extremal in the sense that (12) is satis�edin the following weakened sense: p

�
! � (! 2 
) and there is a form �! 2 
 suchthat(13) d (� + �! ) �= �a

is !

is ^ dx (modulo R(
) and 
 ^
)with p

�
a

is � 0. (Roughly saying, (12) is satis�ed moduloR(
).) Assuming p

�
dx 6=0 (the other case is trivial), clearly 0 = p

�
da

is = p

�
@ a

is � p

�
dx , p

�
@ a

is = 0 and thus
p

�
@

k
a

is � 0 for all k . Consequently, if a

jr !

jr is a particular summand in (12) withthe form !

jr = L@ !

jr�1 not an initial one, then d!

jr�1 �= dx ^ !

jr (modulo 
 ^
)and thus
p

�
Z cd (a

jr !

jr�1) = p

�
Z c(@ a

jr � dx ^ !

jr�1 + a

jr dx ^ !

jr) = 0 :It follows that the original form �! in (12) can be replaced by �! + a

jr !

jr�1. Then(12) remains true but the summand a

jr !

jr in (13) turns into a lower order term
@ a

jr !

jr�1. Repeatedly applying this reduction, such modi�ed form �! appears thatonly the initial form survive in the resulting relation (13):(14) d (� + �! ) �= �e

j(r) !

j(r) ^ dx (modulo R(
) and 
 ^
):Recall that p

�
e

j(r) � 0 for our extremal p (since we have made a mere change ofnotation: e

j(r) stand for the previous a

jr). But the point lies in the (easily veri�able)fact that the form �! satisfying the congruence (14) is unique modulo R(
). So itfollows that p

�
e

jr � 0 for all curves which are nearly extremals.At last, we shall prove that a nearly extremal p is in reality the true extremal.For this aim, let �! = �b

is !

is + �b

j
dh

j satis�es (14), where b

is 2 F are uniquelydetermined but b

j 2 F may be (as yet) arbitrary. Let d�

�= �c

j
dh

j ^ dx (moduloall !

is). Since (14) with p

�
e

j(r) � 0 and p

�
! � 0 (! 2 
, especially p

�
dh

j � 0) arevalid, the original requirement (12) simpli�es into
p

�
Z cd (� + �! ) = p

��(c

j + @ b

j)Z h

j � p

�
dx = 0:But p

�(c

j+ @ b

j) � 0 can be always satis�ed by a choice proper of b

j . This concludesthe proof. �9. Example. Returning to Section 5, let � = f dx (f = f (x; z ; y 0 ; : : : ; y m)dx )and assume �! = c� 0 + c

0
# 0 + � � �+ c

n
# n. Then

d (� + �! ) = (d f � c (g z � 0 + b �1 # 0)� �c

i
# i+1) ^ dx ++ dc ^ � 0 + dc

i ^ # i ;



204 JAN CHRASTINAwhere d f ; dc; dc

i may be developed by using the general formula
dh = @ h dx + h x � 0 + (h 0 + b 0)# 0 + � � �+ (h k�1 + b k�1)# k�1 + h k # k + : : :(here h s � @ h=@ y s). Assuming b �1 6= 0, the Poincar�e-Cartan form is determinedby the recurrent formula

c

i = 0 (i � n = max(m; k )); c

n�1 = f n�1 + b n�1 ;

c

i � f i+1 + b i+1 � @ c

i+1 (i = n � 2; : : : ; 0); c = (f 0 + b 0 � @ c

0)=b �1and the Euler-Lagrange operator is e = f z � cg z � @ c (cf. [3, Section 7]). On thecontrary, assuming b �1 = 0, the Poincar�e-Cartan form is determined by the samerecurrences but without the last formula for c (which remains quite arbitrary).The Euler-Lagrange operator is e = f 0 + b 0 � @ c

0.A test example for equivalence10. A particular problem. Before passing to more di�cult problems, we shouldlike to demonstrate various aspects of equivalence on a relatively simple example.So we shall discuss the constrained variational integral(15) Z
f dx + g dy ! extremum ; dz = p dx + q dy ;where f ; g ; p; q are functions of x; y ; z . Choosing x for independent variable, thesymmetry is lost and the integral can be equivalently expressed byZ (f + g dy =dx )dx ! extremum ; dz =dx = p + q dy =dx:Turning to di�eties, we introduce the variables x; z ; y = y 0 ; y 1 ; y 2 ; : : : ; and themodule 
 generated by the forms � = dz � p dx � q dy , � s � dy s � y s+1 dx (s =0; 1; : : : ). Moreover we have � = f dx + g dy . Clearly @ = @ =@ x + (p + q y 1)@ =@ z +�y s+1 @ =@ y s 2 
?. The formula(16) dh = @ h dx + h z(� + q � 0) + �h s � seasily yields(17) d� = dx ^ ((p z + q z y 1)� + a� 0) + q z � 0 ^ �where a = p z q � q z p + p 0 � q z. Two cases are to be distinguished. If a 6= 0 thenthe normal �ltration is
` � 0 (` < 0); 
` � f� ; � o ; : : : ; � `�1g (` � 0)
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1(0) = � the initial form. If a = 0, then we put
` � 0(` < �1); 
�1 = f� g; 
` � f� ; � 0 ; : : : ; � `g(` � 0)with the initial form !

