Archivum Mathematicum

Josef Janyška; Marco Modugno

Relations between linear connections on the tangent bundle and connections on the jet bundle of a fibred manifold

Archivum Mathematicum, Vol. 32 (1996), No. 4, 281--288
Persistent URL: http://dml.cz/dmlcz/107581

Terms of use:

© Masaryk University, 1996
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

RELATIONS BETWEEN LINEAR CONNECTIONS ON THE TANGENT BUNDLE AND CONNECTIONS ON THE JET BUNDLE OF A FIBRED MANIFOLD

JOSEF JANYŠKA AND MARCO MODUGNO
To Ivan Kolář, on the occasion of his 60th birthday.

Abstract

All natural operations transforming linear connections on the tangent bundle of a fibred manifold to connections on the 1-jet bundle are classified. It is proved that such operators form a 2-parameter family (with real coefficients).

Introduction

This paper is motivated by the bijective relation between time-preserving linear connections on space-time with absolute time and affine connections on 1-jet bundle of space-time, [1], [2], [3]. We would like to know if similar relation holds also for a general fibred manifold and so we study all natural operations transforming linear connections on the tangent bundle of a fibred manifold to connections on the 1 -jet bundle. We prove that such operators form a 2 -parameter family (with real coefficients) and we give its coordinate and geometric expressions.

Our operator are natural in the sense of [4] and [5].
All manifolds and mappings are assumed to be smooth.

1. Linear connections

Let : \rightarrow be a fibred manifold with a local fibred coordinate chart $(\quad)=(\quad),=1 \operatorname{dim}=,=1 \operatorname{dim}-\operatorname{dim}=, \quad=$ $1 \operatorname{dim}=+$.

A linear connection Λ on the bundle $: \quad \rightarrow \quad$ and a linear connection on the bundle $: \quad \rightarrow \quad$ can be expressed, respectively, by tangent valued

[^0]forms
\[

$$
\begin{array}{rlll}
\Lambda: & \rightarrow^{*} & \otimes \\
: & & \rightarrow^{*} & \otimes
\end{array}
$$
\]

with coordinate expressions, respectively,

$$
\begin{array}{rlrll}
\Lambda & =\otimes(+\Lambda & \cdot & \Lambda & \in{ }^{\infty}() \\
& =\otimes(+1 \cdot \cdot) & & \in{ }^{\infty}() \tag{1.2}
\end{array}
$$

where (.) and (.) are the induced coordinate charts on and respectively. The connections Λ and are also characterised by the vertical projections $\Lambda: \quad \rightarrow \quad$ and $: \quad \rightarrow \quad$, respectively, or equivalently by the forms $\mathrm{A}: \rightarrow{ }^{*} \otimes$ and $: \rightarrow^{*} \otimes$ with coordinate expressions, respectively,

$$
\begin{align*}
\Lambda & =\left(\begin{array}{lll}
\cdot & -\Lambda & \cdot
\end{array}\right) \otimes \tag{1.3}\\
& =(\cdot) \tag{1.4}
\end{align*}
$$

Let us denote by $\otimes \Lambda^{*}$ the tensor product of the connection and the pullback of the dual connection Λ^{*} with respect to , i.e.

$$
\otimes \Lambda^{*}: *^{*} \otimes \quad \rightarrow{ }^{*} \underset{\substack{\otimes \\ Y}}{\otimes} \quad\left({ }^{*} \otimes\right)
$$

with coordinate expression, in the induced fibred coordinate chart () on : ${ }^{*} \otimes \rightarrow$,

$$
\begin{equation*}
\otimes \Lambda^{*}=\otimes(+(\quad-\Lambda)) \tag{1.5}
\end{equation*}
$$

where we put $\Lambda=0$. The connection $\otimes \Lambda^{*}$ can be defined by the vertical projection $\otimes_{Y} \Lambda^{*}:\left({ }^{*} \otimes\right) \rightarrow{ }^{*} \otimes$. We have the coordinate expression

$$
\otimes_{Y} \Lambda^{*}=\left(\begin{array}{cc}
-(\quad-1 \tag{1.6}
\end{array}\right) \otimes
$$

A linear connection on is said to be projectable on a linear connection Λ on if the following diagram commutes

A pair of linear connections (Λ) is said to be fibre preserving if the covariant derivative of with respect to $\otimes \Lambda^{*}$ vanishes, i.e. $\nabla \otimes_{Y} \Lambda^{*}(\quad)=0$.

