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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 41 { 56ON SUPERMINIMAL SURFACESThomas FriedrichDedicated to the memory of Professor Otakar Bor�uvkaAbstract. Using the Cartan method O. Bor�uvka (see [B1], [B2]) studiedsuperminimal surfaces in four-dimensional space forms. In particular, he de-scribed locally the family of all superminimal surfaces and classi�ed all ofthem with a constant radius of the indicatrix. We discuss the mentioned re-sults from the point of view of the twistor theory, providing some new proofs.It turns out that the superminimal surfaces investigated by geometers at thebeginning of this century as well as by O. Bor�uvka have a holomorphic andhorizontal lift into the twistor space. Global results concerning superminimalsurfaces have been obtained during the last 15 years. In this paper we inves-tigate superminimal surfaces in the hyperbolic four-spaces.1. The Indicatrix of a Surface in a Four-Space.Let (X4; g) be a Riemannian manifold and consider an isometric immersion of asurface M2 into X4, f :M2
! X4. We denote by T (M2) and N (M2) the tangentbundle and the normal bundle of the surface M2, respectively. The bundle S ofall symmetric (1,1)-tensors A : TM2

! TM2is a 3-dimensional Euclidean vector bundle over M2 with the inner product< A;B >= Tr(A � B):The second fundamental form II(~n) : Tm(M2) ! Tm(M2) depending on a normalvector ~n 2 Nm(M2) is an element of the space Sm. For a �xed point m 2 M2 ofthe surface we de�ne the indicatrix of the normal curvature byI(m) = f II(~n) : ~n 2 Nm(M2); jj ~njj = 1g :I(m) is a closed curve contained in the 3-dimensional Euclidean space Sm, andit is the analogue of the Dupin indicatrix of an ordinary surface in the Euclidean1991 Mathematics Subject Classi�cation: 53C42, 53A35.Key words and phrases: minimal surfaces, hyperbolic spaces.Supported by the SFB 288 of the DFG.



42 THOMAS FRIEDRICH3-space.Proposition 1 (Kommerell 1897). Let f : M2
! X4 be an isometric im-mersion of a surface into a 4-dimensional Riemannian manifold X4. Then theindicatrix of the normal curvature is one of the following curves:(1) I(m) = f 0g(2) I(m) is a stretch symmetric with respect to the origin 0 2 Sm(3) I(m) is the intersection of a cylinder over an ellipse and a two-plane inSm.The indicatrix I(m) is a set of operators acting on the tangent space Tm(M2). Wecan evaluate this family of operators on a �xed tangent vector ~t 2 Tm(M2) andthen we obtain a closed curve I(m;~t) in the tangent space Tm(M2),I(m;~t) = f II(~n)(~t) : ~n 2 Nm(M2); jj ~njj = 1g :Fix an orthonormal basis e3; e4 2 Nm(M2) in such a way that the mean curvatureH(e4) vanishes. We choose the tangent vectors e1; e2 2 Tm(M2) to be eigenvectorsof the second fundamental form II(e4). Then we obtain the matrix representationsII(e3) = � �1 �2�2 �3 � II(e4) = � �1 00 � �1 � ;and the indicatrix I(m) is given by the formulaI(m) = �� �1 cos'+ �1 sin' �2 cos'�2 cos' �3 cos' � �1 sin' � : 0 � ' � 2�� :We introduce the isometry Sm ' R3 given by the formula� a1 a2a2 a3 � '

�a1 + a3
p 2 ; p 2a2; a1 � a3

p 2 � :Then I(m) as a curve in R3 has the parametrizationI(m) = �� 1
p 2(�1 + �3) cos'; p 2�2 cos'; p 2�1 sin'� : 0 � ' � 2��:Suppose now that f :M2

! X4 is a minimal immersion, i.e., the mean curvaturevanishes for all normal vectors. Then �1 = � �3 and we obtainProposition 2 (Kommerell 1905, Eisenhart 1912). The indicatrix of a min-imal surface at each point is an ellipse, a circle, or a stretch.Consider a surface f :M2
! X4 such that for any tangent vector ~t 2 Tm(M2) thecurve I(m;~t) � Tm(M2) is a circle with center 0. An easy calculation yields theconditions �1 = �3 = 0 ; �2 = � �1: In particular, in this case the indicatrixI(m) is the circle f (0; �

p 2�1 cos'; p 2�1 sin') : 0 � ' � 2� g .