1(0) = � 0. In the latter case, clearly d�

�= 0 (modulo � ) hence
� is a multiple of a total di�erential dh (h = h (x; y ; z )) and can be even replacedby dh in the latter �ltration.Since � (
) = 1, the normal �ltrations are unique and we have the intrinsicalfamilies of forms(18) ! s = a

0s � + a

1s � 0 + � � �+ a

ss � s�1 (a

ss 6= 0)with varying coe�cients a

is 2 F , for every s = 0; 1; : : : . We have moreover theintrisical family of forms(19) � = f dz + g dy + c

0
� + c

1
� 0 + � � �+ c

n
� n�1with varying c

i 2 F of undetermined length n . Assuming either f 6= 0 or g 6= 0,the vector �eld D = @ = (f + g y 1) de�ned by the properties D 2 
?, � (D ) = 1 isintrinsical, too.Turn to the speci�cations. If n � 1, then the obvious congruence d�

�= c

n
dx ^ � n(modulo ! 0 ; : : : ; ! n�1 and 
^
) clearly permits to assume �c n = 0. Continuing inthis way, we obtain the intrinsical speci�cations �c 1 = �c 2 = � � � = 0. Then the useof (16), (17) yields(20) d� = (e� + e

0
� 0) ^ dx + b� 0 ^ � (b = q z � g z + (q

@

@ z

+ @

@ y 0 )c

0);where
e = f z + g z y 1 � c

0(p z + q z y 1)� @ c

0
; e

0 = f z q + f 0 � g z p � g x � c

0
a:At this place, two cases are to be distinguished.11. Continuation. if a 6= 0. One can then introduce the intrinsical requirement

d�

�= 0 (modulo ! 0 ; 
 ^ 
), that is, e

0 = 0. This yields the speci�cation �c 0 =(f z q + f 0 � g z p � g x)=a , the Poincar�e-Cartan form�
� = f dx + g dy + �c 0 � = (f + g y 1)dx + �c 0 � + g � 0 ;and the Euler-Lagrange operator �e = f z + g z y 1 � �c 0(p z + q z y 1) � @ �c 0. With theuse of (18) we have

d

�
� = �e(f + g y 1)a

00 ! 0 ^ �
� + I ! 1 ^ ! 0 ; I = � �eg

f + g y 1 + b

�
=a

11 a

00 ;



206 JAN CHRASTINAand assuming �e 6= 0 (the subcase �e = 0 is delayed for a moment), we may in-trinsically specify �a 00 = �e= (f + g y 1). This determines �! 0 and thus the remainingspeci�cations �! s � LsD�! 0. The latter formula can be expressed by the recurrence�a 0s+1 � (p z + q z y 1 + @ )�a 0s = (f + g y 1); �a 1s+1 � (a �a 0s + @ �a 1s)= (f + g y 1);�a js+1 � (�a j�1s + @ �a js)= (f + g y 1) (j � 2)(use (16), (17)). The Frenet coframe �
� ; �! 0 ; �! 1 ; : : : is determined.Reduction to the �nite-dimensional space of variables x; y ; z (that is, to theclassical setting of the equivalence problem, cf. [3]) can be achieved by the useof the function I (or better: by the speci�cation �

I with �a 00 ; �a 11 inserted). Alas, acomplete discussion of a large number of subcases which may in principle happenseems to be not appropriate here. To outline the most essential step, we mentionthe formula �
I = (u + v y 1)(f + g y 1)2 =a �e 2 ; v = g q z(1� �c 0)where u = u (x; y ; z ) is a certain function (not explicitly stated here). Assuming

v 6= 0 (and moreover v f 6= ug to ensure the �niteness of �a 00, see below), theintrinsical requirement �
I = 0 permits to employ the reduction y 1 = �u=v (hence�a 00 = �ev = (v f � ug )) and thus y 1+k � �D

k(u=v ) for all k � 0. (The latter equationsdetermine a three-dimensional submanifoldwith coordinates x; y ; z and restrictionsof �� ; �! 0 ; �! 1 on it determine the sought classical transcription of the equivalenceproblem.) The equality v = 0 is realized in three subcases g = 0, q z = 0, �c 0 = 1.Then we may advantageously use the requirement �I = �1. If �e is depending on y 1(i.e., if @ �e =@ y 1 = �(g + �c 0 q )z � @ �c 0 =@ y 0 6= 0), we obtain a quadratic equation for
y 1, quite analogously as in [3, Section 2].12. Continuation. if a = 0. We know that then � can be replaced by a completedi�erential dh (a multiple od � ). Since h z 6= 0, we may even assume h = z (i.e.,
p = q = 0) by a mere change of variables. If e

0 = f 0 � g x 6= 0 (the subcase e

0 = 0is much easier and may be omitted), the form f dx + g dy can be transformed into
x dx by an appropriate change of variables x ! u (x; y ), y ! v (x; y ; z ), z ! z . Itfollows that all these variational problems are equivalent.On this occasion, let us briey mention the case a 6= 0 but �e = 0. One canthen see that d

�
� = 0 (look at d

2�
� = 0), hence �

� = dh for an appropriate function
h = h (x; y ; z ). After a change of variables, we may assume � = dz � y dx . Afteran additional change of independent variable, we may even assume h = x . So itfollows that all variational problems of this kind are mutually equivalent, too.13. The divergence equivalence. for the variational integral (15) is based onthe same intrinsical families (18) as above, however, instead of the family (19) wemay employ only its exterior di�erential d� . It follows that at the beginning, thespeci�cation procedure runs exactly as in Section 10 and we obtain the formula(20). Assuming moreover a 6= 0 (the case a = 0 is trivial, cf. Section 12), we caneven use the same speci�cation �c 0 ensuring e

0 = 0 (cf. Section 11) so that we obtainthe intrinsical 2-form
d� = �e� ^ dx + b� 0 ^ � = ! 0 ^ (�e dx � b� 0)=a

00
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00 2 F variable. It follows that the family of forms
" = (�e dx + c� � b� 0)=a

00 (c; a

00 2 F are varying)is of the intrinsical nature. It may be used for a convenient substitute for theprevious form � in the sought Frenet coframe and in the following procedure ofspeci�cation. So (assuming �e 6= 0) one can see that
d! 0 = da

00 ^ � + a

00 d�

�= a (a

00)2�ea

11 " ^ ! 1 (modulo " ^ ! 0 ; 
 ^
)and we may introduce the intrinsical relation a

