Archivum Mathematicum

Nikolaos S. Papageorgiou

A strong relaxation theorem for maximal monotone differential inclusions with
memory

Archivum Mathematicum, Vol. 30 (1994), No. 4, 227--235

Persistent URL: http://dml.cz/dmlcz/107510

Terms of use:

© Masaryk University, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107510
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 30 (1994), 227 — 235

A STRONG RELAXATION THEOREM FOR MAXIMAL
MONOTONE DIFFERENTIAL INCLUSIONS WITH MEMORY

NIKoLAOS S. PAPAGEORGIOU

ABSTRACT. We consider maximal monotone differential inclusions with memory.
We establish the existence of extremal strong and then we show that they are
dense in the solution set of the original equation. As an application, we derive a
“bang-bang” principle for nonlinear control systems monitored by maximal mono-
tone differential equations.

1. INTRODUCTION

In a recent paper [13], we studied maximal monotone differential inclusions with
memory defined on RY (with N being a positive integer) of the form

) { () Az(t)+ F(t,z;) ae.on T =0, b]}

p(v) for v Typ=[ r0].

]
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Here b R, A()is a maximal monotone operator on R F(¢, z;) is a multival-
ued vector field (orientor field) and z;  C(Tp,RY) is defined by x4(v) = =(t +v).
Hence a;( ) represents the history of the state from time ¢ r, up to the present
time ¢. Among the results proved in [13], was a relaxation theorem, which says
that the solution set of the above multivalued Cauchy problem is dense for the
C’(f,}RN)—topology (f = [ b)), in the solution set of the Cauchy problem in
which the orientor field F'(¢, #) is replaced by its convexification conwv F'(t, ) (see
theorem 5.1 in [13]).

In this paper, we prove a stronger version of the relaxation theorem, which
is closely related to the “bang-bang” principle for control systems. So instead of
problem (1), we consider the following multivalued Cauchy problem:

2) z(v) =), v Tp.

{ () Ax(t)+ ext F(t,2¢) a.e. on T}
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Here ext F'(t, ;) stands for the extreme points of the compact, convex set
F(t, z:). First we answer the question of existence of solutions for problem (2).
The nonconvex existence theorem proved in [13] (see theorem 3.2), is not appli-
cable here, because the multifunction (¢,y)  ext F(¢,y) is not in general closed
valued and y ext F(t,y) is not necessarily lower semicontinuous (/.s.c.). The
nonemptiness of the solution set S, C’(f,ﬂ%”) (f = rb]) of (2) is established
in theorem 3.1. Then in section 4, in theorem 4.1, we show that S, is dense in
S C’(f, RN the solution set of (1), for the C’(f, RY)-topology. This way we ob-
tain a genuine new approximation (relaxation) result. Note that in the relaxation
theorem of [13] (see theorem 5.1), the nonconvex valued orientor field F(¢,y) was
assumed to be closed valued and Hausdorff-Lipschitz in the y-variable, conditions
that in general are not true for the multifunction (¢,y) ext F(t,y), even if
(t,y)  F(t,y) is very regular. Finally in section 5, we consider an application to
nonlinear control systems, monitored by maximal monotone differential equations.

2. PRELIMINARIES

In this section we fix our notation and we briefly recall some basic definitions
and facts that we will need in the sequel.

So let (£2,X) be a measurable space and X a separable Banach space. We will
be using the following notations:

P;(X)= A X : nonempty, closed

and Pp.(X)= A X : nonempty, compact and convex .

A multifunction F : Q P;(X) is said to be measurable, if for all # X,
the R -valued function w  d(z, F(w))=inf « =z :z F(w) is measurable.
Other equivalent definitions of the measurability of a Py (X)-valued multifunction,
can be found in Wagner [16]. Let p( ) be a finite measure defined by . By Sk
we will denote the set of all selectors of I, that belong in the space L(Q, X); i.e.
Sk= f LY, X): f(w) F(w)p ae. .Fora measurable multifunction this
set is nonempty if and only if w  inf z :z F(w) L% (for details, we refer
to Papageorgiou [14]).

On the set P;(X), we can define a generalized metric, better known as the
Hausdorft metric, by setting

h(A, B) = max[sup d(a, B), sup d(b, A)]
acA beB

for every A, B P;(X). It is well known (see for example Klein-Thompson [8]),
that (P;(X), h) is a complete generalized metric space. A multifunction F : X
P;(X) is said to be Hausdorff continuous (h-continuous), if it is continuous from
X into the metric space (Py(X), h).

