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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 211 { 232KUMMER TYPE SYSTEM OF CONGRUENCESANDBASES OF STICKELBERGER SUBIDEALSTakashi Agoh and Kenichi MoriAbstract. A new Kummer type system of congruences is introduced andsome bases of subideals of the Stickelberger ideal in a certain group ring arediscussed. Further, we consider special Stickelberger subideals and evaluatethe group indices of them in a subring of the group ring.1. IntroductionLet l � 5 be an odd prime,Zthe ring of integers,Zl =Z=lZthe ring of residueclasses modulo l, Q the �eld of rational numbers and Q(�) the cyclotomic �eldover Q de�ned by a primitive l-th root of unity � = e2�i=l. Also let Bm be them-th Bernoulli number de�ned byB(x) = xex � 1 = 1Xm=0 Bmm! xmand 'k(x) the Mirimano� polynomial, i.e.,'k(x) = l�1Xv=1 vk�1xv (k 2Z):The following system of congruences was �rst introduced by Kummer (1857) inconnection with the �rst case of Fermat's last theorem :8<:'l�1(t) � 0 (mod l);B2m'l�2m(t) � 0 (mod l) �1 � m � l � 32 �:(K)Many kinds of equivalent systems to (K) are known (see, e.g., Agoh [2, 3]and Granville [7]). In his paper [11] Skula devised a very interesting system of1991 Mathematics Subject Classi�cation : 11D42, 11R54, 11B68, 16S34.Key words and phrases: Kummer system of congruences, Stickelberger ideal, Mirimano�polynomial, Bernoulli number, class number of cyclotomic �eld.Received March 18, 1996.



212 TAKASHI AGOH AND KENICHI MORIcongruences (S) equivalent to (K) by means of the Stickelberger ideal in a certaingroup ring (see Section 2). Here, we emphasize that at present it is unknownwhether the system (K) has a non-trivial solution.Recently, Agoh and Skula [4] considered the following special system (K(N ))of congruences and they investigated equivalent systems and speci�c connectionswith Stickelberger subideals :8<:'l�1(t) � 0 (mod l);B(N)2m 'l�2m(t) � 0 (mod l) �1 � m � l � 32 �;(K(N ))where N is a �xed positive integer with 2 � N � l � 1 andB(N)k = 1� Nkk Bk (k � 1):The system (K(N )) for the special case where N = 2 was �rst observed by Ben-neton [5] in 1974 and it was recently investigated by Skula [15] from the viewpointof Stickelberger subideals.We present here the further generalized system of congruences8<:'l�1(t) � 0 (mod l);B(M;N)2m 'l�2m(t) � 0 (mod l) �1 � m � l � 32 �;(K(M;N ))where M and N are �xed positive integers with 2 � M;N � l � 1 andB(M;N)k = (1�Mk)(1� Nk)k Bk (k � 1):Obviously, we see that all the solutions of (K) (resp. (K(N ))) satisfy (K(N ))(resp. (K(M;N ))). In particular, ifM and N both are primitive roots mod l, thenthe above three systems (K), (K(N )) and (K(M;N )) are mutually equivalent, thatis, these systems have the solutions in common.Main purpose of this paper is to study some systems equivalent to (K(N )) and(K(M;N )) and to search bases of Stickelberger subideals relating to these systemsin certain group rings.In Section 2, we de�ne the subideals IN (l) and IM;N (l) of the Stickelbergerideal I(l) in the group ring Zl[G] of a cyclic group G over Zl and obtain bases ofthese subideals. Further, the Skula type systems of congruences concerned with(K(N )) and (K(M;N )) will be derived. In Section 3 we concentrate on identitiesin Zl[G]. Section 4 is appropriated to a search other bases of IN (l) and IM;N (l)applying the identities given in Section 3. In Section 5, we observe the specialStickelberger subideals BN and BM;N , and evaluate the group indices of them ina certain subring of the group ringZ[G] of G overZin terms of the �rst factor h�of the class number of Q(�). In Section 6, we deal with the Fueter type systemof congruences equivalent to (K(M;N )). In the last section, we shall incidentallymention a relationship between the above IN (l) and the ideal BN mod l observedby Skula [16].



KUMMER TYPE SYSTEM OF CONGRUENCES 2132. Skula type systemThroughout this paper we use the following notations:r : a primitive root mod l;ri : the least positive residue of ri mod l for an integer i;indx : the index of x 2Z; l - x; relating to the primitive root rmod l;G = f1; s; s2; � � � ; sl�2g : a cyclic group of order l � 1 with a generator s;R =Z[G] = nl�2Xi=0 aisi : ai 2Zo : the group ring of G over Z;Rl =Zl[G] = nl�2Xi=0 aisi : ai 2Zlo : the group ring of G overZl:The Stickelberger ideal I of R is de�ned byI = n� 2 R : 9� 2 R; � l�2Xi=0 r�isi = l�o (see, e.g.; [13]; 1:1):The canonical mapping  from Zonto Zl can be naturally extended to themapping from R onto Rl in the following way: for an element � =Pl�2i=0 aisi 2 Rwe let  (�) =Pl�2i=0  (ai)si 2 Rl. Then the Stickelberger ideal of Rl is de�ned byI(l) = f (�) : � 2 Ig:Further we de�ne the following special elements in Rl (cf., [13], Section 3):�m = l�2Xi=0 r�imsi (1 � m � l � 1):In particular, set  = �1 = l�2Xi=0 r�isi; � = �l�1 = l�2Xi=0 si:One may observe and treat ideals of the rings R and Rl regarding as modulesover Zand Zl, respectively.In his papers [12, 13] Skula investigated some bases of I(l) and provedProposition 2.1 ([12, Proposition 3.3], [13, Proposition 5.4]). LetC = f�m : Bl�m 6� 0 (mod l); 3 � m � l � 2; m odd g:Then the system C [ f; �g forms a basis of I(l) as a Zl-module. Thusrank I(l) = l + 12 � ii(l);