ON SUPERMINIMAL SURFACES 43De�nition. A surface f : M2
! X4 is called superminimal if any curve I(m;~t)is a circle with center 0 (�2 = �1).Proposition 3. Any superminimal surface is a minimal surface. Its indicatrix ateach point is a circle with center 0.Example (R-surfaces in R4; Kommerell 1905). Let U � CI � R2 be an opensubset of the complex plain and let f(z) be a holomorphic function. The graph ofthe function f M2 = f (z; f(z)) : z 2 U gis a superminimal surface of the Euclidean space R4.In case of a superminimal surface, the length jj II(~n)jj = p 2�1 = p 2�2 does notdepend on the normal vector ~n 2 Nm(M2) and equals the radius of the indicatrixI(m) at the point m 2 M2.2. Superminimal Surfaces from the Point of View of TwistorTheory.Let (X4; g) be an oriented, 4-dimensional Riemannian manifold. Consider a pointx 2 X4 and let Zx be the set of all linear maps J : Tx(X4) ! Tx(X4) satisfyingthe following conditions:(1) J2 = � Id(2) J is compatible with the metric and preserves the orientation.(3) If 
(t1; t2) = g(Jt1; t2), then � 
 ^ 
 de�nes the orientation of X4.The set Z = Sx2X4 Zx is a P 1(CI)-�bre bundle overX4 that is associated to the framebundle of the oriented Riemannian manifold. Denote by � the projection into thebundle and consider the decomposition induced by the Levi-Civita connection ofthe tangent bundle of Z T (Z) = T v(Z) � T h(Z)into the vertical and horizontal subspaces. There exists an almost complex struc-ture J on Z preserving this decomposition and coinciding with the canonicalcomplex structure on the �bres SO(4)=U (2) = P 1(CI). On the horizontal spaceT hJ (Z) at the J 2 Z; J is de�ned by J = ��1� J��. It is well-known that (Z; J ) isa complex manifold if and only if X4 is self-dual, i.e., if one part of the Weyl ten-sor vanishes. The almost complex manifold (Z; J ) is called the twistor space ofX4.Now consider an oriented, 2-dimensional manifold M2 and an immersion f :M2

! X4. Using the orientation of M2 and X4 we see that the spaces Tm(M2)and Nm(M4) are oriented, 2-dimensional Euclidean vector spaces. We de�ne



44 THOMAS FRIEDRICHF (m) : Tf(m)(X4) = Tm(M2) � Nm(M2) ! Tm(M2) � Nm(M2) = Tf(m)(X4)by F (m) = rotation around the angle �2 in the positive(negative) direction on Tm(M2) (on Nm(M2)).Then F :M2
! Z is a lift of the immersion f :M2

! X4 into the twistor space,ZM2 X4?�-f�����FProposition 4 (see [F], x 1). An immersion f : M2
! X4 is superminimal ifand only if the lift F :M2

! Z is horizontal, i.e.,dF (T (M2)) � T h(Z):In this case the liftF :M2
! Z is a holomorphicmap. Conversely, let F :M2

! Zbe a holomorphic and horizontal immersion. Then f := � � F : M2
! X4 is asuperminimal immersion.Now we give a further geometric characterization of superminimal immersions.This description is well-known in case of the Euclidean space (Kwietniewski 1902)and has been generalized in the paper [F]. First let us recall some linear-algebraicfacts. Let V be a four-dimensional Euclidean vector space and consider two planesE and F in V . Then E is called isoclinic to F if the angle between e 2 E and itsprojection prF (e) into F does not depend on e 2 E. The relation has the followingproperties:I.1.) If E is isoclinic to F , then F is isoclinic to E.I.2.) E is isoclinic to F if and only if the projection prF : E ! F is a conformalmap.I.3.) If E is isoclinic to F , then E is isoclinic to the orthogonal complementF?.Suppose now that V has a �xed orientation. If E is an oriented plane, we denoteby E? the orthogonal complement with the orientation given by the conditionE � E? = V . Two oriented planes E;F are called oriented-isoclinic if eitherE = F? (as oriented planes) or the projection prF : E ! F is a non-trivial,conformal map preserving the orientations. Then we have the properties:I.1.*) If E is oriented-isoclinic to F , then F is oriented-isoclinic to E.I.2.*) If E is oriented-isoclinic to F , then E? is oriented-isoclinic to F?.I.3.*) If E is an oriented plane and F is a non-oriented plane such that E andF are isoclinic, then F admits exactly one orientation with respect to thisE, and F are oriented-isoclinic.



