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ON SOME ITERATION SEMIGROUPFPS

JANUSZ BRZDEK

ABSTRACT. Let F' be a disjoint iteration semigroup of C™ diffeomorphisms mapping
areal open interval I # @ onto I. It is proved that if ' has a dense orbit possesing
a subset of the second category with the Baire property, then F' = {fi: fi(z) =
F7H(f(x) + t) for every # € I,t € R} for some C™ diffeomorphism f of I onto the
set of all reals R. The paper generalizes some results of J.A.Baker and G.Blanton

(3]-

Throughout this paper I # @ denotes an open interval. IR and N are the sets of
all reals and positive integers, respectively. In connection with a problem raised by
O.Boruvka and F.Neumann (cf. e.g. [8]), J.A.Baker and J.Blanton [3](Theorem 1)
(cf. also [2], [4] and [5]) have proved that every complete and disjoint group F' of C™
bijections from I to I has the form F' = F[f] := {f: : fi(z) = f~1(f(z)+t) for z €
I,t € R} for some C" diffeomorphism f of I onto R. For n = 0 this follows also
from some earlier results of J.Aczél [1].

Let us remind (cf. [2]-[5]) that a family of functions F' C I? is said to be disjoint
provided the graphs of any two distinct members of F' are disjoint (i.e. if f,g € F
and f(a) = g(a) for some a € I, then f = g) and F' is complete if JF = I x I,
where | F :={(a, f(a)): a € I, f € F'}. Further, we say that F' has a dense orbit
provided there is b € T such that the set F'(b) := {f(b) : f € F'} is dense in I.

Clearly, if f: I — R is a C" diffeomorphism (i.e. f is a C™ bijection and
f(x) # 0 for all x € T), then F[f] is a complete disjoint group of C™ functions
(ct. [21-5)).

We generalize the outcome from [3]. Namely we will prove the given below
theorem.

Theorem 1. Let n be a positive integer and F' be a semigroup of C™ bijection
from I onto I. Suppose that I' has a dense orbit I'(b) possesing a subset D C F(b)
of the second category with the Baire property (cf. e.g. [7], p.599) and F' U {i} is
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digjoint, where i: I — I and i(a) = a for every a € I. Then F = F[f] for some
C™ diffeomorphism f of I onto R.

We will as well show the following

Theorem 2. Let F = {g; : ¢ € T} be a semigroup of homeomorphisms from
I onto I. Suppose that F' has a dense orbit and F U {i} is disjoint. Then F
is a subsemigroup of the group F[f] for some homeomorphism f of I onto R.
Furhermore, if the dense orbit has a subset of the second category with the Baire
property, then F' = F[f].

Theorem 2 is a generalization of Theorem 6 from [3] and, to some extend, of
the results of J.Aczél [1]. Actually it is not supposed in [3] that the members of
I are homeomorphisms, nevertheless this easily follows from the assumption that
F is a group (see e.g. [3], p.121).

Since Theorem 1 is an immediate consequence of Theorem 1 in [3] and our
Theorem 2, it suffices to prove only Theorem 2. For the proof we need a theorem
of Alimov. Let us recall it.

Theorem A (see e.g. [6], Theorem 4, ch.XI). Suppose that B is a cancellative
fully ordered semigroup and for every a,c € B neither

a’ <™ oand @ <a™t forall neN

nor
a’ > and @ > ad™tY forall neN.

Then there is an order preserving isomorphism of semigroups mapping B onto an
additive subsemigroup of R.

Proof of Theorem 2. Fix b € I such that the set B = {g:(b) : t € T'} is dense
in I and define a binary operation . : B x B — B by the formula:

gs(b) e g:(b) = g1 (g5(b)) for s, t €T
It is easily seen that (B,.) is a cancellative semigroup. We want to show that B
satisfies the assumptions of Theorem A with the natural order from I.
According to the hypotheses, for every s;t € T', s £ ¢,
(1) either ¢:(a) < gs(a) for all a € T or gy(a) > gs(a) for all a € I.
Moreover, since g; has no fixed points (of course if g; # ),
(2) g¢ 1s strictly increasing for every ¢ € 7.

