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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 227 { 235A STRONG RELAXATION THEOREM FOR MAXIMALMONOTONE DIFFERENTIAL INCLUSIONS WITH MEMORYNikolaos S. PapageorgiouAbstract. We consider maximal monotone di�erential inclusions with memory.We establish the existence of extremal strong and then we show that they aredense in the solution set of the original equation. As an application, we derive a\bang-bang" principle for nonlinear control systems monitored by maximal mono-tone di�erential equations. 1. IntroductionIn a recent paper [13], we studied maximalmonotone di�erential inclusions withmemory de�ned on RN (with N being a positive integer) of the form(
� _x(t) 2 Ax(t) + F (t; xt) a.e. on T = [0; b]x(v) = '(v) for v 2 T0 = [� r; 0]: )(1)Here b 2 R+, A(� ) is a maximalmonotone operator onRN, F (t; xt) is a multival-ued vector �eld (orientor �eld) and xt 2 C(T0;RN) is de�ned by xt(v) = x(t+ v).Hence xt(� ) represents the history of the state from time t � r, up to the presenttime t. Among the results proved in [13], was a relaxation theorem, which saysthat the solution set of the above multivalued Cauchy problem is dense for theC( bT ;RN)-topology ( bT = [� r; b]), in the solution set of the Cauchy problem inwhich the orientor �eld F (t; x) is replaced by its convexi�cation conv F (t; x) (seetheorem 5.1 in [13]).In this paper, we prove a stronger version of the relaxation theorem, whichis closely related to the \bang-bang" principle for control systems. So instead ofproblem (1), we consider the following multivalued Cauchy problem:(

� _x(t) 2 Ax(t) + ext F (t; xt) a.e. on Tx(v) = '(v); v 2 T0 : )(2)1991 Mathematics Subject Classi�cation : 34A60.Key words and phrases: maximal monotone operator, di�erential inclusion, continuous selec-tor, \bang-bang" principle.Received May 14, 1993.



228 NIKOLAOS S. PAPAGEORGIOUHere ext F (t; xt) stands for the extreme points of the compact, convex setF (t; xt). First we answer the question of existence of solutions for problem (2).The nonconvex existence theorem proved in [13] (see theorem 3.2), is not appli-cable here, because the multifunction (t; y) ! ext F (t; y) is not in general closedvalued and y ! ext F (t; y) is not necessarily lower semicontinuous (l.s.c.). Thenonemptiness of the solution set Se � C(bT;Rn) ( bT = [� r; b]) of (2) is establishedin theorem 3.1. Then in section 4, in theorem 4.1, we show that Se is dense inS � C( bT ;RN) the solution set of (1), for the C( bT ;RN)-topology. This way we ob-tain a genuine new approximation (relaxation) result. Note that in the relaxationtheorem of [13] (see theorem 5.1), the nonconvex valued orientor �eld F (t; y) wasassumed to be closed valued and Hausdor�-Lipschitz in the y-variable, conditionsthat in general are not true for the multifunction (t; y) ! ext F (t; y), even if(t; y) ! F (t; y) is very regular. Finally in section 5, we consider an application tononlinear control systems, monitored by maximalmonotone di�erential equations.2. PreliminariesIn this section we �x our notation and we brie
y recall some basic de�nitionsand facts that we will need in the sequel.So let (
;�) be a measurable space and X a separable Banach space. We willbe using the following notations:Pf (X) = f A � X : nonempty, closed gand Pkc(X) = f A � X : nonempty, compact and convexg :A multifunction F : 
 ! Pf (X) is said to be measurable, if for all x 2 X,the R+-valued function ! ! d(x; F (!)) = inf fk x � z k : z 2 F (!)g is measurable.Other equivalent de�nitions of the measurability of a Pf (X)-valued multifunction,can be found in Wagner [16]. Let �(� ) be a �nite measure de�ned by �. By S1Fwe will denote the set of all selectors of F , that belong in the space L1(
; X); i.e.S1F = f f 2 L1(
; X) : f(!) 2 F (!)�� a.e.g . For a measurable multifunction thisset is nonempty if and only if ! ! inf fk z k : z 2 F (!)g 2 L1+ (for details, we referto Papageorgiou [14]).On the set Pf (X), we can de�ne a generalized metric, better known as theHausdor� metric, by settingh(A;B) = max[supa2A d(a;B); supb2B d(b; A)]for every A;B 2 Pf (X). It is well known (see for example Klein-Thompson [8]),that (Pf (X); h) is a complete generalized metric space. A multifunction F : X !Pf (X) is said to be Hausdor� continuous (h-continuous), if it is continuous fromX into the metric space (Pf (X); h).If Y; Z are Hausdor� topological spaces, a multifunction G : Y ! 2Z r f;g issaid to be lower semicontinuous (l.s.c.), if for all C � Z closed, G+(C) = f y 2 Y :G(y) � C g is closed in Y .



