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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 37 { 42ON SOME ITERATION SEMIGROUPSJanusz Brzd�ekAbstract. Let F be a disjoint iteration semigroupof Cn di�eomorphismsmappinga real open interval I 6= ? onto I . It is proved that if F has a dense orbit possesinga subset of the second category with the Baire property, then F = fft : ft(x) =f�1(f(x) + t) for every x 2 I; t 2 Rg for some Cn di�eomorphism f of I onto theset of all reals R. The paper generalizes some results of J.A.Baker and G.Blanton[3].Throughout this paper I 6= ? denotes an open interval. Rand N are the sets ofall reals and positive integers, respectively. In connection with a problem raised byO.Borùvka and F.Neumann (cf. e.g. [8]), J.A.Baker and J.Blanton [3](Theorem 1)(cf. also [2], [4] and [5]) have proved that every complete and disjoint group F of Cnbijections from I to I has the form F = F [f ] := fft : ft(x) = f�1(f(x)+t) for x 2I; t 2 Rg for some Cn di�eomorphism f of I onto R. For n = 0 this follows alsofrom some earlier results of J.Acz�el [1].Let us remind (cf. [2]{[5]) that a family of functions F � II is said to be disjointprovided the graphs of any two distinct members of F are disjoint (i.e. if f; g 2 Fand f(a) = g(a) for some a 2 I, then f = g) and F is complete if SF = I � I,where SF := f(a; f(a)) : a 2 I; f 2 Fg. Further, we say that F has a dense orbitprovided there is b 2 I such that the set F (b) := ff(b) : f 2 Fg is dense in I.Clearly, if f : I ! R is a Cn di�eomorphism (i.e. f is a Cn bijection andf 0(x) 6= 0 for all x 2 I), then F [f ] is a complete disjoint group of Cn functions(cf. [2]{[5]).We generalize the outcome from [3]. Namely we will prove the given belowtheorem.Theorem 1. Let n be a positive integer and F be a semigroup of Cn bijectionfrom I onto I. Suppose that F has a dense orbit F (b) possesing a subset D � F (b)of the second category with the Baire property (cf. e.g. [7], p.599) and F [ fig is1991 Mathematics Subject Classi�cation : 26A18, 39B12.Key words and phrases: iteration semigroup, di�eomorphism, ordered semigroup, Baireproperty.Received January 3, 1994.



38 JANUSZ BRZD�EKdisjoint, where i : I ! I and i(a) = a for every a 2 I. Then F = F [f ] for someCn di�eomorphism f of I onto R.We will as well show the followingTheorem 2. Let F = fgt : t 2 Tg be a semigroup of homeomorphisms fromI onto I. Suppose that F has a dense orbit and F [ fig is disjoint. Then Fis a subsemigroup of the group F [f ] for some homeomorphism f of I onto R.Furhermore, if the dense orbit has a subset of the second category with the Baireproperty, then F = F [f ].Theorem 2 is a generalization of Theorem 6 from [3] and, to some extend, ofthe results of J.Acz�el [1]. Actually it is not supposed in [3] that the members ofF are homeomorphisms, nevertheless this easily follows from the assumption thatF is a group (see e.g. [3], p.121).Since Theorem 1 is an immediate consequence of Theorem 1 in [3] and ourTheorem 2, it su�ces to prove only Theorem 2. For the proof we need a theoremof Alimov. Let us recall it.Theorem A (see e.g. [6], Theorem 4, ch.XI). Suppose that B is a cancellativefully ordered semigroup and for every a; c 2 B neitheran < cn+1 and cn < an+1 for all n 2 Nnor an > cn+1 and cn > an+1 for all n 2 N:Then there is an order preserving isomorphism of semigroups mapping B onto anadditive subsemigroup of R.Proof of Theorem 2. Fix b 2 I such that the set B = fgt(b) : t 2 Tg is densein I and de�ne a binary operation � : B � B ! B by the formula:gs(b) � gt(b) = gt(gs(b)) for s; t 2 T:It is easily seen that (B; �) is a cancellative semigroup. We want to show that Bsatis�es the assumptions of Theorem A with the natural order from I.According to the hypotheses, for every s; t 2 T , s 6= t,(1) either gt(a) < gs(a) for all a 2 I or gt(a) > gs(a) for all a 2 I:Moreover, since gt has no �xed points (of course if gt 6= i),(2) gt is strictly increasing for every t 2 T:Thus from (1) and (2) we derive(3) x � z < x � y and z � x < y � x for every x; y; z 2 B with z < y;