214 TAKASHI AGOH AND KENICHI MORIwhere ii(l) is the irregularity index of l, i.e.,ii(l) = ]nk : B2k � 0 (mod l); 1 � k � l � 32 o:Also he introduced the following polynomial :De�nition 2.2 ([11], 1.3). For � =Pl�2i=0 aisi 2 R (or Rl), de�nef�(t) = l�1Xv=1 a�indv~vtv;where ~v is an integer (or a class of Zl) such that v~v � 1 (mod l) (1 � ~v � l � 1)(or ~vv = 1 in Zl) and ak (k 2 Z) is replaced by ai (0 � i � l � 2) if k � i(mod l � 1).Here, note that if � =Pl�2i=0 aisi 2 Rl, then ai may be replaced by any elementof the residue class ofZl belonging in ai.As basic relations between the Skula and Mirimano� polynomials, we may state(cf., [14], 2.1) f�m (t) � 'm(t) (mod l) (2 � m � l � 2);f (t) � '1(t) � 'l(t) (mod l);f�(t) � 'l�1(t) (mod l):Using the above polynomial f�(t) (� 2 Rl) Skula considered the system ofcongruences f�(t) � 0 (mod l) (� 2 I(l))(S)and showedProposition 2.3 ([13], Proposition 6.1). Let � be an integer with � 6� 1 (mod l):Then � is a solution of the system (K) if and only if � is a solution of the system(S).For integers M and N with 2 � M;N � l � 1; we setCX = n�m : B(X)l�m 6� 0 (mod l); 3 � m � l � 2; m oddo (whereX = M;N );CM;N = n�m : B(M;N)l�m 6� 0 (mod l); 3 � m � l � 2; m oddo :It is clear that CM;N � CX � C and CM \CN = CM;N : If the order of X modl is not equal to 2, then CX is not the empty set, because B(X)2 6� 0 (mod l). Inthe following we assume that CX (for X = M;N ) and CM;N are not empty.



KUMMER TYPE SYSTEM OF CONGRUENCES 215We denote by IN (l) and IM;N (l) the subideals of I(l) generated by the systemsCN [ f�g and CM;N [ f�g, respectively. Thus,IN (l) = n X�m2CN l�2Xj=0 c(m)j sj�m + c� : c(m)j ; c 2Zlo � I(l);IM;N (l) = n X�m2CM;N l�2Xj=0 c(m)j sj�m + c� : c(m)j ; c 2Zlo � I(l):Similarly to Proposition 2.1, we can stateProposition 2.4. Let 2 � M;N � l � 1: Then(i) the system CN [ f�g forms a basis of IN (l),(ii) the system CM;N [ f�g forms a basis of IM;N (l).Thus rank IN (l) = l � 12 � iiN (l); rank IM;N (l) = l � 12 � iiM;N (l);where iiN (l) = ]nk : B(N)2k � 0 (mod l); 1 � k � l � 32 oand iiM;N (l) = ]nk : B(M;N)2k � 0 (mod l); 1 � k � l � 32 o:It is clear that IM;N (l) = IM (l) \ IN (l), ii(l) � iiN (l) � iiM;N (l) and thenumbers of non-trivial congruences in the systems (K(N )) and (K(M;N )) are atmost rank IN (l) and rank IM;N (l), respectively.In the following discussion we assume that IM (l); IN (l) 6= IM;N (l), in otherwords, CM 6� CN and CN 6� CM :Analogously to the system (S), we now consider the following two systems ofcongruences: f�(t) � 0 (mod l) (� 2 IN (l))(S(N ))and f�0(t) � 0 (mod l) (�0 2 IM;N (l)):(S(M;N ))For these systems one can obviously assertProposition 2.5. (i) The system (K(N )) is equivalent to the system (S(N )).(ii) The system (K(M;N )) is equivalent to the system (S(M;N )).