Thus from (1) and (2) we derive

(3) r.oz<z.yand z.x <y.x forevery x,y,z € B with z <y,
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which means that B is a fully ordered semigroup. By induction we as well get
(1) (ge(B)" < (ge(B)" ! < (gs(b)"F for n €N, 5,1 € T with b < gu(b) < gs(b)
and

(5) (gs(0))"* < (g:(b)"*" < (g4(b))" for n €IV, 5,1 € T with g,(b) < go(b) < b,

1

where 2! = 2 and 2"*t! = 2" .2 for n € N and « € B. Finally we have

for every #,z € Bwith b< 2 <z (2 <z <b, respectively)

(6)

there is n € N such that 2 > z (2" < z, respectively).

The proof of (6) is analogous to the proof of Proposition 3 in [3]. However for the
sake of completeness we present it.

Take s,2 € T with b < g:(b) < g5(b) (the case g;(b) < g¢+(b) is similar) and
suppose that (g:(b))" < g¢s(b) for every n € N. By virtue of (4), (g:(b))" <
(g:(0))" ! < g5(b) for n € N. Thus there is y = lim,_oo(g:(b))" € I. Hence
9(y) = gu(limy, oo (g4(8))") = limy—co g0((9:(5))") = limy oo (g4(0))" T = .
This is a contradiction, because ¢; has no fixed points.

For the proof of the remaining assumption of Theorem A fix s,t € T. We
consider only the case b < g,(b) < g4(b), for the case g:(b) < ¢5(b) < b is analogous
and the case g;(b) < b < g4(b), in view of (4) and (5), is trivial. On account of (2)
and the definition of B, there exist # € Band v € T with z < g5(b) < g5(2) < g4(b)
and b < gy(b) < x. Further, since g, is an increasing homeomorphism, there is
u € T such that b < g,(b) < g,(b) and ¢,(b) < g, (gu (b)) < z. Note that by (1)
(9u(0))? = gu(gu (b)) < 9u(g4(b)) < z. Thus (3) yields

(7) (9a(0)) + g5(b) < @ 2 g5(b) = go(x) < gu(D).
According to (4) and (6) there is n € N, n > 1, such that
(9u(0))" ™1 < g5(b) < (gu(0))".
Hence (3), (4) and (7) imply
9s(0) < (9u(0))" < (gu(8))"* < (gu(0))? + 95(b) < g4(D).

Consequently
(9:(0))" " < (gu (b)) < (g2(0)"
On the other hand, by (4),

(95(B)™ < (g5 (b)) < (ge(b))" .

In this way we have proved that B fulfils the assumptions of Theorem A. So
there exists an order preserving isomorphism ¢ of B onto an additive subsemigroup

A of R. We will show that A i1s dense in R.
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Put A= = {a € A: a< 0} and AT = {a € A : a > 0}. It results from
(6) that A= = {g(x) : « € B,z < b} and AT = {g(z) : = € B,z > b}.
Let ¢ = infAt and s = supA~. By the density of B in I we have i ¢ AT or
s ¢ A~. Consequently i = 0 = s, because AT + A~ C A, s <s+i <4 and
sup(A~ +14) = s +i = inf(AT + s). This means that A4 is dense in R.

Define a function f: I — R by: f(a) = limy_ g(2y) for a € I, where (2, : n €
N) C B is any sequence with @ = limp_,c #,,. It is easily seen that the definition
is correct and f is an increasing homeomorphism onto R such that f(z) = g(«)
for # € B (cf. e.g. [3], the proof of Corollary 5). Fix a € I, € T, and a sequence
(n : n € N)C B with @ = limy, o ©,,. Then

ge@) = ge( lim ) = Tim gy(n) = Tim .« go(0).
Consequently
Hoi(a)) = lim f(zn«gi(b) = lim g(wn - g:(b))
= lim (g(zn) + 9(9:(0))) = lim_f(an) + 9(9:(0))
= f(a) +9(g:(b)).