11 = a (a

00)2 = �e . Quite analogously
d! 1 �= a

11 d� 0 = a

11 dx ^ � 1 = a

11�e (a

00 " + b

a

11 ! 1) ^ ! 2
a

22and we may introduce the intrinsical relations
a

11 a

00 = �ea

22 = 1 b= �ea

22 = 1:Altogether b= �e = a

22 = a

11 a

00 = �e = a (a

00)3 = �e 2 whence �a 00 = (b �e =a )1=3. We have tacitlysupposed b 6= 0. (One can observe that the unpleasant case b = 0 is a highlydegenerate one. In this case d

�
� = � ^ �e dx , hence 0 = d

2�
� = d �e ^ � ^ dx + �ed� ^ dx ,which implies in particular that �e is not depending on y 1. We shall not deal withit.)At this stage, we know the intrinsical vector �eld D = �a 00 = �e � @ (determined bythe requirements D 2 
?, " (D ) = 1), the intrinsical form �! 0 = �a 00 � , and thus theintrinsical sequence �! s � LsD�! o (s = 0; 1; : : : ).The (as yet variable) coe�cient c appearing in the form " can be speci�ed bylooking at the di�erential d �! 0 = d �a 00 ^ � + �a 00 d� =�a 00((d ln �a 00 + (p z + q z y 1)dx + q z � 0) ^ � � a� 0 ^ dx ) == � � �+ 1�a 11 �� b�e @ + @

@ y 0 � �a 12�a 22 @

@ y 1� ln �a 00 + (p z + q z y 1) b�e + q z + ac �e � �! 1 ^ �! 0 :The intrinsical assumption f: : : g = 0 gives the sought speci�cation �c , (hence �" =(�e dx + �c� � � � 0)= �a 00) and the Frenet coframe �"; �! 0 ; �! 1 ; : : :14. Subordinated equivalence. Assume, for instance, that the foliation dx =
dy = 0 is taken for an additional intrinsical object to the original variationalintegral (15). Then the family � = u dx + v dy with u; v 2 F variable is intrinsical.It follows that the form � = f dx + g dy (the unique common form of the families �and � ) is intrinsical. Continuing in this direction, the form �c 0 � = �

� � � is intrinsical,hence (by looking at �! 0 = �a 00 � ) the function �c 0 = �a 00 is a new invariant. Quiteanalogously, the form �a 11 # 0 is intrinsical (this is the only form of the family �



208 JAN CHRASTINAsatisfying �! 1 � �

�= 0 modulo ! 0), hence �a 01 � = 4! 1� �a 11 # 0 is intrinsical and �c 0 = �a 01is again an invariant (we assume �a 01 6= 0, the other case is easier).Conversely, let �c 0 = �a 00 and �c 0 = �a 01 be taken for additional invariants for the equiv-alences to the integral (15). One can then see (by reverse run of the above argu-ments) that both � and �a 11 # 0 are intrinsical forms, hence the system dx = dy = 0(equivalent to � = # 0 = 0) is of the intrinsical nature.So we have seen that the subordinated problem di�er from the original one bya mere presence of additional invariants (and invariant forms which may be usedto simplify the Frenet coframe).Equivalence of spatial problems15. The classical variational integral. We leave the case � (
) = 1 (wherethe existence of unique normal �ltrations makes the calculation a mere matterof patience) and turn to � (
) = 2 where the things became substantially morecomplicated. (For all such equivalence problems in which a �nite-dimensional in-trinsical subspace is not given in advance, as far no �nite solution algorithm isknown.) We shall begin with the variational integral(21) Z
f (x; y ; z ; dy =dx; dz =dx )dx ! extremumwithout any further constraints and under the classical assumption of contactequivalence, that is, we assume that the space of variables x; y = y 0, z = z 0,

y 1 = dy =dx , z 1 = dz =dx is of the intrinsical nature. In other terms, we shall lookonly for equivalences which preserve the order of derivatives.Passing to di�eties, we introduce the variables x; y s ; z s (s = 0; 1; : : : ), the di�-ety 
 generated by the contact forms � s � dy s � y s+1 dx , � s � dz s � z s+1 dx ,and the Lagrange density � = f dx (f = f (x; y 0 ; z 0 ; y 1 ; z 1)). Clearly @ = @ =@ x +�y s+1 @ =@ y s + �z s+1 @ =@ z s 2 
? satis�es L@ � s � � s+1, L@ � s � � s+1 so that themodules 
` � f� 0 ; � 0 ; : : : ; � ` ; � `g provide a normal �ltration. From the point ofview of our equivalence problem, this �ltration is of the intrinsical nature andthus the families of forms(22) ! s � a

0s � 0 + b

0s � 0 + � � �+ a

ss � s + b

ss � s (ja

ssj+ jb

ssj 6= 0)with a

is ; b

is 2 F variable functions are intrinsical for every s = 0; 1; : : : . (Clearly
! 0 is intrinsical by de�nition and ! s+1 can be characterized in terms ! 0 ; : : : ; ! s bythe property d! s �= 0 (modulo ! 0 ; : : : ; ! s+1).) Moreover, we have the intrinsicalfamily(23) � = f dx + a

0
� 0 + b

0
� 0 + � � �+ a

n
� n + b

n
� nwith varying a

i
; b

i 2 F and undetermined n , hence the intrinsical vector �eld
D = @ =f .
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�= dx ^(a

n
� n+1+ b

n
� n+1) (modulo 
n�1

; 
^
)leads to the intrinsical speci�cation �a n = �
b

n = 0. So we may assume a

i = b

i � 0for all i � 1, and it follows
d�

�= (e� 0 + e

0
� 0 +� @ f

@ y 1 � a

0�
� 1 + � @ f

@ z 1 � b

0�
� 1) ^ dx (modulo 
 ^
);where e = @ f =@ y 0 � @ a

0, e

0 = @ f =@ z 0� @ b

0. This permits to specify �a 0 = @ f =@ y 1,�
b = @ f =@ z 1 to ensure the intrinsical requirement d�

�= 0 (modulo 
0
; 
 ^
). Weobtain the Poincar�e-Cartan form �

� = f dx + �a 0
� 0 + �

b

0
� 0 satisfying(24) d

�
� = (�e� 0 + �e 0 � 0) ^ dx + � �a 0 ^ � 0 + �

�
b 0 ^ � 0where �e = @ f =@ y 0 � @ (@ f =@ y 1); �e 0 = @ f =@ z 0 � @ (@ f =@ z 1)are the Euler-Lagrange operators and � = �(@ =@ y s) � � s + �(@ =@ z s) � � s is the\truncated di�erential". It follows that