216 TAKASHI AGOH AND KENICHI MORI3. Identities in RlThis section deals with some polynomial identities and we transport them intothe group ring Rl in order to discover other bases of the subideals IN (l) andIM;N (l) of I(l).For m � 0 and k � 1, designate bySm(k) =1m + 2m + � � �+ km;Sm(k ;N ) =Sm(kN )� Nm+1Sm(k);Sm(k ;M;N ) =Sm(kMN )� Nm+1Sm(kM )�Mm+1Sm(kN ) + (MN )m+1Sm(k):The following identity was described in the paper [4] of Agoh and Skula:Proposition 3.1 ([4], Proposition 3.2). Let m; k be integers with m � l � 3and k � 1: Then1� N2 (kN )l�2�m'l�1(t) + l�2�mXj=2 �l � 2�mj � 1 �(kN )l�1�m�j nB(N)j 'l�j(t)o= l�1Xv=1Sl�2�m(vk ;N )vmtv:Referring to this proposition one can deduceProposition 3.2. With the same notation as in Proposition 3:1(1�M )(1� N )2 (kMN )l�2�m'l�1(t)+ l�2�mXj=2 �l � 2�mj � 1 �(kMN )l�1�m�j nB(M;N)j 'l�j (t)o= l�1Xv=1Sl�2�m(vk ;M;N )vmtv:Proof. For brevity we letWN (x) = 1x fB(x) � B(Nx)g ;WM;N (x) = WN (x)�MWN (Mx);Ak;m(t; x) = fB(x)exg'm+1(tekx) � 'm+1(t)B(x);where B(x) is the generating function of Bernoulli numbers de�ned in the Intro-duction. Then Ak;m(t; x) can be expressed asAk;m(t; x) = x l�1Xv=1� vkXj=0 ejx	vmtv (cf., [2]; (3:3)):



KUMMER TYPE SYSTEM OF CONGRUENCES 217Here we haveAkMN;m(t; x)�AkM;m(t; Nx)�AkN;m(t;Mx) + Ak;m(t;MNx)= �B(x)ex � B(Nx)eNx � B(Mx)eMx + B(MNx)eMNx	'm+1(tekMNx)� fB(x)� B(Nx)� B(Mx) +B(MNx)g'm+1(t)= xf(1�M )(1� N ) +WM;N (x)g'm+1(tekMNx)� xWM;N (x)'m+1(t);hencef(1�M )(1�N ) +WM;N (x)g'm+1(tekMNx)�WM;N (x)'m+1(t)= l�1Xv=1�vkMNXj=0 ejx � N vkMXj=0 ejNx �M vkNXj=0 ejMx +MN vkXj=0 ejMNx	vmtv:Since for n � 0� dndxnWM;N (x)�x=0 = � dndxn �WN (x)�MWN (Mx)��x=0= B(N)n+1 �Mn+1B(N)n+1= B(M;N)n+1 (cf., [1], Lemma)and � dndxn'm+1(tekMNx)�x=0 = (kMN )n'm+n+1(t);we get the identity as required using Leibniz's theorem for the above functionalequality.For integers m; k with 0 � m � l�3 and 1 � k � l�1, we prepare the followingspecial elements of Rl :�(m; k) = l�2Xi=0 bi(m; k)si;�(N)(m; k) = l�2Xi=0 b(N)i (m; k)si;�(M;N)(m; k) = l�2Xi=0 b(M;N)i (m; k)si;where for each i = 0; 1; :::; l� 2bi(m; k) = r�i(m+1)Sl�2�m(r�ik);b(N)i (m; k) = r�i(m+1)Sl�2�m(r�ik ;N );b(M;N)i (m; k) = r�i(m+1)Sl�2�m(r�ik ;M;N ):



218 TAKASHI AGOH AND KENICHI MORIThen we havef�(m;k)(t) � l�1Xv=1Sl�2�m(vk)vmtv (mod l) (cf., [14]; 2:3);f�(N) (m;k)(t) � l�1Xv=1Sl�2�m(vk ;N )vmtv (mod l);f�(M;N)(m;k)(t) � l�1Xv=1Sl�2�m(vk ;M;N )vmtv (mod l):Based on the fact that the mapping � from Rl into Zl[t] de�ned by �(�) =f�(t) conserves addition and scalar multiplication, Skula derived the followingproposition (in a slightly di�erent form) using the polynomial identitykl�1�m'l(t) + l � 1�m2 kl�2�m'l�1(t) + l�2�mXi=2 �l � 1�mi �kl�1�m�i fBi'l�i(t)g= (l � 1�m) l�1Xv=1Sl�2�m(vk)vmtv (Agoh [2]; (3:4)):Proposition 3.3 ([14], Proposition 2.4). Let m; k be integers with 0 � m �l � 3 and 1 � k � l � 1: Then1l � 1�mkl�1�m + 12kl�2�m� + l�2�mXj=2 �l � 2�mj � 1 �kl�1�m�j 1j fBj�l�jg= �(m; k):By Propositions 2.1 and 3.3 one recognizes that �(m; k) is an element of I(l):Similarly to the above proposition, we may deduce the following propositionfrom the polynomial identities given in Propositions 3.1 and 3.2.Proposition 3.4. With the same notation as in Proposition 3:31� N2 (kN )l�2�m� + l�2�mXj=2 �l � 2�mj � 1 �(kN )l�1�m�j nB(N)j �l�jo(i) = �(N)(m; k);(1 �M )(1� N )2 (kMN )l�2�m�(ii) + l�2�mXj=2 �l � 2�mj � 1 �(kMN )l�1�m�j nB(M;N)j �l�jo= �(M;N)(m; k):