If Y, Z are Hausdorff topological spaces, a multifunction G : Y 27 is
said to be lower semicontinuous (l.s.c.), if for all C' 7 closed, GT(C)= y Y :
G(y) C isclosed inY.
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Finally, if I is a Hilbert space, an operator A : D(A) H 2H is said to be
“monotone” if (x ',y y') Oforall [x,y], [¢,¥] GrA (here (, ) denotes
the inner product in H). The operator A is said to be “maximal monotone” if and
onlyif (x v,y w) Oforall [x,y] GrA, implies[v,w] GrA (i.e. the graph
of A() is not properly included in any other monotone subset of H  H). From a
result of Minty, we know that the operator A( ) is maximal monotone if and only
if for some A > 0 (equivalently for every A > 0), R(I + AA4) = H.

3. EXISTENCE OF EXTREMAL SOLUTIONS

In this section we establish the nonemptiness of the solution set S, C’(f, RN
of (2). For this we will need the following hypotheses:
H(A): A:D(4) RV 2E™ is a maximal monotone operator.
H(F): F:T CO(Ty,RY)  Pp(RY)is a multifunction s.1.
(1) t F(t,y) is measurable,
(2) y  F(t,y) is h-continuous,
(3) F(t,y) =sup v v F(t,y) at)+ 6(t) y « ae.
with a( ), 8() L4, 1<p<
H(p): ¢ C(Tp,BY) and ¢(0) D(4).
First we need an auxiliary result. Let L, (7,R%) be the space of equivalence
classes of Lebesgue integrable functions z : 77 RN, equipped with the “weak”

Il

norm # , =sup [a(s)ds :0 ¢ ¢ b . The notation stands for

Lemma3.1. If f, ,»>1 LP(T,RY) aresuch thatsup f, , < andf, I

n>1

0

asn , then f, “ 0 in LP(T,RN).

Proof. Since by hypothesis f, ,>1 is bounded in LP(T, RY) and step functions
are dense in L4(T,R¥Y) with %—I— % = 1 (see Dunford-Schwartz [6]), we only need

to show that ((f.,s)) 0asn , for each s : T RY of the form s(t) =
> X(tk_l),tk(t)vz-a v;  RY and with ((, )) being the duality brackets for the pair
k=1

(LP(T,RN), L4(T,RY)). We have:

ey = 3 [ thoinds Y [T neds
E=1"tr-1 k=1 tr—1
((fnas)) fn w Z UZ 0 as n
k=1

Now we are ready for our existence theorem, concerning problem (2).
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Theorem 3.1. If hypotheses H(A), H(F) and H(y) hold, then S, C(f,RN)

1s nonempty.

Proof. From the proof of theorem 3.1 in [13], we know that there exists M; > 0
such that forallt Tandallz S (S C(T,RY) being the solution set of (1)),

we have
Tt oo M1 .

Hence because of hypothesis H(F') (3), we may assume, without any loss of
generality that

F(t,y) o)+ 50)M =4() ae.

with ¢( ) LY (otherwise in what follows replace F(t,y) by F(t,pn,(y)) with
par, () being the Mj-radial retraction map).

Next let K = v LYT,RY): w(t) ¥(t) a.e andlet np: LY(T RY)
C(T,RY) be the map which assigns to each ¢  LY(7,RY), the unique strong
solution of the Cauchy problem #(t) Ax(t) +¢(?) a.e., 2(0) = ¢(0) (see Brezis
[5], theorem 3.4, p. 65 and proposition 3.8, p. 82). Since K is bounded in L*(T,R™Y)
and since the semigroup of nonlinear contractions generated by A on m, 18

compact (because R¥ is finite dimensional), we may invoke theorem 1 of Baras
—c
[2] and get that W = n(K) (T2 is compact. Extend the elements of W on

T = [ 7b], by simply setting z(v) = ¢(v) for v Tp, when & W (recall
x(O) = ¢(0) M) Denote the set of these extensmns by Wo. Clearly Wo