� 0 = LD �
� = D cd

�
� = 1

f

(�e � 0 + �e 0 � 0); � s � LsD � 0are intrinsical forms. However, as yet we do not have a coframe.We shall search for other intrinsical forms. Abbreviating the notation by A = �e ,
B = �e 0, L = @

2
f =@ y

21 , M = @

2
f =@ y 1 @ z 1, N = @

2
f =@ z

21 and assuming A 6= 0,
B 6= 0, we shall employ the above family ! 0 (cf. (22)) in the modi�ed transcription
! 0 = a

Af � 0+ b

Bf � 0 (thus a = a

00 f = A , b = b

00 f =B are variable functions) and choose
! 1 = LD ! 0 �= (aA=f

2)� 1+(bB =f

2)� 1 (modulo � 0 ; � 0). We shall suppose that ! 0 ; � 0are linearly independent (i.e., a � b 6= 0). Then
A

f

� 0 = ! 0 � b� 0
a � b

;

B

f

� 0 = ! 0 � a� 0
b � a

;

A

f

2 � 1 �= ! 1 � b� 1
a � b

;

B

f

2 � 1 �= ! 1 � a� 1
b � a

:Inserting these � 0 ; : : : ; � 1 into the right hand side of (24), the coe�cients of theproducts ! 1 ^ ! 0, ! 1 ^ � 0, � 1 ^ ! 0, � 1 ^ � 0 are of the intrinsical nature. One cansee that they are respectively equal to
U = L= A

2 � 2M = AB + N =B

2
; V = �bL= A

2 + (a + b )M = AB � aN =B

2
;

V ; W = b

2
L= A

2 � 2abM = AB + a

2
N =B

2multiplied by the function f

3
= (a � b )2. Suppose U 6= 0. (One can verify by directcomputation that this is equivalent to the regularity LN 6= M

2. We shall notdiscuss the non-regular case here since it deserves a separate article.) Then we mayintroduce the intrinsical requirements U f

3
= (a � b )2 = �1 (i.e., a � b = (�U f

3)1=2)and V = 0 which leads to the speci�cations�a = �
L

A

� M

B

�
= AU

2
;

�
b = �

M

A

� N

B

�
=B U

2
:



210 JAN CHRASTINASo we have the intrinsical forms �! s � LsD(�a Af � 0 + �
b

Bf � 0) and thus the Frenetcoframe �� ; � 0 ; �! 0 ; � 1 ; �! 1 ; : : : . The remaining function W (speci�ed to �
W ) gives theinvariant �

W f

3
= (�a � �

b )2 = � �
W =U = �(LN � M

2)= A

2
B

2
U

4
:Other invariants can be quite automatically derived by the common methods.16. The divergence equivalence for the variational integral (21) will be dis-cussed by the use of two independent intrinsical families (22) and an intrinsical2-form, the exterior di�erential of the Poincar�e-Cartan form

d

�
� = (A� 0 + B � 0) ^ dx + C � 0 ^ � 0 + (L� 1 + M � 1) ^ � 0 + (M � 1 + N � 1) ^ � 0(here C = @

2
f =@ z 1 @ y 0 � @

2
f =@ y 1 @ z 0), see formula (24). We through retain someabbreviations of the preceding Sections. Recall once more that the form �

� is notof the intrinsical nature for the divergence equivalences. The previous role of �
�undertakes the 2-form d

�
� .Passing to more detail, the �ltration 
� of Section 15 is again regarded for anintrinsical object (i.e., we deal with the divergence equivalences preserving theorder of derivatives). Therefore the families of forms

! 0 = p� 0 + q � 0 ; # 0 = r � 0 + s� 0 (u = ���� p s

q r

���� 6= 0);with variable functions p; q ; r ; s 2 F are of the intrinsical nature (they constitutethe most general basis of 
0). By using the inverse formulae,(25) � 0 = S ! 0 � Q# 0 ; � 0 = �R! 0 + P # 0 (P = p=u; : : : ; S = s=u );one can easily verify that(26) d

�
� = ! 0 ^ � + # 0 ^ # + C � 0 ^ � 0where

� = ���� A B

R S

���� dx + ���� L M

R S

���� � 1 + ���� M N

R S

���� � 1 ;

# = ���� P Q

A B

���� dx + ���� P Q

L M

���� � 1 + ���� P Q

M N

���� � 1 :The families of forms � ; # (with P ; Q; R; S 2 F variable) are of the intrinsicalnature modulo 
0. Assuming jA j + jB j 6= 0, we may introduce the intrinsicalrequirement # 2 
, that is,(27) P = v A; Q = v B (thus ���� A B

R S

���� = 1
v

���� P Q

R S

���� = 1=uv );



ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 211where v 2 F is a variable function. Then d# 0 �= dx ^ (r � 1 + s� 1), that is,(28) d# 0 �= uv � ^ u (R� 1 + S � 1) (modulo 
0
; 
 ^
);in virtue of (25,27). It follows that the family of forms u

2
v (R� 1 + A� 1) (where

u; v 2 F are variable) is intrinsical modulo 
0. We shall identify it with # ((27) isassumed) which implies the speci�cations(29) �
R = ���� A B

L M

���� =u

2
;

�
S = ���� A B

M N

���� =u

2(of a weakened sense since u 2 F is variable). This identi�cation is correct if theformula(30) u = 1=

���� P Q

R S

���� = 1=v

���� A B

R S

����makes a sense after the substitution R ! �
R , S ! �

S . That means, we must suppose
A

�
S 6= B

�
R . (To this point, see Section 17.)On the other hand, the family of operators D = uv @ (de�ned by the properties