KUMMER TYPE SYSTEM OF CONGRUENCES 219By Proposition 2.4 we know that the systems CN [ f�g and CM;N [ f�g formbases of IN (l) and IM;N (l), respectively. Therefore, we may state fromProposition3.4Proposition 3.5. Let m; k be as in Proposition 3:3. Then �(N)(m; k) and�(M;N)(m; k) are the elements in the ideals IN (l) and IM;N (l) of Rl, respectively.4. Other bases of IN (l) and IM;N (l)In this section we would like to search some other bases of the subideals IN (l)and IM;N (l) regarding asZl-modules. For this purpose we utilize the identities (i)and (ii) in Proposition 3.4 adopting the same ideas as mentioned in Skula's paper([14], Sections 3 and 4).(I) Bases of IN (l). Let m; k be integers with 0 � m � l� 3; 1 � k � l� 1 andT = nj even : B(N)j 6� 0 (mod l); 2 � j � l � 3 o :Denoting bya(N)1 (m; k) = 1�N2 (kN )l�2�m;a(N)j (m; k) = 8<:�l � 2�mj � 1 �(kN )l�1�m�j if 2 � j � l � 2�m and j 2 T;0 otherwise;we get from Proposition 3.4-(i)a(N)1 (m; k)� + Xj2T2�j�l�2�m a(N)j (m; k)B(N)j �l�j = �(N)(m; k):Let � = (l � 1)=2� iiN (l). For a subset L of f(m; k) 2Z2 : 0 � m � l � 3; 1 �k � l � 1g with ]L = �, de�ne the square matrix of order � as follows:D(L) = ha(N)j (m; k)i(m;k)2L; j2f1g[T :Then we obtain from Propositions 2.4 and 3.5Theorem 4.1. The system ��(N)(m; k) : (m; k) 2 L	 forms a basis of IN (l) ifand only if the matrix D(L) is non-singular over Zl:Corollary 4.2. Let K be any subset of f1; 2; � � � ; l � 1g with ]K = �. Then thefollowing statements are equivalent :(i) the system ��(N)(0; k) : k 2 K	 forms a basis of IN (l),(ii) the system ��(N)(1; k) : k 2 K	 forms a basis of IN (l),(iii) the matrix [ kl�3�j ]k2K; j2f1g[T is non-singular over Zl.



220 TAKASHI AGOH AND KENICHI MORIProof. For the system ��(N)(0; k) : k 2 K	 we calculate the determinant of thecorresponding matrix D(L) with m = 0. Letting K = fk1; � � � ; k�g one hasdetD(L) = det2666664 1�N2 (k1N )l�2 � � ��l�2j�1�(k1N )l�1�j � � �... ...1�N2 (kiN )l�2 � � � �l�2j�1�(kiN )l�1�j � � �... ... 3777775 (1 � i � �; j 2 T )= G � det[ kl�3�j]k2K; j2f1g[T ;where G = (1�N )N l�22 Yj2T �l � 2j � 1�N l�1�j Yk2K k2 6� 0 (mod l):Therefore, we know from Theorem 4.1 that (i) and (iii) are equivalent. The restfollows easily by the similar argument to the above.Applying Corollary 4.2 we can �nd some bases of IN (l) as follows :Corollary 4.3. Let K0 = fr0; r1; � � � ; rgg, where r is a primitive root mod l andg = � � 1. Then the systems f�(N)(0; k) : k 2 K 0g and f�(N)(1; k) : k 2 K 0g formbases of IN (l).Proof. Consider the square matrix Y = h rl�3�ji i0�i�g;j2f1g[T of order � = g+1.Then we obtain det Y � det � ril�3�j�0�i�g; j2f1g[T 6� 0 (mod l);which leads to the conclusion by virtue of Corollary 4.2.Corollary 4.4. Let k; 1 � k � l � 1; be �xed and putU = nm odd : B(N)l�2�m 6� 0 (mod l); 1 � m � l � 4o :Then the system f�(N)(l � 3; k)g [ f�(N)(m; k) : m 2 Ug forms a basis of IN (l).Proof. Clearly, we see �(N)(l � 3; k) = ((1�N )=2)kN�: Let g be as in Corollary4.3 and put in order the elements of T and U as follows :T = fj(v) : 1 � v � gg; where 2 � j(1) < j(2) < � � � < j(g) � l � 3;U = fm(u) : 1 � u � gg; where 1 � m(1) < m(2) < � � � < m(g) � l � 4:



KUMMER TYPE SYSTEM OF CONGRUENCES 221For an integer �; 1 � � � g, we have m(�) = l�2�j(g��+1). The correspondingmatrix D(L) with a �xed k, 1 � k � l � 1, becomesD(L) = 2666664 1�N2 kN 0 � � � 0...cu B... 3777775 ;where cu = ((1� N )=2)(kN )l�2�m(u) (u = 1; 2; :::; g) andB = [ buv]1�u;v�g; buv = a(N)j(v)(m(u); k):Here we have detD(L) = ((1 � N )=2)kN � detB: If v > g � u + 1; then j(v) >j(g � u + 1) = l � 2 � m(u) and buv = 0: Also, if v = g � u + 1; then j(v) =j(g � u+ 1) = l � 2�m(u) and sobuv = a(N)l�2�m(u)(m(u); k)= (l � 2�m(u))kN 6� 0 (mod l);which implies detB 6� 0 (mod l) and hence D(L) is non-singular. According toTheorem 4.1 the system indicated in the statement forms a basis of theZl-moduleIN (l). This completes the proof.(II) Bases of IM;N (l). We shall develop here the same arguments as done in(I). Let m; k be integers with 0 � m � l � 3; 1 � k � l � 1 and putS = nj even : B(M;N)j 6� 0 (mod l); 2 � j � l � 3o :We now de�nea(M;N)1 (m; k) = (1�M )(1� N )2 (kMN )l�2�m;a(M;N)j (m; k) = 8<:�l � 2�mj � 1 �(kMN )l�1�m�j if 2 � j � l � 2�m; j 2 S;0 otherwise:From Proposition 3.4-(ii) we obtain the identitya(M;N)1 (m; k)� + Xj2S2�j�l�2�ma(M;N)j (m; k)B(M;N)j �l�j = �(M;N)(m; k):Let � = (l � 1)=2 � iiM;N (l) and J be any subset of f(m; k) 2 Z2 : 0 � m �l � 3; 1 � k � l � 1g with ]J = �. Also, de�ne the square matrix of order � asfollows: C(J) = ha(M;N)j (m; k)i(m;k)2J; j2f1g[S :