ON SUPERMINIMAL SURFACES 45In general it is not true that the condition "E is oriented isolclinic to F" implies"E is oriented-isoclinic to +F? or � F?". Therefore, we de�ne that an orientedplane E is negatively oriented-isoclinic to F if E is oriented-isoclinic to F and to(� F?). The link between this relation and complex structures is given by thefollowingLemma (see [F]). Let E;F be two oriented planes in V and denote by JE : V !V the map acting as the rotation around �=2 in the positive (negative) directionon E (on E?). E is negatively oriented-isoclinic to F if and only if JE = JF .Consider an oriented surface f : M2
! X4 in a 4-dimensional, oriented Rieman-nian manifoldX4. If  is a curve in X4, we denote by � the parallel displacementalong  in the tangent bundle T (X4). We say that M2 is a negatively oriented-isoclinic surface if, for every curve  in M2 from x to y, the planes �f� (Tf(x)M2)and Tf(y)(M2) are negatively oriented isoclinic planes in Tf(y)(X4). The men-tioned geometric characterization of superminimal surfaces can be formulated now.Proposition 5 (Kwietniewski 1902; [F]). An immersion f : M2

! X4 is su-perminimal if and only if it is negatively oriented-isoclinic.3. Superminimal Surfaces in Spaces of Constant Curvature.Let X4 be the Euclidean space R4 (or, more generally, a space form). Denoteby H� the standard positive line bundle on P 1(CI). The twistor space Z of R4is isomorphic to H�
� H�. Therefore, we have a projection p : Z ! P 1(CI), theprojection in the vector bundle H�

� H�.H�
� H� = Z �

� ! R4
# pP 1(CI)The map p : Z = H�

� H�
! P 1(CI) can also be described in the following way:Consider the twistor space � : Z ! R4. Since R4 is at and simply connected,the parallel transport de�nes a �bration p : Z � Z x � P 1(CI) of the twistor spaceover one of its �bres.If F : M2

! Z = H�
� H� is a holomorphic map, then p � F : M2

! P 1(CI) is ameromorphic function on M2. Therefore, the holomorphic maps F : M2
! Z =H�

� H� correspond to the sets (g; s1; s2) such thata.) g :M2
! P 1(CI) is a meromorphic function on M2.b.) s1; s2 are holomorphic sections of the bundle g�(H�) over M2.



46 THOMAS FRIEDRICHF = (g; s1; s2) is horizontal if and only if dg = 0, i.e., g is constant. Consequently,the superminimal immersions f : M2
! R4 correspond to pairs (h1; h2) of holo-morphic functions such that j dh1 j + j dh2j > 0. A similar argument for spaces ofconstant curvature yields the followingTheorem 1 (Bor�uvka 1928). Let X4(c) be a space of constant curvature. Thefamily of superminimal immersions f : M2

! X4(c) depends (locally) on twoholomorphic functions.In particular, the isoclinic surfaces M2 ,! R4 are locally R-surfaces, i.e., graphsof holomorphic functions h (Eisenhart 1912).1982 R. Bryant proved the following global existence results for superminimal sur-faces in a space of positive constant curvature:Theorem 2 (Bryant 1982). Every compact Riemann surface M2 admits a con-formal, superminimal immersion into the sphere S4.We sketch the idea of the proof. The twistor space of the sphere S4 is the projectivespace P 3(CI). On the subset
f [z1 : z2 : z3 : z4] 2 P 3(CI) : z1 6= 0g = f [1 : z2 : z3 : z4] 2 P 3(CI)gthe horizontal distribution T h(P 3(CI)) of the twistor �bration is de�ned by theequation dz2 � z4dz3 + z3dz4 = 0:A general holomorphic and horizontal map F : M2