D 2 
?, � (D ) = 1) is of the intrinsical nature and so are the families of forms
! 1 = LD ! 0 �= uv (p� 1 + q � 1) = u

2
v

2(A� 1 + B � 1);

# 1 = LD # 0 �= uv (r � 1 + s� 1) = u

2
v ( �R � 1 + �

S � 1)(both modulo 
0). It follows in particular
! 1 ^ # 1 �= u

3
v

2
� 1 ^ � 1 (modulo 
0):Using the latter formulae, one can see that

d! 0 �= dx ^ (p� 1 + q � 1)= u

2
v

2(� � ���� L M�
R

�
S

���� � 1 � ���� M N�
R

�
S

���� � 1) ^ (A� 1 + B � 1)= � ^ ! 1 � u

2
v

2 � W

u

2 � 1
u

3
v

2 ! 1 ^ # 1 ;where W is a quite de�nite (in general nonvanishing) function:
W = ����� L M���� A B

L M

���� ���� A B

M N

���� ����� B � ����� M N���� A B

L M

���� ���� A B

M N

���� ����� A:The coe�cient of ! 1 ^ # 1 is of the intrinsical nature and assuming W 6= 0, itmay be equated to 1 which yields the speci�cation �u = (W )1=3, hence also thespeci�cation �v = �u=

����� A B���� A B

L M

���� ���� A B

M N

���� �����



212 JAN CHRASTINAfollowing from (27). (Quite analogously, by looking at the di�erential
d# 0 �= dx ^ (r � 1 + s� 1) = � ^ # 1 � u

2
v � w

u

4 � 1
u

3
v

2 ! 1 ^ # 1where
w = ����� L M���� A B

L M

���� ���� A B

M N

���� ����� � ���� A B

M N

����� ����� M N���� A B

L M

���� ���� A B

M N

���� ����� � ���� A B

L M

���� ;we obtain the invariant w = �u 5�v , the coe�cient of ! 1 ^ # 1.)Altogether taken, we already know the speci�cations �
P = �v A , �

Q = �v B andcomplete speci�cations �
R;

�
S de�ned by (29) with �u instead of u . So we have therelevant intrinsical forms �! 0 ;

�
# 0, the intrinsical operator LD (here D = �u �v @ ) andthus the intrinsical chains �! s � LsD�! s, �

# s � LsD �
# 0. One can also observe that�

# 1 �= # (modulo 
0).Since �� is intrinsical modulo 
0 (and thus modulo 
), we have the intrinsicalfamily of forms � = �� + ! (! 2 
 is variable), that is,
� = ���� A B�

R

�
S

���� dx + A

0
� 0 + B

0
�

0 + � � �+ A

n
� n + B

n
�

nwhere A

0
; : : : ; B

n 2 F are varying functions and n is undetermined. One can thensee that there are unique speci�cations �
A

0
; : : : ;

�
B

n such that D cd

�
� 2 
0 for therelevant speci�ed �

� . (In other terms, we have the intrinsically related variationalintegral Z ���� A B�
R

�
S

���� dx ! extremumand �
� is the corresponding Poincar�e-Cartan form.) At this stage, the Frenet cofra-me consisting of �� and all forms �! s ;

�
# s is determined.17. Remark. The identity A

�
S = B

�
R means that the formLg@ ! 0 �= g v (A� 1+B � 1)is proportional to # (modulo 
0), for any function g 2 F . The proportionality turnsinto the equality if we specify�g = ���� A B

L M

���� = A = ���� A B

M N

���� =B :This provides the intrinsical vector �eld D = �g @ and thus the intrinsical familyof di�erential forms � = dx= �g + A

0
� 0 + B

0
� 0 + � � �+ A

n
� n + B

n
� n (with variablecoe�cients). It follows that we deal with the common equivalence problem for thevariational integral s dz = �g ! extremum (endowed moreover with the additionalintrinsical 2-form d

�
� ).



ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 213Nonstandard equivalences18. Setting the problem. Passing to the equivalence transformations whichmay change the order of derivatives, we enter an extensive and rather unusualrealm. Since we should like to explain the ideas and methods as clearly as possible,only a very particular problem will be investigated: to determine whether a givensecond order variational integral(31) Z
g (x; y 0 ; z 0 ; : : : ; y 2 ; z 2)dx ! extremumcan be obtained by transformation of an unknown in advance �rst order varia-tional integral (21). The notation of Sections 15-17 is preserved so that the soughtequivalence transformation can be symbolically written as(32) x ! ~x; y s ! ~y s ; z s ! ~z s (s = 0; 1; : : : ):where ~x; ~y s ; ~z s 2 F are certain functions (which will be determined together withthe integral (21) in the course of the following calculations). The sought transfor-mation (32) should preserve the di�ety 
 and should carry the (as yet unknown)di�erential form f dx (cf. (21)) into the well-known form g dx (cf. (31)) modulo asummand from 
. It is moreover necessary to ensure the invertibility of (32) in thein�nite-dimensional underlying space of variables x; y s ; z s (s = 0; 1; : : : ) and weshall assume that this is guaranted if the di�erentials d ~x , d ~y s, d ~z s (s = 0; 1; : : : )can be taken for a basis of the module � of all di�erential 1-forms (and refer to[4] for more details).Let us made the above requirements on the sought equivalence (32) explicit.First of all, the equivalence (32) should be an automorphism of 
: the forms(33) ~� s = d ~y s � ~y s+1 d ~x ;

~
� s = d ~z s � ~z s+1 d ~x (s = 0; 1; : : : )(transforms of � s ; � s) should constitute a basis of 
. One can then observe thatthe latter condition together with the assumption d ~x 6= 0 ensures the invertibilityof (32) since then the forms (33) and d ~x (and thus all di�erentials d ~x ; d ~y s ; d ~z s)constitute a basis of �. One can also observe that