STRONG RELAXATION 229Finally, if H is a Hilbert space, an operator A : D(A) � H ! 2H is said to be\monotone" if (x � x0; y � y0) � 0 for all [x; y], [x0; y0] 2 GrA (here (� ; � ) denotesthe inner product in H). The operator A is said to be \maximal monotone" if andonly if (x � v; y � w) � 0 for all [x; y] 2 GrA, implies [v; w] 2 GrA (i.e. the graphof A(� ) is not properly included in any other monotone subset of H � H). From aresult of Minty, we know that the operator A(� ) is maximal monotone if and onlyif for some � > 0 (equivalently for every � > 0), R(I + �A) = H.3. Existence of extremal solutionsIn this section we establish the nonemptiness of the solution set Se � C(bT;RN)of (2). For this we will need the following hypotheses:H(A) : A : D(A) � RN ! 2RN is a maximal monotone operator.H(F ) : F : T � C(T0;RN) ! Pkc(RN) is a multifunction s.t.(1) t ! F (t; y) is measurable,(2) y ! F (t; y) is h-continuous,(3) j F (t; y)j = supfk v k : v 2 F (t; y)g � �(t) + �(t)k y k 1 a.e.with �(� ); �(� ) 2 Lp+, 1 < p < 1 .H(') : ' 2 C(T0;RN) and '(0) 2 D(A) .First we need an auxiliary result. Let Lw(T;RN) be the space of equivalenceclasses of Lebesgue integrable functions x : T ! RN, equipped with the \weak"norm k xk w = supfk

t2Rt1 x(s) dsk : 0 � t1 � t2 � bg . The notation k�kw
� � � ! stands forconvergence in Lw(T;RN).Lemma 3.1. If f fn g n�1 � Lp(T;RN) are such that supn�1k fn k p < 1 and fn k�kw

� � � ! 0as n ! 1 , then fn w
! 0 in Lp(T;RN).Proof. Since by hypothesis f fn g n�1 is bounded in Lp(T;RN) and step functionsare dense in Lq(T;RN) with 1p + 1q = 1 (see Dunford-Schwartz [6]), we only needto show that ((fn; s)) ! 0 as n ! 1 , for each s : T ! RN of the form s(t) =mPk=1�(tk�1);tk(t)v�k; v�k 2 RN and with ((� ; � )) being the duality brackets for the pair(Lp(T;RN); Lq(T;RN)). We have:

j ((fn; s))j = j

mXk=1Z tktk�1 (fn(s); v�k) dsj �

mXk=1 k

Z tktk�1 fn(s) dsk � k v�k k

) j ((fn; s))j � k fn k w �

mXk=1 k v�k k ! 0 as n ! 1 �Now we are ready for our existence theorem, concerning problem (2).