! P 3(CI) depends on twomeromorphic functions A;B :M2
! P 1(CI):F = �1 : A �

12B dAdB : B : 12 dAdB �:Example. Consider a torus T = CI=� and the Weierstrass functionp(z) = 1z2 + X�2�;�6=0� 1(z + �)2 �

1�2 �:With A = p(z); B = p0(z) we obtain a holomorphic, horizontal immersionF : T ! P 3(CI) that de�nes a superminimal immersion f : T ! S4. The Eu-ler number of this immersion equals e = � 12:We study now the radius R of the indicatrix of a superminimal immersion f :M2
! X4(c). With respect to a local frame e1; e2; e3; e4 on the surface we have



ON SUPERMINIMAL SURFACES 47II(e3) = � 0 �� 0 � II(e4) = � � 00 � � � ;and this radius equals R = p 2�.Theorem 3 (Bor�uvka 1928). Let X4(c) be a space of constant non-positivecurvature. Then there is no superminimal immersion with constant radiusR = const > 0.Proof. We sketch the proof using the Cartan method of moving frames. Denoteby �1; :::�4 the dual frame to e1; :::; e4 and let !ij =< r ei; ej > be the connectionforms. The special form of the second fundamental form yields!31 = ��2 !32 = ��1!41 = ��1 !42 = � ��2:From the structure equation of X4(c) restricted to M2 we obtaind!13 = !12 ^ !23 + !14 ^ !43 = � �!12 ^ �1 � ��1 ^ !43:However, d!13 = � d(��2) = � �d�2 = � �!21 ^ �1, and �nally we conclude2�!12 ^ �1 = �!43 ^ �1:Using the form !23 a similar calculation provides the equation2�!12 ^ �2 = �!43 ^ �2:This implies 2!12 = !43. On the other hand, we haved!43 = !41 ^ !13 + !42 ^ !23 = � 2�2 �1 ^ �2d!12 = !13 ^ !32 + !14 ^ !42 � c�1 ^ �2 = +2�2 �1 ^ �2 � c�1 ^ �2:The equation 2!12 = !43 yields now 3�2 = c. �Remark. The Gaussian curvature K of the surface is related to the radiusR2 = 2�2 of the indicatrix by the formula K = c � R2.Remark. In case � is not constant, we obtain the di�erential equations
� d� = � �(2!12 + !34)and

�j d(�2)j

2 + 4�4(3�2 � c) = �2 4 (�2)



48 THOMAS FRIEDRICHfor the radius R2 = 2�2 of the indicatrix of a superminimal surface f : M2 ,!X4(c).The superminimal surfaces in S4 with a constant radius R > 0 of the indicatrixwere described by Bor�uvka:Theorem 4 (Bor�uvka 1928). A superminimal surface f : M2
! S4 with aconstant radius R > 0 of the indicatrix is a Veronese surface.We consider now a compact superminimal surface f : M2

! X4. Then there isa link between the Euler number e of the normal bundle and the volume of thesurface in case X4 is a self-dual Einstein manifold.Theorem 5 (see [F]). Let X4 be a self-dual Einstein space with scalar curvature� and consider a superminimal immersion f : M2
! X4 of a compact surface.Then e = �(M2) �

�vol(M2)24�holds.The Killing-Lipschitz curvature G : N1(M2) ! R4 on the set N1(M2) of all unitnormal vectors of a superminimal immersion does not depend on the normal vectorand is given by G(~n) = � �2 = �

R22 :Therefore, the total absolute curvature of the surface coincides with the meanvalue of R2, ZN1 j Gj = � ZM2 R2:In case of a space X4 of constant curvature, the mean value of R2 is a topologicalinvariant:Theorem 6 (see [F]). If f : M2
! X4(c) is a superminimal immersion of acompact surface M2 into a space X4(c) of constant curvature, thene = � �

cvol(M2)2� = �

12� ZM2 R2:



ON SUPERMINIMAL SURFACES 494. Complete Superminimal Surfaces in the Hyperbolic Space H4.We identify the four-dimensional sphere S4 with CI 2 [ f1g and use the coordinates(w1; w2). The twistor space of S4 is the complex projective space P 3(CI). Let[z1 : z2 : z3 : z4] be its homogeneous coordinates. The projection � : P 3(CI) ! S4in the twistor bundle is given byw1 = � �z2z3 + �z4z1
j z3 j