Lemma 1.1. Let be a linear connection on and Λ a linear connection on . The following three conditions are equivalent
i) is projectable on Λ.
ii) The pair (Λ) is fibre preserving.
iii) In a fibred coordinate chart $==0$ and $=\Lambda$

Proof. It can be proved by using (1.3), (1.4) and (1.6).

2. Contact mappings

We deal with the natural complementary contact maps

$$
\begin{array}{llllll}
\text { д: } & \times & \rightarrow & : & \times & \rightarrow
\end{array}
$$

or equivalently

$$
\begin{array}{ll}
\text { д }: 1 & \rightarrow^{*} \otimes
\end{array}: 1 \rightarrow^{*} \otimes
$$

which split the natural exact sequence

$$
\begin{equation*}
0 \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow 0 \tag{2.1}
\end{equation*}
$$

through the exact sequence over 1

$$
\begin{equation*}
0 \rightarrow 1 \quad \times \quad \xrightarrow{\text { Д }} 1 \quad \times \quad \rightarrow \quad 1 \quad \times \quad \rightarrow 0 \tag{2.2}
\end{equation*}
$$

We have the coordinate expressions
(2.3) д $=\otimes$ д $=\otimes(+)=\otimes=(-\quad) \otimes$
where (;) is the induced coordinate chart on 1 .
We recall the canonical isomorphism

$$
1 \simeq 1 \times\left({ }^{*} \otimes\right)
$$

given by

$$
\mapsto \quad \otimes
$$

3. Induced connection

A connection Γ on the affine bundle ${\underset{0}{1}: 1 \rightarrow \text { can be expressed by a }}_{0}$ tangent valued form
with coordinate expression

$$
\Gamma=\otimes(+\Gamma) \quad \Gamma \quad \in^{\infty}\left(\begin{array}{l}
1 \tag{3.1}
\end{array}\right)
$$

Using the identification of 1 and ${ }^{*} \otimes$, the connection Γ can be characterised by the vertical projection $\Gamma: 1 \rightarrow{ }^{*} \otimes_{1}$, or equivalently by the form $\Gamma: 1 \rightarrow{ }^{*} Q^{*}{ }_{1} \otimes_{1}$. In coordinates we have

$$
\Gamma=\otimes\left(\begin{array}{c}
-\Gamma \tag{3.2}
\end{array}\right) \otimes
$$

The connection Γ is affine if and only if its coordinate expression is of the type

$$
\Gamma=\Gamma \quad+\Gamma \quad \Gamma \quad \Gamma \quad \in{ }^{\infty}(
$$

Theorem 3.1. Let Λ be a linear connection on and a linear connection on . The map

$$
\Gamma=\circ\left(\otimes \Lambda^{*}\right)^{\circ} \text { д }
$$

given by the following diagram

turns out to be a connection on the bundle ${ }_{0}^{1}: 1 \rightarrow$. Moreover, we have the coordinate expression

$$
\begin{equation*}
\Gamma \quad=\quad+\quad-\quad(\quad+\quad) \tag{3.3}
\end{equation*}
$$

i.e. the connection Γ is independent of Λ.

Thus, we have obtained a natural operator

$$
: \quad \mapsto \Gamma
$$

transforming linear connections on into connections on 1 .
Proof. It can be proved in coordinates by using (2.3), (1.6) and (3.2).

Lemma 3.1. If (Λ) are fibre preserving, then the induced connection () on 1 is affine.

Proof. From the coordinate expression (3.3), for a pair of fibre preserving connections and Λ, we get

$$
\begin{equation*}
\Gamma=(\quad-\quad)+ \tag{3.4}
\end{equation*}
$$

where we put
$=0$ and $\quad=\Lambda$.

Remark 3.1. In Galilei relativistic theory [1], [2], [3], the base manifold (time) is assumed to be 1-dimensional and affine. A linear connection on space-time is said to be time-preserving if it is projectable on the canonical flat connection on the base. (3.4) then implies that the relation between time-preserving linear connections on space-time and affine connections on its 1 -jet bundle is bijective. But for dim 1 and the flat connection on an affine base manifold this relation is not one-to-one.