230 NIKOLAOS S. PAPAGEORGIOUTheorem 3.1. If hypotheses H(A), H(F ) and H(') hold, then Se � C(bT;RN)is nonempty.Proof. From the proof of theorem 3.1 in [13], we know that there exists M1 > 0such that for all t 2 T and all x 2 S (S � C( bT ;RN) being the solution set of (1)),we have
k xt k 1 � M1 :Hence because of hypothesis H(F ) (3), we may assume, without any loss ofgenerality that

j F (t; y)j � �(t) + �(t)M1 =  (t) a.e.with  (� ) 2 Lp+ (otherwise in what follows replace F (t; y) by F (t; pM1(y)) withpM1(� ) being the M1-radial retraction map).Next let K = f v 2 L1(T;RN) : k v(t)k �  (t) a.e.g and let � : L1(T;RN) !C(T;RN) be the map which assigns to each q 2 L1(T;RN), the unique strongsolution of the Cauchy problem � _x(t) 2 Ax(t) + q(t) a.e., x(0) = '(0) (see Brezis[5], theorem 3.4, p. 65 and proposition 3.8, p. 82). Since K is bounded in L1(T;RN)and since the semigroup of nonlinear contractions generated by � A on D(A), iscompact (because RN is �nite dimensional), we may invoke theorem 1 of Baras[2] and get that W = �(K)C(T;RN) is compact. Extend the elements of W onbT = [� r; b], by simply setting x(v) = '(v) for v 2 T0, when x 2 W (recallx(0) = '(0) 2 D(A)). Denote the set of these extensions by cW0. Clearly cW0 �C( bT ;RN) is compact. Let cW = convcW0. Then cW � C(bT ;RN) is compact andconvex (Mazur's theorem; see Dunford-Schwartz [6], theorem 6, p. 414). On cW ,we consider the C( bT ;RN)-norm topology and on L1(T;RN) the norm topology.Then de�ne R : cW ! 2L1(T;RN) r f;g by R(x) = S1F (�;x�). Note that R(� ) hasclosed, decomposable values (i.e. if f1; f2 2 R(x) and B � T is measurable, then�Bf1 + �Bcf2 2 R(x)) and is l.s.c. (in fact h-continuous; see theorem 4.5 ofPapageorgiou [10]). So applying theorem 1.1 of Tolstonogov [15], we can �nd acontinuous map � :cW ! Lw(T;RN) such that �(x) 2 extR(x), for all x 2

cW . Butfrom Benamara [3], we know that extR(x) = ext S1F (�;x�) = S1extF (�;x�). Then letu = � � � : cW ! W and let bu(x) be the extension of u(x) on bT by bu(x)(v) = '(v),v 2 T0. Clearly, bu : cW !

cW and because  2 Lq+ by virtue of lemma 3.1, wecan easily check using the k � k w-continuity of �(� ), that bu(� ) is continuous. ApplySchauder's �xed point theorem to get x = bu(x). Obviously x 2 Se 6= ; . �4. Strong relaxationIn this section, we show that Se is dense in S (the solution set of (1) for theC( bT ;RN)-topology).For this we will need the following stronger hypothesis on the orientor �eldF (t; y) :



STRONG RELAXATION 231H(F )1 : F : T � C(T0;RN) ! Pkc(RN) is a multifunction s.t.(1) t ! F (t; y) is measurable,(2) h(F (t; y); F (t; z)) � k(t)k y � z k 1 a.e. with k(� ) 2 L1+,(3) j F (t; y)j = sup fk v k : v 2 F (t; y)g � �(t) + �(t)k y k 1 a.e.with �; � 2 Lp+, 1 < p < 1 :Theorem 4.1. If hypotheses H(A), H(F )1 and H(') hold, then S = SeC( bT;RN).Proof. Let x(� ) 2 S. Then x(� ) 2 C(bT;RN) is a strong solution of(
� _x(t) 2 Ax(t) + f(t) a.e. on T = [0; b]x(v) = '(v); v 2 T0 = [� r; 0]; '(0) 2 D(A))with f 2 Lp(T;RN), f(t) 2 F (t; xt) a.e. Let cW � C( bT ;RN) be as in the proof oftheorem 3.1. Given y 2