222 TAKASHI AGOH AND KENICHI MORIThen we get from Propositions 2.4 and 3.5Theorem 4.5. The system ��(M;N)(m; k) : (m; k) 2 J	 forms a basis of IM;N (l)if and only if the matrix C(J) is non-singular over Zl:Corollary 4.6. Let H be any subset of f1; 2; � � � ; l � 1g with ]H = �: Then thefollowing statements are equivalent :(i) the system ��(M;N)(0; k) : k 2 H	 forms a basis of IM;N (l),(ii) the system ��(M;N)(1; k) : k 2 H	 forms a basis of IM;N (l),(iii) the matrix [ kl�3�j ]k2H; j2f1g[S is non-singular over Zl.Corollary 4.7. Let H0 = fr0; r1; � � � ; rqg, where r is a primitive root mod l andq = � � 1: Then the systems f�(M;N)(0; k) : k 2 H 0g and f�(M;N)(1; k) : k 2 H 0gform bases of IM;N (l).The proofs of the above corollaries can be performed by similar methods tothose of Corollaries 4.2 and 4.3.Corollary 4.8. Let k, 1 � k � l � 1, be �xed andW = nm odd : B(M;N)l�2�m 6� 0 (mod l); 1 � m � l � 4o :Then the system f�(M;N)(l � 3; k)g [ f�(M;N)(m; k) : m 2 Wg forms a basis ofIM;N (l).Proof. We obviously see �(M;N)(l � 3; k) = ((1�M )(1� N )=2)kMN�: Let q bean integer de�ned above and put in order the elements of S and W as follows :S = fj(v) : 1 � v � qg; where 2 � j(1) < j(2) < � � � < j(q) � l � 3;W = fm(u) : 1 � u � qg; where 1 � m(1) < m(2) < � � � < m(q) � l � 4:Here, we have m(") = l � 2� j(q � "+ 1) for an integer ", 1 � " � q. The matrixC(J) for a �xed k is equivalent toC(J) = 2666664 (1�M)(1�N)2 kMN 0 � � � 0...du E... 3777775 ;where du = ((1�M )(1 �N )=2)(kMN )l�2�m(u) (u = 1; 2; :::; q) andE = [ euv]1�u;v�q; euv = a(M;N)j(v) (m(u); k):



KUMMER TYPE SYSTEM OF CONGRUENCES 223Hence, it follows that detC(J) = ((1�M )(1�N )=2)kMN �detE: If v > q�u+1;then j(v) > j(q � u + 1) = l � 2 � m(u) and euv = 0: If v = q � u + 1; thenj(v) = j(q � u+ 1) = l � 2�m(u) and so we haveeuv = a(M;N)l�2�m(u)(m(u); k)= (l � 2�m(u))kMN 6� 0 (mod l):Consequently, we may say that detE 6� 0 (mod l) and so C(J) is non-singular.By Theorem 4.5, it can be concluded that the system indicated in the statementforms a basis of the Zl-module IM;N (l). This completes the proof.5. Special ideals BN and BM;NIn this section we will consider special subideals BN and BM;N of the Stick-elberger ideal I in the group ring R and evaluate the group index [BN :BM;N ].In addition, by making use of the result ([4], Theorem 5.8) by Agoh and Skularelating to the �rst factor h� of the class number of Q(�) we deduce a formula forhR0 :BM;Ni, where R0 is a special subring of R de�ned below.Let R0 be the subring of R de�ned byR0 = n� = l�2Xi=0 aisi 2 R : aj + aj+(l�1)=2 = ak + ak+(l�1)=2; 0 � j; k � l � 32 o:The following theorem follows from Iwasawa's class number formula ([8]):Theorem 5.1. hR0 : Ii = h�:We should supplement here that in his profound papers [9, 10] Sinnott extendedthe above formula to more wider class of cyclotomic �elds by means of Stickelbergerideals.We now put for an integer kk = l�2Xi=0 1l (r�irk � r�i+k)si = l�2Xi=0 hrkr�il i si:By choosing an appropriate integer n such that N = rn let� = n = l�2Xi=0 �Nr�il � si (2 � N � l � 1);where [x] is the greatest integer � x.Then, we extract from the paper [4] of Agoh and Skula the following



