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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 59 { 63PROPERTY (A) OF THE N-TH ORDER DIFFERENTIALEQUATIONS WITH DEVIATING ARGUMENTVincent �Solt�esAbstract. The equation to be considered isLny(t) + p(t)y(�(t)) = 0:The aim of this paper is to derive su�cient conditions for property (A) of thisequation.In the paper a result of D�zurina [2] concerning asymptotic properties of thethird order linear di�erential equations with delay is extended to an n-th orderdelay di�erential equation.We consider the di�erential equation(1) Lny(t) + p(t)y(� (t)) = 0;where n > 3, Lny(t) = 1rn(t)  1rn�1(t) � � �� y(t)r0(t)�0 � � �!0 ;ri(t), i = 0; 1; � � � ; n are positive and continuous functions on some ray [t0;1),� (t) < t is increasing function on [t0;1).The expressionsL0y(t) = y(t)r0(t) ; Liy(t) = 1ri(t)�Li�1y(t)�0; i = 1; 2; � � � ; ncalled quasi-derivatives will be very helpful in the sequel. We will suppose through-out the paper that Z 1t0 ri(s) ds =1 i = 1; 2; � � � ; n� 1:1991 Mathematics Subject Classi�cation : Primary 34K10.Key words and phrases: property (A), degree of solution.Received January 17, 1994.



60 VINCENT �SOLT�ESWe restrict our considerations to nontrivial solutions of (1), which exist on [t0;1).Such a solution is called oscillatory if it has arbitrarily large zeros; otherwise it iscalled nonoscillatory. An equation is said to be oscillatory if all its solutions areoscillatory.Let ik 2 f1; � � � ; n� 1g, 1 � k � n� 1 and t; s 2 [t0;1). We de�neI0 = 1;Ik(t; s; rik; � � � ; ri1) = Z ts rik(x)Ik�1(x; s; rik�1 ; � � � ; ri1) dx:It is easy to verify that for 1 � k � n� 1Ik(t; s; rik; � � � ; ri1) = (�1)kIk(s; t; ri1; � � � ; rik);Ik(t; s; rik; � � � ; ri1) = Z ts ri1(x)Ik�1(t; x; rik; � � � ; ri2) dx:The following generalization of a lemmaof Kiguradze [4] can be found in [7, Lemma1 and Lemma 2].Lemma 1. Let y(t) be a nonoscillatory solution of (1), then there exist an integer`, ` 2 f0; 1; � � � ; n� 1g with n+ ` odd and t1 > t0, such that for all t > t1(3) y(t)Liy(t) > 0; 0 6 i 6 `;(�1)i�`y(t)Liy(t) > 0; ` 6 i 6 n� 1and moreover if y(t) is positive then(4) L0y(t) > L`y(t)I`(t; t1; r1; � � � ; r`):The following lemma is necessary in the proof of the main result of this paper.Lemma 2. Let y(t) be a positive solution of (1). If y(t) is of degree `, 1 6 ` 6 n�1,then(5) L`u(t) > Z 1t In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)y(� (s)) ds:For a proof see e.g. [5, Theorem 1].Remark. Relation (5) can be also easily obtained by repeated integration of (1)from t to 1.Following Foster and Grimmer [3] we say that y(t) satisfying (3) is a function ofdegree `. The set of all nonoscillatory solutions of degree ` of (1) is denoted by N`.If we denote by N the set of all nonoscillatory solutions of (1), then by Lemma 1N = N0 [N2 [ � � �Nn�1 if n is odd;N = N1 [N3 [ � � �Nn�1 if n is even:



PROPERTY (A) 61We are interested in the situation whenN = N0 if n is odd;N = ; if n is even:When this situation occurs, we say that (1) enjoys property (A). Property (A) hasbeen studied by many authors see e.g.in [1], [7] and [8]. The main purpose of thispaper is to adapt D�zurina's method and technique known for third order delayequations [2] to establish criteria for property (A) of n-th order delay equations.Theorem 1. Let g(t) be a continuous function satisfying(6) g(t) > t; � (g(t)) 6 t:De�ne for all ` 2 f1; 2; � � � ; n� 1g and s > t, t large enough the functions(7) q`(s; t) = In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)r0(� (s))I`(� (s); t0; r1; � � � ; r2):Assume that(8) lim inft!1 Z g(t)t q`(s; t) ds > 1for all ` 2 f1; 2; � � � ; n � 1g such that n + ` is odd. Then equation (1) has prop-erty (A).Proof. Suppose that y(t) is a nonoscillatory and positive solution of (1) in aneighbourhood of in�nity. With respect to Lemma 1, there exist a t1 and an integer` 2 f0; 1; � � � ; n�1g with n+ ` odd, such that (3) holds. To obtain a contradictionassume that ` > 1. Then on the basis of Lemma 1L0y(t) > L`y(t)I`(t; t1; r1; � � � ; r`)and by Lemma 2L`u(t) > Z 1t In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)y(� (s)) ds:It follows from (3) that L`y(t) is a decreasing function. Combining the last twoinequalities we see thatL`u(t) > Z 1t In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)r0(� (s))� L`y(� (s))I`(� (s); t1; r1; � � � ; r`) ds> Z g(t)t In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)r0(� (s))� L`y(� (s))I`(� (s); t1; r1; � � � ; r`) ds> L`u(� [g(t)]) Z g(t)t In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)r0(� (s))� I`(� (s); t1; r1; � � � ; r`) ds:



62 VINCENT �SOLT�ESSince � (g(t)) 6 t and L`u(t) is decreasing, the previous inequalities yield1 > Z g(t)t In�`�1(s; t; rn�1; � � � ; r`+1)rn(s)p(s)r0(� (s))� I`(� (s); t1; r1; � � � ; r`) ds;which contradicts with (8). The proof is complete.Theorem 1 extends Theorem 1 in [2] to n� th order di�erential equations.If we put g(t) = ��1(t), where ��1(t) is the inverse function to � (t) we imme-diately have:Corollary 1. Let q`(s; t) be de�ned as in (7). Assume that for all ` 2 f1; 2; � � � ; n�1g such that n+ ` is odd lim inft!1 Z ��1(t)t q`(s; t) ds > 1:Then equation (1) has property (A).Our results are new also for the particular case of (1), namely for the di�erentialequation(9) y(n)(t) + p(t)y(� (t)) = 0:To illustrate this fact we compare our results with those of Naito [6] and D�zurina[1]. At �rst note that (8) reduces for (9) tolim inft!1 Z ��1(t)t (s � t)n�`�1(n� ` � 1)! (� (s) � t0)``! p(s) ds > 1:Theorem A. Letlim inft!1 � (t) Z 1t (� (s) � � (t))n�2p(s) ds > (n� 1)!4 :Then equation (9) has property (A).Theorem B. Let lim inft!1 �n�1(t) Z 1t p(s) ds > M1n� 1 ;where M1 is the maximum of all local maxima of the polynomialPn(k) = �k(k � 1) � � � (k � n� 1):Then equation (9) has property (A).Theorem A can be found in [6, Theorem 5 and 6] and Theorem B can be foundin [1, Theorem 11].



PROPERTY (A) 63Example 1. Let us consider the fourth order delay equation(10) y(IV )(t) + at4 y(�t) = 0with a > 0, t > 1, 0 < � < 1 and a�3 < 1. It is easy to verify that Theorems Aand B fail for (10). On the other hand by Corollary 1 equation (10) has property(A) i.e. (10) is oscillatory provideda�3 ln� > 6:The above example shows that Theorem 1 and Corollary 1 are not included inthe known criteria for property (A).References[1] D�zurina, J., Comparison theorems for nonlinear ODE's., Math. Slovaca 42 (1992), 299{315.[2] D�zurina, J., Property (A) of third-order di�erential equations with deviating argument, Math.Slovaca 44 (1994).[3] Foster, K. E., Grimmer, R. C., Nonoscillatory solutions of higher order di�erential equations,J. Math. Anal. Appl. 71 (1979), 1{17.[4] Kiguradze, I., On the oscillation of solutions of the equation dmu=dtm + a(t)jujnsign u = 0,Mat. Sb 65 (1964), 172{187. (Russian)[5] Kusano, T., Naito, M., Comparison theorems for functional di�erential equations with devi-ating arguments, J. Math. Soc. Japan 3 (1981), 509{532.[6] Naito, M., On strong oscillation of retarded di�erential equations, Hiroshima Math. J. 11(1981), 553{560.[7] �Seda, V., Nonoscillatory solutions of di�erential equations with deviating argument, Czech.Math. J. 36 (1986), 93{107.[8] �Skerl��k, A., Oscillation theorems for third order nonlinear di�erential equations, Math. Slo-vaca 42 (1992), 471{484.Vincent �Solt�esDepartment of MathematicsTechnical UniversityLetn�a 9041 54 Ko�sice, SLOVAKIA
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