ON SOME ITERATION SEMIGROUPS 39which means that B is a fully ordered semigroup. By induction we as well get(4) (gt(b))n < (gt(b))n+1 < (gs(b))n+1 for n 2 N; s; t 2 T with b < gt(b) < gs(b)and(5) (gs(b))n+1 < (gt(b))n+1 < (gt(b))n for n 2 N; s; t 2 T with gs(b) < gt(b) < b;where x1 = x and xn+1 = xn � x for n 2 N and x 2 B. Finally we have(6) for every x; z 2 B with b < x < z (z < x < b; respectively)there is n 2 N such that xn > z (xn < z; respectively):The proof of (6) is analogous to the proof of Proposition 3 in [3]. However for thesake of completeness we present it.Take s; t 2 T with b < gt(b) < gs(b) (the case gs(b) < gt(b) is similar) andsuppose that (gt(b))n < gs(b) for every n 2 N. By virtue of (4), (gt(b))n <(gt(b))n+1 < gs(b) for n 2 N. Thus there is y = limn!1(gt(b))n 2 I. Hencegt(y) = gt(limn!1(gt(b))n) = limn!1 gt((gt(b))n) = limn!1(gt(b))n+1 = y.This is a contradiction, because gt has no �xed points.For the proof of the remaining assumption of Theorem A �x s; t 2 T . Weconsider only the case b < gs(b) < gt(b), for the case gt(b) < gs(b) < b is analogousand the case gs(b) < b < gt(b), in view of (4) and (5), is trivial. On account of (2)and the de�nition ofB, there exist x 2 B and v 2 T with x < gs(b) < gs(x) < gt(b)and b < gv(b) < x. Further, since gv is an increasing homeomorphism, there isu 2 T such that b < gu(b) < gv(b) and gv(b) < gv(gu(b)) < x. Note that by (1)(gu(b))2 = gu(gu(b)) < gv(gu(b)) < x. Thus (3) yields(7) (gu(b))2 � gs(b) < x � gs(b) = gs(x) < gt(b):According to (4) and (6) there is n 2 N, n > 1, such that(gu(b))n�1 � gs(b) < (gu(b))n:Hence (3), (4) and (7) implygs(b) < (gu(b))n < (gu(b))n+1 � (gu(b))2 � gs(b) < gt(b):Consequently (gs(b))n+1 < (gu(b))(n+1)n < (gt(b))n:On the other hand, by (4),(gs(b))n < (gs(b))n+1 < (gt(b))n+1:In this way we have proved that B ful�ls the assumptions of Theorem A. Sothere exists an order preserving isomorphism g of B onto an additive subsemigroupA of R. We will show that A is dense in R.



40 JANUSZ BRZD�EKPut A� = fa 2 A : a < 0g and A+ = fa 2 A : a > 0g: It results from(6) that A� = fg(x) : x 2 B; x < bg and A+ = fg(x) : x 2 B; x > bg:Let i = infA+ and s = supA�. By the density of B in I we have i =2 A+ ors =2 A�. Consequently i = 0 = s, because A+ + A� � A; s � s + i � i, andsup(A� + i) = s + i = inf(A+ + s). This means that A is dense in R.De�ne a function f : I ! Rby: f(a) = limn!1 g(xn) for a 2 I, where (xn : n 2N) � B is any sequence with a = limn!1 xn. It is easily seen that the de�nitionis correct and f is an increasing homeomorphism onto R such that f(x) = g(x)for x 2 B (cf. e.g. [3], the proof of Corollary 5). Fix a 2 I; t 2 T , and a sequence(xn : n 2 N)� B with a = limn!1 xn. Thengt(a) = gt( limn!1xn) = limn!1 gt(xn) = limn!1xn � gt(b):Consequentlyf(gt(a)) = limn!1 f(xn � gt(b)) = limn!1 g(xn � gt(b))= limn!1(g(xn) + g(gt(b))) = limn!1 f(xn) + g(gt(b))= f(a) + g(gt(b)):This completes the �rst part of the proof.Now suppose that B has a subset of the second category with the Baire property.Then A has a subset of the second category with the Baire property, becauseA = g(B) = f(B) and f is a homeomorphism. Thus on account of the theorem ofS.Piccard (see e.g. [7], Theorem 2) intA 6= ?. This, in view of the density of A inR, gives A = R. Hence F = F [f ], which ends the proof. �From Theorem 1 we get the following partial answer to the problem of O.Bo-rùvka and F.Neumann (see [3], p.122; cf. also [2], [4], [5] and [8]).Corollary 1. Let F be a disjoint group of Cn functions from I into I such thatthe set SF is dense in I � I and has a subset of the second category with theBaire property. Then F = F [f ] for some Cn di�eomorphism f of I onto R.Proof. Since SF has a subset of the second category with the Baire property,there is b 2 I such that F (b) has a subset of the second category with the Baireproperty in I (see e.g. [9], p.56{57). Further, according to Proposition 7 in [3],F (b) is dense in I. (Actually Proposition 7 in [3] is proved for I = (0; 1), howeversince every open interval is homeomorphic to (0; 1), we do not lose generality (seethe proof of Theorem 8 in [3])). Thus Theorem 1 yields the statement. �Finally we have the subsequentProposition. Let f1; f2 : I ! R be homeomorphisms and F be a subsemigroupof F [f1]. Suppose that F has a dense orbit. Then F is a subsemigroup of F [f2]i� f1(x) = cf2(x) + d for x 2 Rwith some c; d 2 R, c 6= 0.Proof. First suppose that f1(x) = cf2(x)+d for x 2 Rwith some c; d 2 R; c 6= 0.Fix gt 2 F . There is a 2 R such thatgt(x) = f�11 (f1(x) + a) for x 2 I:



ON SOME ITERATION SEMIGROUPS 41Thus, for every x 2 R,gt(x) = f�11 (cf2(x) + d+ a) = f�11 (cf2(f�12 (f2(x) + ac )) + d) = f�12 (f2(x) + ac ):Now assume that F is a subsemigroup of F [f2]. Let B and � : B � B ! B bede�ned as in the proof of Theorem 2. For j = 1; 2 de�ne function hj : I ! R bythe formula: hj(f�1j (fj(b) + x)) = x for x 2 R:Since f1 and f2 are homeomorphisms, h1 and h2 are strictly monotonic.Take gt; gs 2 F . There are x1s; x2s; x1t ; x2t 2 Rwithgt(x) = f�1j (fj(x) + xjt) for x 2 I; j = 1; 2;gs(x) = f�1j (fj(x) + xjs) for x 2 I; j = 1; 2:Thus, for j = 1; 2,gt(b) � gs(b) = gs(gt(b)) = f�1j (fj(gt(b)) + xjs) = f�1j (fj(b) + xjt + xjs)and consequentlyhj(gt(b) � gs(b)) = xjt + xjs = hj(gt(b)) + hj(gs(b)):In this way we have proved that hj(x � y) = hj(x)+ hj(y) for x; y 2 B; j = 1; 2.Put Aj = hj(B) for j = 1; 2. Then A1 and A2 are additive subsemigroups of Rand the function h = h1 � h�12 jA2 is additive and strictly monotonic. Further, A1and A2 are dense in R, because Aj = fj(B)� fj(b) for j = 1; 2. De�ne a function�h : R! R by : �h(a) = limn!1 h(xan) for a 2 R, where (xan : n 2 N) � A2 is anysequence with a = limn!1 xan. It is easy to see that �h is monotonic and additive.Thus there is c 2 R, c 6= 0, such that �h(x) = cx for x 2 R. Hence, for every x 2 B,h1(x) = h1 � h�12 (h2(x)) = ch2(x).Fix a 2 I and a sequence (xn : n 2 N) � B with a = limn!1 xn. Thenf1(a) = limn!1 f1(xn) = f1(b) + limn!1 h1(xn) = f1(b) � cf2(b) + c(f2(b) +limn!1 1ch1(xn)) = f1(b) � cf2(b) + cf2(a). This ends the proof. �References[1] Acz�el, J., Funktionskomposition, Iterationsgruppen und Gewebe, Arch. Math. (Basel) 17(1966), 469-475.[2] Baker, J., A note on iteration groups, Aequationes Math. 28 (1985), 129-131.[3] Baker, J., Blanton, G., Iteration groups generated by Cn functions, Arch. Math. (Brno) 18(1982), 121-127.[4] Blanton, G., Smoothness in disjoint groups of real functions under composition, C.R.Math.Rep. Acad. Sci. Canada 5 (1983), 169-172.



42 JANUSZ BRZD�EK[5] Blanton, G., Smoothness in disjoint groups of real functions under composition, AequationesMath. 35 (1988), 1-16.[6] Fuchs, L., Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris, 1963.[7] Kominek, Z., Kuczma, M., Therems of Berstein-Doetsch, Piccard and Mehdi and semilineartopology, Arch. Math. (Basel) 52 (1989), 595-602.[8] Neuman, F., Simultaneous solutions of a system of Abel equations and di�erential equationswith several deviations, Czechoslovak Math. J. 32 (107) (1982), 488-494.[9] Oxtoby, J., Measure and Category, Graduate Texts in Mathematics 2, Springer-Verlag, NewYork-Heidelberg-Berlin, 1971.Janusz Brzd�ekDepartment of MathematicsPedagogical UniversityRejtana 16 APL-35-310 Rzesz�ow, POLAND
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