224 TAKASHI AGOH AND KENICHI MORIProposition 5.2 ([4], Proposition 5.2). For an integer jsj� = l�2Xi=0 �Nr�i+jl � siand sj� + sj+ l�12 � = (N � 1)�:De�nition 5.3 ([4], De�nition 5.3). Denote by BN the ideal of R generated bythe elements � and �, thusBN = n l�2Xj=0 bjsj� + b� : bj; b 2Zo� I:Let X be an integer with 2 � X � l � 1, f = fX be the order of X mod l andput !(X) = 8<: �X f2 + 1� l�1f if f is even;�Xf � 1� l�12f if f is odd:Theorem 5.4 ([4], Theorem 5.8). Let 2 � N � l � 1. Then the systemnsj� : 0 � j � l � 32 o [ f�gforms a basis of BN as a Z-module andhR0 : BNi = !(N )l h�; [I :BN ] = !(N )l :Referring to Proposition 5.2 and Theorem 5.4 we will describe analogous resultsfor a special ideal BM;N of R de�ned below (De�nition 5.6).For integers M;N with 2 � M;N � l� 2, choosing integers m;n with M = rmand N = rn we set�0 =m+n + �MNl �  �Nm �Mn= l�2Xi=0 ��MNr�il �� N �Mr�il ��M �Nr�il �� si:Then, we may describeProposition 5.5. For an integer jsj�0 = l�2Xi=0��MNr�i+jl ��N �Mr�i+jl ��M �Nr�i+jl �� si



KUMMER TYPE SYSTEM OF CONGRUENCES 225and sj�0 + sj+ l�12 �0 = �(M � 1)(N � 1)�:Proof. The expression of sj�0 is obvious. Since for a positive integer a prime to lhar�i+j+(l�1)=2l i = �a(l � r�i+j)l � = a� 1� har�i+jl i ;we havesj+ l�12 �0 = l�2Xi=0��MNr�i+j+(l�1)=2l �� N �Mr�i+j+(l�1)=2l ��M �Nr�i+j+(l�1)=2l �� si= l�2Xi=0��(MN � 1)� �MNr�i+jl ���N �(M � 1) � �Mr�i+jl ���M �(N � 1)� �Nr�i+jl ��� si= �(M � 1)(N � 1)� � sj�0;which implies the result.We now de�ne a special ideal BM;N of R depending on M and N as follows:De�nition 5.6. Denote by BM;N the ideal of R generated by the elements �0 and�, thus BM;N = nl�2Xj=0 b0jsj�0 + b0� : b0j ; b0 2Zo� I:By Proposition 5.5 we know that the elements of �sj�0 : 0 � j � (l � 3)=2	[f�gare generators of the Z-moduleBM;N . Here, we can proveTheorem 5.7. The systemnsj�0 : 0 � j � l � 32 o[ f�gforms a basis of BM;N and [BN :BM;N ] = !(M ):



226 TAKASHI AGOH AND KENICHI MORIProof. We have�0 = l�2Xi=0 ��MNr�il �� N �Mr�il ��M �Nr�il �� si= l�2Xi=0 ��MNr�il �� N �Mr�il �� si �M l�2Xi=0 �Nr�il � si= l�2Xi=0 �NMr�il � si �M l�2Xi=0 �Nr�il � si;where a is the least non-negative residue of an integer a modulo l: In particular,putting M = rm with an appropriate integer m�0 = l�2Xi=0 �Nr�i+ml � si �M l�2Xi=0 �Nr�il � si= sm� �M� 2BN ;which implies that BM;N is a subideal of BN . According to Proposition 5.2 wepresent the transition matrix A from the elements si� (0 � j � (l � 3)=2) and �which form a basis of BN to the elements si�0 (0 � j � (l � 3)=2) and � :A = [auv]0�u;v�(l�1)=2 ;whereauv = 8>>>>>><>>>>>>: �M if u = v; 0 � u; v � (l � 3)=2;1 if u = v �m; 0 � u � (l � 3)=2�m and u = v = (l � 1)=2;�1 if u = v + (l � 1)=2�m; (l � 1)=2�m � u � (l � 3)=2;N � 1 if (l � 1)=2�m � u � (l � 3)=2; v = (l � 1)=2;0 otherwise:Thus, mz }| { l�12 �mz }| {A = 266666666664 �M 1 0.. . . . . ...1 0�1 N � 1.. . . . . ...�1 �M N � 10 � � � 0 1 377777777775 9>=>; l�12 �m9>=>;m