cW an � > 0, let � : T ! 2RN r f;g be de�ned by�(t) = nu 2 RN : k f(t) � uk < �2M1b + d(f(t); F (t; yt)); u 2 F (t; yt)owhere M1 > 0 is the a priori bound for the elements in S (see the proof of theorem3.1). ThenGr� = n(t; u) 2 T � RN : u 2 F (t; yt); k f(t) � uk < �2M1b + d(f(t); F (t; yt))o= n(t; u) 2 GrF (� ; y�) : k f(t) � uk < �2M1b + d(f(t); F (t; yt))o :Using hypotheses H(F )1 (1) and (2) and theorem 3.3 of Papageorgiou [11],we get that GrF (� ; y�) 2 B(T ) � B(RN) where B(T ) (resp. B(RN)) is the Borel�-�eld of T (resp. of RN). Furthermore, (t; u) ! k f(t) � uk � d(f(t); F (t; yt)) isclearly jointlymeasurable. Hence Gr� 2 B(T ) � B(RN). Apply Aumann's selectiontheorem (see for example, Wagner [16], theorem 5.10), to get u : T ! RN ameasurable map s.t. u(t) 2 �(t) a.e. Therefore, if we de�ne L : cW ! 2L1(T;RN) byL(y) = nu 2 S1F (�;y�) : k f(t) � u(t)k < �2M1b + d(f(t); F (t; yt)) a.e.o ;it follows that L(� ) has nonempty, decomposable values. In addition, proposition 4of Bressan-Colombo [4] tells us that L(� ) is l.s.c. Therefore, y ! L(y) is l.s.c. withnonempty, closed and decomposable values. Apply theorem 3 of Bressan-Colombo[4], to get a continuous map u� : cW ! L1(T;RN) s.t. u�(y) 2 L(y) for all y 2

cW .Then we have:
k f(t) � u�(y)(t)k �

�2M1b + d(f(t); F (t; yt))
�

�2M1b + k(t)k x � y k 1 a.e. on T :



232 NIKOLAOS S. PAPAGEORGIOUUse theorem 1.1 of Tolstonogov [15] to get v� : cW ! Lw(T;RN) a continuousmap s.t. v�(y) 2 ext S1F (�;y�) = S1extF (�;y�) and k u�(y) � v�(y)k w < � for all y 2

cW .Next let �n # 0 and set un = u�n and vn = v�n . Let bxn 2 Se �

cW be suchthat bxn = bvn(bxn), where bvn(bxn) is the extension by ' on T0, of (� � �n) (bxn);see the proof of theorem 3.1 (the existence of xn follows from Schauder's �xedpoint theorem). Since cW � C( bT ;RN) is compact, we may assume that bxn ! �x inC( bT ;RN). Then exploiting the monotonicity of the operator A(� ), we have(� _x(t) + _bxn(t); bxn(t) � x(t)) � (f(t) � vn(bxn)(t); bxn(t) � x(t)) a.e. on T
)

12 k bxn(t) � x(t)k

2
�

Z t0 (f(s) � un(bxn)(s); bxn(s) � x(s)) ds(3) + Z t0 (un(bxn)(s) � vn(bxn)(s); bxn(s) � x(s)) ds :Note that by construction un(bxn) � vn(bxn) k�kw
� � � ! 0 and f un(bxn) � vn(bxn)g n�1is bounded in Lp(T;RN). So from lemma 3.1, we get that un(bxn) � vnbxn w

! 0 inLp(T;RN). Since bxn � x ! �x � x in C( bT ;RN), we getZ t0 (un(bxn)(s) � vn(bxn)(s); bxn(s) � x(s)) ds ! 0 as n ! 1 :Also we have: Z t0 (f(s) � un(bxn)(s); bxn(s) � x(s)) ds
�

Z t0 k f(s) � un(bxn)(s)k � k bxn(s) � x(s)k ds
�

Z t0 � �n2M1b + d(f(s); F (s; (bxn)s))� � k bxn(s) � x(s)k ds
� �n + Z t0 k(s) � k (bxn)s � xs k

21 ds :So by passing to the limit as n ! 1 in (3), we get
k xt � �xt k

21 � 2 Z t0 k(s) � k xs � �xs k

21 ds
) x = �x (Gronwall's inequality)

) bxn ! x in C( bT ;RN) :Since bxn 2 Se and S � C( bT ;RN) is compact (see [13]), we conclude thatS = SeC(T;RN). �



STRONG RELAXATION 2335. Control systemsIn this section, we use theorem 4.1 to derive a \bang-bang" principle for nonlin-ear control systems monitored by maximalmonotone di�erential equations. Specif-ically, we consider the following two systems:8><>: � _x(t) 2 Ax(t) + f(t; xt)u(t) a.e. on Tx(v) = '(v); v 2 T0u(t) 2 U (t) a.e., u(� ) � measurable 9>=>;(4)and 8><>: � _x(t) 2 Ax(t) + f(t; xt)u(t) a.e. on Tx(v) = '(v); v 2 T0u(t) 2 ext U (t) a.e., u(� ) � measurable :9>=>;(5)We will need the following hypotheses on the data:H(f) : f : T � C(T0;RN) ! L (Rm;RN) = RN�m is a map s.t.(1) t ! f(t; y)u is a measurable for all (y; u) 2 C(T0;RN) � Rm,(2) k f(t; y) � f(t; y0)k L � k(t) � k y � y0 k 1 a.e. with k(� ) 2 L1+,(3) k f(t; y)k L � �(t) + �(t)k y k 1 a.e. with �; � 2 Lp+; 1 < p < 1 .H(U ): U : T ! Pkc(Rm) is a measurable multifunction s.t.
j U (t)j = supfk uk : u 2 U (t)g � M; M > 0 .By S; Se � C(bT;RN) we will denote that the sets of trajectories of (4) and(5) respectively and by R(t) and Re(t), the corresponding reachable sets at timet 2 T ; i.e. R(t) = f x(t) : x 2 S g and Re(t) = f x(t) : x 2 Se g . The nonemptinessof these sets follows from theorem 3.1, if in addition to H(f) and H(U ), we alsoassume that H(A) and H(') hold.Now we are ready to state and prove our nonlinear \bang-bang" principle.Theorem 5.1. If hypotheses H(A), H(f), H(U ) and H(') hold, then S =SeC(T0;RN) and for every t 2 T , R(t) = Re(t)RN .Proof. Let F : T � C(T0;RN) ! Pkc(RN) be de�ned byF (t; y) = f(t; y)U (t) :Let un : T ! Rm; n � 1, be measurable function s.t. U (t) = f un(t)g n�1, t 2 T .They exist since by hypothesis H(U ), U (� ) is measurable (see Wagner [16], theorem4.2). Then for v 2 RN, we have:d(v; F (t; y)) = infn�1 k v � f(t; y)un(t)k

) t ! d(v; F (t; y)) is measurable
) t ! F (t; y) is measurable :