@ ~xd ~y s � @ ~y s d ~x; @ ~xd ~z s � @ ~z s d ~x 2 
 (s = 0; 1; : : : )and it follows that the forms (33) are lying in 
 if and only if(34) ~y s+1 � @ ~y s =@ ~x; ~z s+1 � @ ~z s =@ ~x(the prolongation formulae). So the knowledge of the initial terms x ! ~x , y 0 ! ~y 0,
z 0 ! ~z 0 of (32) is quite enough.At second, let us look at the variational integral (21) or better, at a generalvariational integral(35) Z

f (x; y 0 ; z 0 ; : : : ; y n ; z n)dx ! extremum



214 JAN CHRASTINAof exactly n -th order. Recalling the common �ltration 
0 � 
1 � : : : , one caneasily see that the relevant Poincar�e-Cartan form �
� = f dx + �! is de�ned by thecongruences �

�

�= f dx (modulo 
); @ cd

�
�

�= 0 (modulo 
0)(the �rst one is trivial, the second one is identical with (14) since R(
) = 0 and
0 consists of initial forms). One can then observe that the �rst congruence can bestrenghtened as �� �= f dx (modulo 
n�1) and the indice n �1 cannot be diminishedhere. In our case n = 1. The equivalence (32) carries the �ltration 
0 � 
1 � : : :into the �ltration ~
0 � ~
1 � : : : (where ~
` = f~� 0
;

~
�

0
; : : : ; ~� ` ;

~
�

`g), the form f dxinto the form ~
f d ~x = ~

f (@ ~x dx + � ~x ) �= g dx (modulo 
)(hence ~
f = g =@ ~x and thus ~

f d ~x = g dx + ~
f � ~x ), and the above form �

� into thePoincar�e-Cartan form ~
� (a simpli�ed notation for (�� )�) for the integral (31). Al-together taken, the congruences(36) ~

�

�= g dx + ~
f � ~x; @ cd

~
�

�= 0 (modulo ~
0)de�ne the form ~
� and ensure the order n = 1 of the integral (35). This problemwill be not resolved in full generality here.19. Explicit calculations. For technical reasons, the original problem will beinvestigated under the additional assumption ~
0 � 
1. One can observe that thishappens if and only if the functions ~x , ~y 0, ~z 0 are depending only on the coordinates

x; y 0 ; y 1 ; z 0 ; z 1 (i.e., we suppose that the order of derivatives may increase on 1 atmost). We are going to determine the module ~
0.If ~
0 = 
0 then we deal with a common point equivalence (32). The functions~x; ~y 0 ; ~z 0 are depending only on x; y 0 ; z 0 (as follows from the Lie-B�acklund theorem,cf. Section 21), the order of derivatives is not changed and (31) is in reality a mere�rst order integral. Omitting this trivial subcase, we may suppose ~
0 = f� ; � gwhere both � and � are not lying in 
0. Since clearly ~
`+1 = ~
` + L@
` (` � 0)and [~
` = 
, the family of all forms of the kind L@̀ � , L@̀ � should generate themodule 
 (the main principle). Owing to the latter principle, one can see that
� ; � cannot be linearly independent modulo 
0. (Proof: assuming � = � 1 + : : : ,
� = � 1+: : : where � � � 2 
0, then L@̀ � = � `+: : : , L@̀ � = � `+: : : cannot generate anyform from 
0.) So we may assume � 2 
0, � =2 
0 without any loss of generality,and even(37) � = a� 0 + � 0 ; � = b� 0 + c� 1 + � 1with appropriate a; b; c 2 F . But applying the main principle, it follows a = c ,
b 6= @ a . (Proof: L@ � = @ a� 0+ a� 1+ � 1 and � cannot be linearly independent modulo
0 which implies a = c . Then L@ � � � must be independent of � , hence b 6= @ a .)Summarizing the achievement, we have determined all submodules ~
0 � 
1 whichgive rise to the �ltration ~
0 � ~
1 = ~
0 + L@ ~
0 � : : : of the di�ety 
 from the



ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 215\algebraic" point of view. (There are some additional conditions of deeper nature,see belov.)Let us turn to the form ~
� , that is, to the congruences (36). For technical reasons,we shall deal with a mere �ber equivalences where ~x = ~x (x ), hence � ~x = �@ ~x=@ y

s �
� s +�@ ~x=@ z

s � � s = 0 is vanishing and (36) means that~
� = g dx + p� + q � ; @ c~� = r � + s�where p; q ; r ; s 2 F are certain unknown functions. Inserting (37) with c = a intothe latter equations, six conditions

@ g

@ z 2 = q ;

@ g

@ y 2 = aq ;

@ g

@ z 1 = p + @ q + s;

@ g

@ y 1 = ap + @ (aq ) + as

@ g

@ z 0 = @ p + r ;

@ g

@ y 0 = @ (ap ) + @ (bq ) + ar + bsfor the unknowns p; q ; r ; s; a; b appear. They uniquely determine q and a , yield thecompatibility condition(38) @ g

@ y 1 = � @ g

@ z 1 + @ g

@ y 2 @

��
@ g

@ y 2 =

@ g

@ z 2�for the function g , and permit to express p; r ; s in terms of b . We state only themost complicated formula
p = 1

@ a � b

�
@ g

@ y 0 � @ g

@ z 0 @ g

@ y 2 =

@ g

@ z 2 � @ g

@ z 1 b � @ g

@ z 2 @ b

�
;the remaining for a; r ; s are quite clear.At last, let us pass to the most interesting and nontrivial property of the module~
0: being a transformation of the module 
0, there exist a rather special basis ~� 0 ;

~
� 0in ~
0. Now recall the following result: a module � = f� ; � g of 1-forms admits analternative basis of the kind � = fdv � v

0
du; dw � w

0
du g where u; v ; w ; v

0
; w

0 areappropriate functions if and only if(39) d�

�= � ^ �

0
; d�

�= � ^ �

0 (modulo �)for appropriate forms � ; �

0
; �

0 such that the module f� ; � ; � g (is completely inte-grable, i.e.,) has a basis consisting of total di�erentials. (See [2, p.939 formula IV']but for convenience of reader, we outline a brief proof. In the trivial direction,assuming � = f� ; � g = fdv � v

0
du; dw � w

0
du g, then clearly (39) with � = du andf� ; � ; � g = fdu; dv ; dw g are valid. In the opposite direction, assuming (39) andf� ; � ; � g = fdu; dv ; dw g, one can take � = du in (39) without any loss of general-ity. Then, by applying the Frobenius theorem on (39) with u = const. kept �xed,one can conclude that f� ; � g = fdv ; dw g modulo du which is the desired result.)