4. Curvature

The curvatures of a linear connection on and of a connection Γ on 1 are, respectively, the 2 -forms

$$
\begin{aligned}
& =\frac{1}{2}\left[\begin{array}{lll}
{[} & & \rightarrow \wedge^{*} \otimes \\
\Gamma & =\frac{1}{2}\left[\begin{array}{lll}
\Gamma & \Gamma]: & 1
\end{array}\right. & \rightarrow \wedge^{2 *} \otimes\left({ }^{*} \otimes\right.
\end{array}\right)
\end{aligned}
$$

with coordinate expressions

$$
\begin{align*}
& =(\mathrm{r}) \wedge \otimes= \tag{4.1}\\
& =(\square) \cdot
\end{align*}
$$

and

$$
\begin{align*}
\Gamma & =\left(\begin{array}{lll}
\Gamma
\end{array}\right) \wedge \& \otimes \tag{4.2}\\
& =\left(\begin{array}{ll}
\Gamma \\
\Gamma & \Gamma \\
\Gamma
\end{array}\right)
\end{align*}
$$

respectively.
Theorem 4.1. If Γ is the connection on 1 induced by a linear connection on , then we have

$$
\Gamma=0 \quad 0, .,
$$

according to the following commutative diagram

i.e in coordinates

Proof. It can be proved by using (3.3), (4.1) and (4.2).

5. Main theorem

Let us denote by (), ≥ 0, the group of -order jets of diffeomorphisms of $\mathbb{R}+$ which preserve the origin and the fibration $\mathbb{R}+\rightarrow \mathbb{R}$, i.e () is the subgroup in + given by ${ }_{1}{ }_{r}=0,=0 \quad-1$. We have the canonical group homomorphism $:(, \rightarrow \quad, \quad$, and we denote by () its kernel.

Let us denote by $=\mathbb{R} \otimes \mathbb{R}^{*} \times \mathbb{R}^{+} \otimes \otimes^{2} \mathbb{R}^{(+) *}$ the ${\underset{(}{2}}^{2}$-space with coordinates () and the left action of the group ${ }_{2}^{2}$, given by

Let us denote by ${ }^{\sim}=\mathbb{R} \otimes \mathbb{R}^{*} \times \mathbb{R}+\otimes \wedge^{2} \mathbb{R}^{(+) *}$ the $\quad{ }^{1} \quad$-space with coordinates () and the tensor action of the group () We denote by $: \rightarrow$ the ${ }_{(}^{2}$)-equivariant mapping given by the antisymmetrisation of subindices , i.e.

$$
=\quad=12(\quad-\quad)
$$

Let us consider the space $=\mathbb{R}^{(+) *} \otimes \mathbb{R}{ }^{*} \otimes \mathbb{R} \quad$ with coordinates () and the action of the group $\quad \underset{(}{1}$, given by

Lemma 5.1. All ${ }_{2}^{2}$,-equivariant mappings from to are of the form

$$
\begin{array}{rllll}
= & { }_{1}(& + & - & - \tag{5.1}\\
& +{ }_{2}(& & + & - \\
=1 & 2(& - &)
\end{array}
$$

Proof. The proof uses the standard techniques of computation of ${ }_{2}^{2}$,-equivariant mappings, [4], and we can divide it into three steps. We omit technical computations.

Step 1. Let $: \rightarrow$ be a ${ }_{(}^{2}$)-equivariant mapping. From the equivariancy of with respect to $\left(^{(21)}\right.$ we get that is of the form $=\tilde{\circ}_{0}$, where $\sim_{\sim}^{\sim} \rightarrow$ is a $\quad 1$, -equivariant mapping, so it is sufficient to classify all mappings

Step 2. Let us denote by the homotheties of \mathbb{R}. From the equivariancy of \sim with respect to $\left(\quad \times \operatorname{id}_{\mathbb{R}^{m}}\right)$ and $\left(\operatorname{id}_{\mathbb{R}^{n}} \times\right)$ we get that ${ }^{\sim}$ is polynomial and any monomial is linear in and of maximum degree 3 in. Coefficients are absolute invariant tensors and we have a polynomial with 33 coefficients.