C(T RY) is compact. Let W= coanO Then W C(T RY) is compact and
convex (Mazur’s theorem; see Dunford-Schwartz [6], theorem 6, p. 414). On W,
we consider the C’(f,]RN)—norm topology and on LY(7T,R¥) the norm topology.
Then define R : W 2LNTEY) by R(x) = llw(, o) Note that R() has
closed, decomposable values (i.e. if fi, f2 R(z) and B " Tis measurable, then
xBf1 + xBcfo R(x)) and is Ls.c. (in fact h-continuous; see theorem 4.5 of
Papageorgiou [10]). So applying theorem 1.1 of Tolstonogov [15], we can find a
continuous map @ : W Ly (T,BY) such that §(z) ext R(z), for all z W. But
from Benamara [3], we know that ext R(x) = ext 511?(~,x.) :fixtF(~,x.)' Then let
u=mn 0: W W and let u( ) be the extension of u(x) on T by u(z)(v) = ¢(v),
v Tpy. Clearly, u LW W and because (2 Lﬂ_ by virtue of lemma 3.1, we
can easily check using the w-continuity of #( ), that %( ) is continuous. Apply
Schauder’s fixed point theorem to get # = @(z). Obviously # S, = . O

4. STRONG RELAXATION

In this section, we show that S, is dense in S (the solution set of (1) for the
C(T,RN)-topology).
For this we will need the following stronger hypothesis on the orientor field

F(t,y):
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H(F)y:F:T C(Ty, }RN) Pkc(RN) 1s a multifunction s.7.
(1) t  F(t,y) is measurable,
(2) R(F(t,y),F(t,2)) k(1) y 2z o ae. with k() L}I_,
(3) F(t,y) =sup v v F(t,y) at)+ 6(t) y o ae.
with o, L, 1<p<

N
Theorem 4.1. If hypotheses H(A), H(F)1 and H(p) hold, then S = S, A )

Proof. Let () S. Then z() C(f,RN) is a strong solution of

{ () Az(t)+ f(t) a.e.on T =10,0] }
w(v) = ¢(v), v To=[ r0L¢0) DA)

with £ LP(T,RY), f(t) F(t,z;) ae. Let W C(f,RN) be as in the proof of
theorem 3.1. Giveny W ane >0,let[': 7T N be defined by

Py ={u BY: J() w < gy (0. Flty) e Pt f

where M; > 0 is the a priori bound for the elements in S (see the proof of theorem

3.1). Then

Gre={( ) T BViu Fw), f0) w < grm A d(0), Fu) )

={(tw) GrF(y): fO) uw < A0, Pty

Using hypotheses H(F'); (1) and (2) and theorem 3.3 of Papageorgiou [11],
we get that GrF(,y) B(T) B(RY) where B(T) (resp. B(RY)) is the Borel
o-field of T' (resp. of RY). Furthermore, (¢, u) f@&) uw d(f@), F(t,y)) is
clearly jointly measurable. Hence GrI'  B(T) B(R¥). Apply Aumann’s selection
theorem (see for example, Wagner [16], theorem 5.10), to get u : T RN a
measurable map s.1. u(t) T'(¢) a.e. Therefore, if we define L : W b(TEY) by

Ly ={u Sheyy: SO ut) < gipp AU, P ) ae ),

it follows that L( ) has nonempty, decomposable values. In addition, proposition 4
of Bressan-Colombo [4] tells us that L( ) is Ls.c. Therefore, y  L(y) is l.s.c. with
nonempty, closed and decomposable values. Apply theorem 3 of Bressan-Colombo
[4], to get a continuous map u. : w LY T, RNY s.t. uy) m for all y Ww.
Then we have:

€

0w gm0 F )

+k() v Yy o aeon T.
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Use theorem 1.1 of Tolstonogov [15] to get v, : W Ly (T,RYN) a continuous
map s.%. ve(y) ext S}w(,yy.) = S;mF(~,y.) and u(y) wve(y) w <eforaly W.

Next let ¢, 0 and set u, = u,, and v, = v, . Let &, S, W be such
that Z, = 9,(Z,), where 9, (Z,) is the extension by ¢ on Ty, of (n  0,) (Zp);
see the proof of theorem 3.1 (the existence of x, follows from Schauder’s fixed
point theorem). Since W C’(f, RY) is compact, we may assume that ¥, % in
C’(f, RY). Then exploiting the monotonicity of the operator A( ), we have

(#()+Fa(0),Bat)  2(1)  (F)  va(@a)(),Fn(t) (1)) ae.on T

Note that by construction u,(Z,) v, (Zn) Il 0and un(Tn) vn(Tn) n>1
is bounded in LP(T,R¥). So from lemma 3.1, we get that u,(Z,) vaZ» “ 0 in
LP(T,RYN). Since 7, = z xin C(T,RY), we get

/O(un(fn)(s) un(Zn)(8), Zn(s) x(s))ds 0 as n

Also we have:

0

/Ot(QEJJ+d(f(5)’F(5’(§n)s))) Bau(s)  x(s) ds

t
€n—|—/ k(s) (Zn)s s 2 ds.
0

So by passing to the limit as n in (3), we get

t
e & 2 2/ k(s) s & 2 ds
0
z ==& (Gronwall’s inequality)
Z, =z in C(T,RM),

Since T, S. and S C(f,RN) is compact (see [13]), we conclude that

5 =35 T, O
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5. CONTROL SYSTEMS

In this section, we use theorem 4.1 to derive a “bang-bang” principle for nonlin-
ear control systems monitored by maximal monotone differential equations. Specif-
ically, we consider the following two systems:

() Az()+ f(t,x)u(t) ae.on T

(4) z(v) =p(v), v Ty
uw(t) U(t)ae,u() measurable

z(t) Az(t)+ f(t,x)u(t) ae.on T
(5) z(v) =¢(v), v To

uw(t) ewtU(t) ae., u() measurable.

We will need the following hypotheses on the data:
H(f): f:T C(To,RY) (R™ RY) = RVX™ is a map s.t.
(1) t  f(t,y)u is a measurable for all (y,u) C(Tp,RY) R™
(2) fty) F&y) ¢ k() vy ¥ o ae withk() L,
(3) ft,y) ¢ at)+B@) ¥ o ae witha,8 L[E 1<p<
HU): U:T Pkc(Rm) 1s a measurable multifunction s.t.
Ut) = u tu U@ M, M >0.

By S, S, (T N) we will denote that the sets of trajectories of (4) and
(5) respectively and by R(t) and R.(t), the corresponding reachable sets at time
t Ti;ie. R(t)= z(t):x S and R.(t) = =z(t):« S . The nonemptiness
of these sets follows from theorem 3.1, if in addition to H(f) and H(U), we also
assume that H(A) and H(y) hold.

Now we are ready to state and prove our nonlinear “bang-bang” principle.
Theorem 5.1. If hypotheses H(A), H(f), H(U) and H(y) hold, then S =
S_ec(TD’]RN) and for everyt T, R(1) = W]RN
Proof. Let F: T C(Ty,RY)  Pr.(RY) be defined by

F(t,y) = f(t,y)U(t).

Let u, : T R™ n 1, be measurable function s.t. U(t) = un(t) 5, t 7.
They exist since by hypothesis H(U), U( ) is measurable (see Wagner [16], theorem
4.2). Then for v RYN we have:

bl

bl

>m

dlv, F(t,y)) = 1I;f1 v flt,y)ua(t)
t  d(v,F(t,y)) is measurable
t  F(t,y) is measurable.



234 NIKOLAOS S. PAPAGEORGIOU

Next let y,y'  C(Ty,RY) and v F(t,y). Then by definition v = f(t, y)u,
u  U(t). Because of hypotheses H(f) (2) and H(U), we have

dv, F(t,y))  fty)u [,y )w  MEE) y ¥ o
h(E(Ly), F(ty)) k() y y (k= Mk).

Finally because of hypothesis H(f) (3), we have

o~

Ft,e) a@®)+8E) «  ae.

with @ = Ma, B = Mg LZ_I)_. So through an easy application of Aumann’s
selection theorem, we see that system (4) (resp. (5)) can be equivalently rewritten
in the “deparametrized” (i.e. control free) form (1) (resp. (2)), with F(¢,y) as
above. An application of theorem 4.1 leads to the desired conclusions. a

Our formulation incorporates gradient and more generally, subdifferential sys-
tems which are important in nonsmooth optimal control. In particular, if A = 96,
where §x is the indicator function of a nonempty, closed and convex set K RV
(ie. 8g(z) =0if # K and + otherwise), then the resulting system is known
as “Differential Variational Inequality” and arises in mathematical economics (see
Aubin-Cellina [1] and Henry [7]) in the study of resource allocation mechanisms
and in theoretical mechanics (see Moreau [9]), in the study of unilateral problems.
Recall that 06g = Nk (the normal cone to K). So system (1) has the following
particular form:

2(t) Ng(z@®)+ F(t,z;) a.e.on T =10,b]
z(v)=p(v) v To=][ r0]

Such systems, with no memory (i.e. » = 0) and with a time-dependent set K,
were studied by the author in [12].

Acknowledgement: The author wishes to express his gratitude to the referee
for his (her) corrections and remarks.
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