234 NIKOLAOS S. PAPAGEORGIOUNext let y; y0 2 C(T0;RN) and v 2 F (t; y). Then by de�nition v = f(t; y)u,u 2 U (t). Because of hypotheses H(f) (2) and H(U ), we haved(v; F (t; y0)) � k f(t; y)u � f(t; y0)uk � Mk(t) � k y � y0 k 1
) h(F (t; y); F (t; y0)) �

bk(t) � k y � y0 k 1(bk = Mk) :Finally because of hypothesis H(f) (3), we have
j F (t; x)j � b�(t) + b�(t)k xk a.e.with b� = M�, b� = M� 2 Lp+. So through an easy application of Aumann'sselection theorem, we see that system (4) (resp. (5)) can be equivalently rewrittenin the \deparametrized" (i.e. control free) form (1) (resp. (2)), with F (t; y) asabove. An application of theorem 4.1 leads to the desired conclusions. �Our formulation incorporates gradient and more generally, subdi�erential sys-tems which are important in nonsmooth optimal control. In particular, if A = @�K ,where �K is the indicator function of a nonempty, closed and convex set K � RN(i.e. �K(x) = 0 if x 2 K and +1 otherwise), then the resulting system is knownas \Di�erential Variational Inequality" and arises in mathematical economics (seeAubin-Cellina [1] and Henry [7]) in the study of resource allocation mechanismsand in theoretical mechanics (see Moreau [9]), in the study of unilateral problems.Recall that @�K = NK (the normal cone to K). So system (1) has the followingparticular form:(

� _x(t) 2 NK(x(t)) + F (t; xt) a.e. on T = [0; b]x(v) = '(v) v 2 T0 = [� r; 0]: )Such systems, with no memory (i.e. r = 0) and with a time-dependent set K,were studied by the author in [12].Acknowledgement: The author wishes to express his gratitude to the refereefor his (her) corrections and remarks.References[1] Aubin, J.-P., Cellina, A., Di�erential Inclusions, Springer, Berlin, 1984.[2] Baras, P., Compacit�e de l' op�erateur f ! u solution d'une equation nonlineaire(du=dt) + Au 3 f 00, C.R. Acad. Sci. Paris 286 (1978), 1113 - 1116.[3] Benamara, M., Points Extremaux, Multi-applications et Fonctionelles Int�egrales, Th�ese du3�eme cycle, Universit�e de Grenoble (1975), France.



STRONG RELAXATION 235[4] Bressan, A., Colombo, G., Extensions and selections of maps with decomposable values,Studia Math. 90 (1988), 69-85.[5] Brezis, H., Operateurs Maximaux Monotones, North Holland, Amsterdam, 1973.[6] Dunford, N., Schwartz, J., Linear Operators I, Willey, New York, 1958.[7] Henry, C., Di�erential equations with discontinuous right-hand side for planning procedures,J. Economic Theory 4 (1972), 545-551.[8] Klein, E., Thompson, A., Theory of Correspondences, Willey, New York, 1984.[9] Moreau J.-J., Evolution problem associated with a moving convex set in a Hilbert space, J.Di�. Equations 26 (1977), 347-374.[10] Papageorgiou, N. S., Convergence theorems for Banach space valued integrable multifunc-tions, Inter. J. Math. and Math. Sci. 10 (1987), 433-442.[11] Papageorgiou, N. S., On measurable multifunctions with applications to random multivaluedequations, Math. Japonica 32 (1987), 437-464.[12] Papageorgiou, N. S., Di�erential inclusions with state constraints, Proc. Edinburgh Math.Soc. 32 (1988), 81-97.[13] Papageorgiou, N. S., Maximal monotone di�erential inclusions with memory, Proc. IndianAcad. Sci. 102 (1992), 59-72.[14] Papageorgiou, N. S., Convergence theorems for set-valued conditional expectations, Comm.Math. Univ. Carol. 34 (1) (1993), in press.[15] Tolstonogov, A, Extreme continuous selectors for multivalued maps and \bang-bang" prin-ciple for evolution inclusion, Soviet Math. Doklady 317 (1991), 481-485.[16] Wagner, D., Survey of measurable selection theorems, SIAM J. Control and Optim. 15(1977), 859-903.Nikolaos S. PapageorgiouFlorida Institute of TechnologyDepartment of Applied Mathematics150 West University Blvd.Melbourne, Florida 32901-6988, USA
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