This completes the first part of the proof.

Now suppose that B has a subset of the second category with the Baire property.
Then A has a subset of the second category with the Baire property, because
A =yg¢(B) = f(B) and f is a homeomorphism. Thus on account of the theorem of
S.Piccard (see e.g. [7], Theorem 2) intA # @. This, in view of the density of A in
R, gives A = R. Hence F = F[f], which ends the proof. d

From Theorem 1 we get the following partial answer to the problem of O.Bo-
rtivka and F.Neumann (see [3], p.122; cf. also [2], [4], [5] and [8]).

Corollary 1. Let F' be a disjoint group of C™ functions from I into I such that
the set |JF is dense in I x I and has a subset of the second category with the
Baire property. Then ' = F[f] for some C" diffeomorphism f of I onto R.

Proof. Since | J F' has a subset of the second category with the Baire property,
there is b € I such that F'(b) has a subset of the second category with the Baire
property in I (see e.g. [9], p.66-57). Further, according to Proposition 7 in [3],
F(b) is dense in I. (Actually Proposition 7 in [3] is proved for I = (0, 1), however
since every open interval is homeomorphic to (0, 1), we do not lose generality (see
the proof of Theorem 8 in [3])). Thus Theorem 1 yields the statement. O

Finally we have the subsequent

Proposition. Let fy, fo : I — R be homeomorphisms and F' be a subsemigroup
of F[fi]. Suppose that F has a dense orbit. Then F is a subsemigroup of F|[fs]
iff f1(x) = cfa(x) + d for € R with some ¢,d € R, ¢ # 0.

Proof. First suppose that fi(z) = c¢fa(x)+d for # € R with some ¢,d € R, ¢ # 0.
Fix g; € F. There is a € R such that

g:(x) = [T (fi(x) +a) for x € 1.
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Thus, for every # € R,
9:(@) = 7 (efol@) + d+ @) = J7 (o5 (folo) + 2D + d) = i (o) + 7).

Now assume that F' is a subsemigroup of F[fz]. Let B and .: B x B — B be
defined as in the proof of Theorem 2. For j = 1,2 define function h;: I — R by
the formula:

hj(fj_l(fj(b)—l—x)):x forz e R.

Since f; and f» are homeomorphisms, by and ks are strictly monotonic.
Take g;,gs € F. There are z!, 22zl 2 € R with

5

gt(x):fj_l(fj(x)—l—x{) forzel j=1,2
gs(x):f]»_l(fj(x)—l—xé) forrel j=1,2.

Thus, for j = 1,2,

91(6) + g (b) = g5(9e(8) = S5 (S3(9e(D) + #d) = f7 (S5 (b) + 2] + 2d)

and consequently

hi(g:(b) « 95 (b)) = 21 + ) = hy(9:(b)) + hy (9(b).

In this way we have proved that h;(z.y) = hj(2)+ h;(y) for 2,y € B, j =1,2.
Put A; = h;(B) for j = 1,2. Then A; and A, are additive subsemigroups of R
and the function h = hj o h2_1|A2 1s additive and strictly monotonic. Further, A;
and A, are dense in R, because A; = f;(B) — f;(b) for j = 1,2. Define a function
h:R — R by: h(a) = lim, . h(x2) for « € R, where (2¢ : n € ) C A, is any

n
sequence with ¢ = limy, .o 2. It is easy to see that h is monotonic and additive.

Thus there is ¢ € IR ¢ # 0, such that 71(1‘) = cx for # € R. Hence, for every z € B,
hi(z)=hyo hz_l(hz(x)) = cha(z).

Fix a € I and a sequence (2, : n € N) C B with a = limy_ #,. Then
fila) = limy o fi(zn) = fi(b) + limy oo hi(2n) = fi1(b) — cfa(b) + c(f2(b) +
limy, — o 2hi(z,)) = f1(b) — cf2(b) + cfa(a). This ends the proof. a

c
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