216 JAN CHRASTINAIn our case � = ~
0 and it may be taken u = ~x , v = ~y 0, w = ~z 0, of course. Using(37), we have(40) d�

�= dx ^ (@ a � b )� 0 + � a ^ � 0 ;(41) d�

�= dx ^ (@ b� 0 + (@ a + b )� 1 + a� 2 + � 2) + � b ^ � 0 + � a ^ � 1and this should be represented like (39). But clearly f� ; � ; � g = fdu; dv ; dw g =fd ~x ; d ~y 0 ; d ~z 0g where ~x = ~x (x ) and so we may take � = d ~x or better, � = dx . Then(40, 41) imply
� a ^ � 0 �= � b ^ � 0 + � a ^ � 1 �= 0 (modulo ~
0);and using the development � = �(@ =@ y s) � � s +�(@ =@ z s) � � s �=�

@

@ y 0 � a

@

@ z 0 � b

@

@ z 1� � � 0+� @

@ y 1 � a

@

@ z 1� � � 1+� @

@ y 1� � � 2+� @

@ z 2� � � 2+ : : : ;modulo � ; � , the latter congruences proves to be equivalent to the system(42) @ a

@ y 1 = a

@ a

@ z 1 ;

@ a

@ y s = @ a

@ z s = 0 (s � 2);(43) @ b

@ y 1 � a

@ b

@ z 1 + @ a

@ z 1 b = @ a

@ y s � a

@ a

@ z 0 ;

@ b

@ y s = @ b

@ z s = 0 (s � 2):This concludes the calculations.20. Summary of results. Assume that the compatibility conditions (38) and(42) with a = (@ g =@ y 2)= (@ g =@ z 2) for the function g are satis�ed. We may choosea function b = b (x; y 0 ; z 0 ; y 1 ; z 1) satisfying (43). Then the forms � ; � (see (37) with
c = a ) and thus the module ~
0 = f� ; � g (and also all ~
`, ` � 1) are known. Byapplying the Frobenius theorem on the module f� ; � ; � g where � = dx , we obtainf� ; � ; � g = fdu; dv ; dw g where u = x . It follows ~
0 = fdv � v

0
du; dw � w

0
du g forappropriate v

0
; w

0 2 F (explicitly v

0 = @ v =@ u = @ v , dw = @ w ) and we may put~x = u = x , ~y 0 = v , ~z 0 = w which completely determines the sought equivalencetransformation (32).21. Theorem. Every automorphism of 
 which preserves 
0 is a prolonged pointtransformation.Proof. The mentioned automorphism preserves moreover the module 
1 since~
1 = ~
0 + L@ ~
0 = 
0 + L@
0 = 
1. It is an automorphism of both 
0 and 
1,hence ~� 0 = A� 0 + B � 0~
� 0 = C � 0 + D � 0~� 1 = : : : + P � 1 + Q� 1~
� 1 = : : : + R� 1 + S � 1



ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 217with a regular matrix. Moreover, the module fdx; dy 0; dz 0 ; dy 1 ; dz 1g is preserved,too. (This follows from the fact that the family of functions x; y 0 ; : : : ; z 1 is in-trinsically related to 
0: it is the minimal family such that there is a basis of 
0expressible in terms of it.) So the above system may be completed by
d ~x = � � �+ U � 1 + V � 1 + W dx:Then the congruence

d ~x ^ ~� 1 = d ~� 0 = dA ^ � 0 + dB ^ � 0 + dx ^ (A� 1 + B � 1) �= 0modulo dx; � 0; � 0 implies P V = U Q . Quite analogously P V = U S . Since P S 6=
QR , we obtain V = U = 0. It follows

d ~x �= 0; d ~y 0 = ~� 0 + ~y 1 d ~x �= 0; d ~z 0 �= 0 (modulo dx; � 0; � 0):and thus �= 0 modulo dx; dy 0 ; dz 0. This concludes the proof. �It is to be noted that the proof of the latter Theorem is not easily available incurrent literature and that the original B�acklund argument seems to be not quitecorrect. (See [1, p. 47]: the osculating curve C need not behave continuously if P

0iconverge to P . Miscellanery22. On a Hilbert problem. The Poincar�e-Cartan form �
� = � + �! to the con-strained variational integral (11) depends on the choice of the normal �ltration
� and even on the choice of the initial forms !

j(r) appearing in the de�nitionformula (14). However, it may be proved that the restriction of �� on the subspaceE � R1 which consists of all points that satisfy the in�nitely prolonged Euler-Lagrange system @

k
e

j(r) � 0 (all possible k ; j; r ) is unique modulo R(
), cf. [5].Assume R(
) = 0 from now on, for simplicity, then the restriction of �
� on Eis a well-determined form. Since the extremals are such curves which satisfy thePfa�'s system ! � 0 (! 2 
) and the Euler-Lagrange system, it follows that ifwe deal with extremals, the restriction of �

� to E is quite enough. In this way,it is possible to carry over to the constrained variational problems (11) most ofthe important concepts of the classical calculus of variations (e.g., variational for-mulae, E. Noether's theory, integral invariants, geodetics �elds, Hamilton-Jacobiequation, and so on) without any essential change. Even the singular variationalproblems with extremals depending on functions can be included without muchtrouble.For instance, a multi-parameter family of extremals may be called a �eld if
d

�
� = 0 on the submanifold F � E covered by the extremals of the mentionedfamily. Then the (uniquely determined) restriction of �� to F is a generalization ofthe famous Hilbert invariant integral and easily leads to generalized Weierstrasstheory for all contrained variational problems. May be, this is the way to thesolution of the 23rd Hilbert problem which was suggestively explained (see [8]) butnever explicitly formulated: to investigate the �eld theory of constrained variationalproblems.