KUMMER TYPE SYSTEM OF CONGRUENCES 227Let g be the order of M mod l and set e = (l � 1)=g. We especially choosethe primitive root r mod l such that M = re and calculate detA according to thefollowing procedures :(i) If g is even, we �rst multiply the last row of A by �(N �1) and add it to therows with indices (l�1)=2� e; � � � ; (l�3)=2. Next, we divide all the columns of Aexcept for the last column into g=2 blocks and perform column operations. Thenwe exchange the index v (0 � v � (l � 3)=2) of the column for the index x + ye(0 � x � e� 1; 0 � y � g=2� 1) and perform the following column operations foreach x :(a) multiply the column with index x + ye by M and add it to the columnwith index x+(y�1)e, beginning at the column with index x+(g=2�1)e,(b) multiply the column with index x by � �1 +M g=2��1,(c) multiply the column with index x by M g=2�y and add it to the columnwith index x+ ye (1 � y � g=2� 1),(d) interchange the columns with indices x + ye and x + (y + 1)e (0 � y �g=2� 2).Then it is seen that detA = (�1)(l�1)=2 �1 +M g=2�e.(ii) If g is odd (and so e is even), we multiply the last row of the matrix A by�(N �1) and add it to the rows with indices (l�1)=2� e; � � � ; (l�3)=2. Next, wedivide all the columns of A except for the last column into g blocks and performcolumn operations. Then we exchange the index v (0 � v � (l � 3)=2) of thecolumn for the index x + y � (e=2) (0 � x � e=2 � 1; 0 � y � g � 1) and performthe following column operations for each x :(a) multiply the column with index x + y � (e=)2 by M and add it to thecolumn with index x+(y� 2) � (e=2), beginning at the column with indexx+ (g � 1) � (e=2),(b) interchange the columns with indices x and x + e=2 and multiply thecolumn with index x+ e=2 by �1,(c) multiply the column with index x + e=2 by M (g�1)=2 and add it to thecolumn with index x,(d) multiply the column with index x by (M g � 1)�1,(e) multiply the column with index x by �M (g+1)=2 and add it to the columnwith index x+ e=2,(f) multiply the column with index x by M (g+1)=2�y=2 and add it to thecolumn with index x+ y � (e=2) (2 � y � g � 1 and y even),(g) multiply the column with index x + e=2 by M (g�1)=2�(y�1)=2 and add itto the column with index x+ y � (e=2) (3 � y � g � 2 and y odd),(h) interchange the columns with indices x+ y � (e=2) and x+ (y + 2) � (e=2)(0 � y � g � 3).Then we see detA = (�1)(l�1)=2 (1�M g)e=2.Summarizing (i) and (ii) we may state thatdetA = (�1)(l�1)=2!(M );which completes the proof of the theorem.



228 TAKASHI AGOH AND KENICHI MORICombining Theorems 5.4 and 5.7 we can �nally derive the following formulas:Theorem 5.8.hR0 : BM;Ni = !(M )!(N )l h� and [I :BM;N ] = !(M )!(N )l :6. Fueter type systemIt is well-known that if � 6� 1 (mod l) is a solution of the system (K), then � isalso a solution of the following system of congruences considered by Fueter [6] in1922 : l�1Xv=1�kvl � 1v tv � 0 (mod l) (1 � k � l � 1):(F)The Fueter type system corresponding to (K(N )) was observed by Agoh andSkula and they provedProposition 6.1 ([4], Proposition 3.5). Let � be an integer 6� 1 (mod l).Then � is a solution of (K(N )) if and only if � is a solution of the sysyeml�1Xv=1��kNvl �� N �kvl ��1v tv � 0 (mod l) (1 � k � l � 1):(F(N ))Further, the equivalent system to (F(N )) was given by means of the Skulapolynomial.Theorem 6.2 ([4], Theorem 5.10). The system (F(N )) is equivalent to the sys-tem f�(t) � 0 (mod l) (� 2 BN ):Referring to these results we will study the Fueter type system of congruencesequivalent to (K(M;N )).First, we shall proveProposition 6.3. The system (K(M;N )) is equivalent to the system(F(M;N )) l�1Xv=1��MNvkl � �N �Mvkl ��M �Nvkl �+MN �vkl �� 1v tv� 0 (mod l) (1 � k � l � 1):Proof. Recall the polynomial identity given in Proposition 3.2 and take m=�1.For a positive integer a prime to l, we have Sl�1(a) � a�[a=l] (mod l) by Fermat'slittle theorem, and soSl�1(a;M;N ) = Sl�1(aMN )�N lSl�1(aM )�M lSl�1(aN ) + (MN )lSl�1(a)� � �aMNl �+N �aMl �+M �aNl ��MN hal i (mod l):



KUMMER TYPE SYSTEM OF CONGRUENCES 229Therefore,(1�M )(1�N )2 'l�1(t) + l�2Xi=1�l � 1i �(kMN )l�1�i nB(M;N)i+1 'l�i�1(t)o� � l�1Xv=1��vkMNl �� N �vkMl ��M �vkNl �+MN �vkl �� 1v tv (mod l):Here we see det[(kMN )j ]1�k�l�1;0�j�l�2 6� 0 (mod l), so the result follows.Note that � � 1 (mod l) is a solution of the both systems (K(M;N )) and(F(M;N )). In fact, one has 'i(1) = Si�1(l� 1) � 0 (mod l) for i = 2; 3; � � � ; l� 1and B(M;N)l�1 � (M l�1 � 1)ql(N ) � 0 (mod l) by the von Staudt-Clausen theoremand Fermat's little theorem, where ql(N ) = (N l�1�1)=l is the Fermat quotient ofl with base N , l - N . So we can con�rm the statement by observing the congruencein the above proof.Finally, we would like to translate Proposition 6.3 by using the Skula polynomialdepending on the ideal BM;N of R.Theorem 6.4. The system (F(M;N )) is equivalent to the systemf�(t) � 0 (mod l) (� 2BM;N ):Proof. Let k and � be integers satisfying r� = k, 1 � k � l � 1, 0 � � � l � 2.Putting � = s��0 we get from Proposition 5.5� = l�2Xi=0 ��MNr�i+�l � �N �Mr�i+�l ��M �Nr�i+�l �� si:Since for a positive integer a prime to lharind v+�l i = �avkl � = �avkl �� a �vkl � (1 � v � l � 1);it follows thatf�(t) = l�1Xv=1��MNrind v+�l �� N �Mrind v+�l ��M �Nrind v+�l �� 1v tv= l�1Xv=1��MNvkl ��MN �vkl �� 1v t� � N l�1Xv=1��Mvkl ��M �vkl �� 1v tv�M l�1Xv=1��Nvkl �� N �vkl �� 1v tv= l�1Xv=1��MNvkl ��N �Mvkl � �M �Nvkl �+MN �vkl �� 1v tv:



230 TAKASHI AGOH AND KENICHI MORIOn the other hand, noticing that [a(l � 1)=l] = a � 1 � [a=l] for a > 0, l - a, wehave l�1Xv=1��MNvl � �N �Mvl ��M �Nvl �+MN hvl i� 1v tv+ l�1Xv=1��MNv(l � 1)l �� N �Mv(l � 1)l ��M �Nv(l � 1)l � +MN �v(l � 1)l �� 1v tv= �(M � 1)(N � 1) l�1Xv=1 1v tv � �(M � 1)(N � 1)f�(t) (mod l);where l - (M � 1)(N � 1). This completes the proof of the theorem.Consequently, we can say that the system (K(M;N )) is equivalent to the systemmentioned in Theorem 6.4. 7. AddendumLet BN be the ideal of R given in De�nition 5.3 and BN (l) be the ideal of Rlde�ned byBN (l) = nl�2Xi=0 aisi 2 Rl : 9 bi 2 ai such that l�2Xi=0 bisi 2BNo:Most recently, Skula ([16], Section 4) investigated basic properties ofBN (l) andinclusion relation of these ideals for various integers N (see also [15], Section 4).In a personal communication of him to one of the authors of this paper the exactrelationship between the ideal IN (l) treated in Section 2 and the above BN (l) hasbeen shown.Proposition 7.1. Let N be an integer with 2 � N � l � 1 and  (= �1) be theelement of Rl de�ned in Section 2. ThenIN (l) =BN (l) if ql(N ) � 0 (mod l);IN (l) � Rl =BN (l) if ql(N ) 6� 0 (mod l):Proof. We shall follow to the proof communicated by Skula. Let �l be the l-adic value and h(k) (k � 1) be the integer de�ned as follows : for an integerm; 1 � m � l � 2; if Bl�m 6� 0 (mod l), then put h(l � 1 � m) = 0. Also,if Bl�m � 0 (mod l), then we provide that h(l � 1 � m) is the largest positive



KUMMER TYPE SYSTEM OF CONGRUENCES 231integer c such that Blc�1 (l�1�m)+1 � 0 (mod lc). Using these notations we de�ne(cf., [16], Section 4)�(m) =8><>: �l(N f � 1)� 1 if m = 1;h(l � 1�m) + �l(N f � 1) if f j m� 1 and m 6= 1;h(l � 1�m) if f - m � 1for a �xed integer N , where f is the order of N mod l. Then the systemf�m : �(m) = 0; 1 � m � l � 2; m oddg [ f�gforms a basis of the Zl-module BN (l) (cf., [15, Theorem 4.7-(c)] for the caseN = 2). We also see that the systemn�m : B(N)l�m 6� 0 (mod l); 3 � m � l � 2; m oddo [ f�g= f�m : �(m) = 0; 3 � m � l � 2; m oddg [ f�gforms a basis of the Zl-module IN (l). Here, we have �(1) = 0 , ql(N ) 6� 0(mod l), �1 2BN (l), which implies the result.Acknowledgment. The authors are deeply grateful to Professor Ladislav Skulafor his careful reading of the paper and many useful comments.References[1] Agoh, T.,On the criteria of Wieferich and Mirimano�, C.R. Math. Rep. Acad. Sci. Canada8(1989), 49-52.[2] Agoh, T.,On the Kummer-Mirimano� congruences, Acta Arith. 55(1990), 141-156.[3] Agoh, T., Some variations and consequences of the Kummer-Mirimano� congruences, ActaArith. 62(1992), 73-96.[4] Agoh, T. and Skula, L.,Kummer type congruences and Stickelberger subideals, Acta Arith.75 (1996), 235-250.[5] Benneton,G.,Sur le dernier th�eor�eme de Fermat, Ann. Sci. Univ. Besan�conMath. 3(1974),15 pp.[6] Fueter, R.,Kummers Kriterium zum letzten Theorem von Fermat, Math. Ann. 85(1922),11-20.[7] Granville, A.,Diophantine equations with varying exponents (with special reference to Fer-mat's last theorem), Ph.D. thesis, Queen's University, 1987.[8] Iwasawa, K.,A class number formula for cyclotomic �eld, Ann. of Math. 76(1962), 171-179.[9] Sinnott, W.,On the Stickelberger ideal and the circular units of a cyclotomic �eld, Ann. ofMath. 108(1978), 107-134.[10] Sinnott, W.,On the Stickelberger ideal and the circular units of an abelian �eld, Invent.Math. 62(1980), 181-234.[11] Skula, L.,A remark on Mirimano� polynomials, Comment. Math. Univ. St. Paul. 31(1982),89-97.[12] Skula, L.,Systems of equations depending on certain ideals, Arch. Math. (Brno) 21(1985),23-38.[13] Skula, L., Some bases of the Stickelberger ideal, Math. Slovaca 43(1993), 541-571.[14] Skula, L.,Agoh's bases of the Stickelberger ideal, Math. Slovaca 44(1994), 663-670.
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