Step 3. Finally, using equivariancy with respect to diffeomorphisms () \mapsto $(+\quad)$, we find relations between coefficients of and we get (5.1).

Theorem 5.1. All natural operations transforming a linear connection on into connections on 1 form the following D-parameter family

$$
(\quad)+\left(i d \otimes \text { म }^{*} \otimes\right)\left(\begin{array}{ll}
1 & +2 \tag{5.2}
\end{array}\right)
$$

where $1_{2} \in \mathbb{R}, \quad$ is the torsion tensor of , ${ }^{\prime}$ denotes the contraction and is the identity tensor on

Proof. Any natural connection on 1 is of the form () + $\Phi()$, where Φ is an operator (over 1) transforming into a section of ** ${ }^{*}{ }^{*}$. So it is sufficient to classify all operators Φ. The generalized Peetre theorem implies that any operator Φ is of finite order, [4], [8].

Using homogeneity conditions, [4, Proposition 25.2], we get that all finite order operators Φ are of order $0(\Phi()$ depends only on coefficients of and not on their derivatives).

All 0-order operators Φ are in a bijective correspondence with ${ }_{2}^{2}$,-equivariant mappings from to and it is easy to see that the operator corresponding to the mapping of Lemma 5.1 is $\left(\mathrm{id} \otimes\right.$ Д $\left.^{*} \otimes\right)\left(1+2 \otimes^{\prime}\right)$.

Corollary 5.1. For a torsion free connection the connection () is the unique natural connection on 1 given by

Another geometrical description of Theorem 5.1 is based on the following theorem, [4, Proposition 25.2].

Theorem 5.2. All natural operations transforming a linear connection on into linear connections on form the following 3-parameter family

$$
+_{1}+2 \otimes+3 \hat{\otimes}
$$

where $1 \quad 2 \quad 3 \in \mathbb{R}$.
Theorem 5.1 now can be interpreted by applying the operator on the family of connections from Theorem 5.2. Then the resulting connection on 1 does not depend on 3 and it is easy to see that

$$
\left(+_{1}+2 \otimes^{\wedge}+3 \wedge \otimes\right)=(\quad)+\left(i d \otimes \text { म }^{*} \otimes\right)\left(\begin{array}{ll}
1 & Q^{\wedge}
\end{array}\right)
$$

References

1. D. Canarutto, A. Jadczyk, M. Modugno: Quantum mechanics of a spin particle in a curved spacetime with absolute time, Rep. on Math. Phys., 36, 1 (1995), 95-140.
2. A. Jadczyk, M. MODUGNo: An outline of a new geometric approach to Galilei general relativistic quantum mechanics, in C.N. Yang, M.L. Ge and X. W. Zhou editors, Proc. XXI Int. Conf. on Differential geometric methods in theoretical physics, Tianjin 5-9 June 1992, 543-556, Singapore, 1992, World Scientific.
3. A. JADCZYk, M. Modugno: Galilei general relativistic quantum mechanics, book manuscript, 1994.
4. I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, SpringerVerlag, 1993.
5. D. Krupka, J. Janys̆ka, Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990.
6. L. Mangiarotti, M. Modugno: Connections and differential calculus on fibred manifolds, Istituto di Matematica Applicata "G. Sansone", Università di Firenze, 1989.
7. A. NiJenhuis, Natural bundles and their general properties, Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, pp. 317-334.
8. J. Slovák, On the finite order of some operators, Proc. Conf. Diff. Geom. and Its Appl. (communications), Brno 1986, Published by J. E. Purkyně University 1987, 283-294.

Josef Janys̆ka
Defartment of Mathematics, Masaryk University
Janác̆́kovo nám 2a, 66295 Brno, CZECH REPUBLIC
E-mail: janyska@math.muni.cz

Marco Modugno
Defartment of Applied Mathematics "G. Sansone"
Via S. Marta 3, 50139 Florence, ITALY
E-mail: modugno@ingfi1.ing.unifi.it

[^0]: 1991 Mathematics Subject Classification. 53C05, 53C15, 58A20.
 Key words and phrases. tangent bundle, jet bundle, connection, natural operator.
 This research has been supported by grant No. 201/96/0079 of GA CR, GNFM of CNR, MURST, University of Florence and Contract ERB CHRXCT 930096 of EEC.