218 JAN CHRASTINA23. Empty Euler-Lagrange system. Assuming R(
) = 0, we shall be inter-ested in the case E = R1. So assume that e

j(r) � 0 are identically vanishing in(14). It follows d

�
� = �a

ijrs !

ir ^ !

js in terms of the special basis de�ned in Section 3.The latter double sum may be taken only over r � s and i < j if r = s . We mayassume that @ x = 1 for appropriate @ 2 
?, x 2 F . Then L@ !

is � !

is+1 means that
d!

is �= dx ^ !

is+1 (modulo 
^
). Inserting this into the trivial identity d

2�
� = 0, onecan derive that a

ijrs � 0 by (a decreasing) double induction on s and j . It follows
d

�
� = 0, �� = dh for an appropriate function h 2 F . Hence �

�= �
�

�= dh

�= @ h dx(modulo 
) is a generalized divergence.The divergence equivalence problem is concerned with the study of the di�eren-tial d

�
� (not of �� ), that is, the above result can be interpreted by saying that we dealwith families of variational integrals with the same Euler-Lagrange operators. Soeven the (rather weak) divergence equivalence problem is strongly subordinated tothe related equivalence of the corresponding systems of Euler-Lagrange equations:it may well happen that Euler-Lagrange system of two variational integrals areequivalent but the relevant Euler-Lagrange operators di�er.24. Correction. We should like to mention once more the divergence equivalenceproblem of the variational integralZ

f (x; y 0 ; : : : ; y n)dx ! extremum ; y s � d

s
y =dx

s
;with general m (which was not quite correctly treated in [3, Section 5] in theparticular case m = 2). We deal with the space of variables x; y 0 ; y 1 ; : : : ; thedi�ety 
 generated by the contact forms # s � dy s � y s+1 dx , the vector �eld

@ = @ =@ x + �s s+1 @ =@ y s, and the Lagrange density � = f dx . Intrinsical objectsfor the divergence problem are the families
! i = a

00 # 0 + � � �+ a

ii # i (a

ii 6= 0; i = 0; 1; : : : )and the di�erential d

�
� of the Poincar�e-Cartan form�

� = f dx + �a 0
# 0 + � � �+ �a m�1 # m�1 (�a m�1 = f m ; �a i = f i+1 � @ �a i+1);see [3, (2,5)].First of all, if @

2
f =@ y

2m = 0 (the singular case), then f = A + B y m where A; Bdoes not depend on y m, and we may introduce the lower-order variational integralZ (f � @ g )dx ! extremum (g = Z
B dy m�1)instead of the original one (its Poincar�e-Cartan form is �

� � dg so that the di�er-ential d

�
� is retained). Repeatedly applying this reduction, we may assume that

@

2
f =@ y

2m 6= 0.



ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II 219Passing to calculation of the Frenet coframe, we begin with
d

�
� = E # 0 ^ dx +�� �a i ^ # i�= ! 0 ^ (E dx + � � �+ f mm # 2m�1)=a

00 (modulo 
 ^
)where E = �(�@ )i f i is the Euler-Lagrange operator (we denote f i � @ f =@ y i andanalogously for higher derivatives, see [3, (6)]). It follows that
� = (E dx + � � �+ f mm # 2m�1)=a

00with a

00 2 F variable is an intrinsical family of forms. Then
d! 0 �= a

00 dx ^ # 1 �= a

00(a

00 � � f mm ! 2m�1 =a

2m�12m�1) ^ ! 1 =a

11 E(modulo ! 0 ; ! 2^ ! 1 ; : : : ; ! 2m�2^ ! 1) and we may introduce the relations (a

00)2 =a

11 E= 1, a

00 f mm =a

2m�12m�1 a

11 E = 1. Continuing more easily
d! 1 �= a

11 dx ^ # 2 �= a

11 a

00 � ^ ! 2 =a

22 E (modulo 
 ^
)we introduce a

11 a

00 =a

22 E = 1. Then d! 2 yields a

22 a

00 =a

33 E = 1, and so on. Altogethertaken,
a

11 = (a

00)2 =E ; a

22 = a

11 a

00 E = (a

00)3 =E

2
; : : :

a

2m�12m�1 = (a

00)2m =E

2m�1 = f mm =a

00 ; �a 00 = (f mm E

2m�1)1=(2m+1)
:One can observe that after this speci�cation of a

00, we may introduce the intrinsicalvector �eld D = �a 00 @ =E and then the intrinsical forms �! s � LsD�! 0 where �! 0 =�a 00 # 0. The speci�cation �
� is not yet completely known since the form � is in realitydetermined only modulo # 0 : � = �

0+ b# 0 where �

0 is known but b 2 F is a variablefunction. It is, however possible to use the congruence d�

�= � ^ �b

i�! i (modulo
^
) just in the same manner as in [3, Section 5]. The sought Frenet coframe isconstituted by �
� ; �! 0 ; �! 1 : : : . References[1] Anderson, R. S., Ibragimov, N. H., Lie-B�acklund transformations in applications, SIAMPhiladelphia 1979.[2] Cartan, E., Les syst�emes de Pfa� a cinq variables, Oeuvres compl�etes II 2, Paris 1955.[3] Chrastina, J., On the equivalence of variational problems I, (Journal of Di�erential Equa-tions, Vol. 98 (1992), 76-90.[4] Chrastina, J., From elementary algebra to B�acklund transformations, Czechoslovak Math.Journal, 40 (115) 1990, Praha.[5] Chrastina, J., Solution of the inverse problem of the calculus of variations, (to appear).
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