2 + j z4 j

2 ; w2 = �z2z4 + �z3z1
j z3 j

2 + j z4 j

2 :Note that the following formulas hold:
j w1 j

2 + j w2 j = j z1 j

2 + j z2 j

2
j z3 j

2 + j z4 j

2 ;z1 = w2z3 +w1z4 ; z2 = � �w1z3 + �w2z4:Therefore, the equationsdz1 = w2dz3 +w1dz4 ; dz2 = � �w1dz3 + �w2dz4describe the vertical bundle T v of the twistor �bration. We consider the space ofconstant curvature (c = 4; 0; � 4)H4(c) = f (w1; w2) 2 S4 : 1 + c4(j w1 j

2 + j w2 j

2) > 0gwith the Riemannian metricds2c = j dw1j

2 + j dw2 j

2(1 + c4(j w1 j

2 + j w2 j

2))2 :The analytic structure of the twistor space depends only on the conformal structureof the underlying 4-dimensional Riemannian manifold. Consequently, the twistorspace Z(c) of H4(c) coincides with the preimage ��1(H4(c)):Z(c) = f [z1 : z2 : z3 : z4] 2 P 3(CI) : c(j z1 j

2 + j z2 j

2) + 4(j z3 j

2 + j z4 j

2) > 0g :In case c 6= 0, the twistor space Z(c) admits a natural metric gc such that(Z(c); gc) �
! (H4(c); ds2c) is a Riemannian submersion. The metric gc is givenby the formula gc = 1b2c(z; z) f bc(z; z)bc(dz; dz) � j bc(dz; z)j

2
g ;where bc denotes the Hermitian form in CI4:bc(z; z�) = c(z1�z�1 + z2�z�2 ) + 4(z3�z�3 + z4�z�4):If c = 4, the metric gc is the Fubini-Study metric of the projective space P 3(CI). Incase c = � 4, gc is a pseudo-Riemannianmetric of signature (2; 4), and (Z(� 4); g�4)is an Einstein space as well as a (pseudo-) K�ahler manifold. It is a matter of fact



50 THOMAS FRIEDRICHthat the horizontal bundle T h of the twistor space Z(c) with respect to the metricds2c coincides with the gc-orthogonal complement of T v:T h(Z(c)) = f

~t 2 T (Z(c)) : gc(~t; ~t1) = 0 for all ~t1 2 T v g :A direct calculation yields now the following result:Proposition 6. The horizontal distribution T h(Z(c)) on the subset z1 � 1 isgiven by the equation cdz2 + 4(� z4dz3 + z3dz4) = 0:In particular, we consider the case of c � 0. The twistor space Z(0) is a rank-twovector bundle over P 1(CI). Indeed, letP 1(CI) = f [z1 : z2 : z3 : z4] 2 P 3(CI) : z1 = z2 = 0gand denote by p : Z(0) ! P 1(CI) the map p[z1 : z2 : z3 : z4] = [0 : 0 : z3 : z4]. Apoint in the dual Hopf bundle H� is a pair ([z3 : z4]; �), where [z3 : z4] 2 P 1(CI) isa line in CI2 and � is a linear map on this line. We identify Z(0) with H�
� H� viathe map 	 : H�

� H�
 ! Z(0),	([z3 : z4]; �1; �2) = [�1[z3 : z4] : �2[z3 : z4] : z3 : z4]:Then, the diagram H�

� H� Z(0)P 1(CI) -	@@R ��	pcommutes and the twistor space Z(c) (c < 0) corresponds toZ(c) = f (�1; �2) 2 H�
� H� : j �1 j

2 + j �2 j

2 < �

4c g :Consequently, a holomorphic map F : M2
! Z(c) is given by a meromorphicfunction � = p � F : M2

! P 1(CI) and two holomorphic sections s1; s2 in theinduced bundle ��(H�) such that
j s1(m)j

2 + j s2(m)j

2 < �

4c :We �x the holomorphic section � in H� given by �[z3 : z4] = z4.The sections s1; s2 2 �(��(H�)) are multiples of ��(�),s1 = A��(�) s2 = B��(�):



ON SUPERMINIMAL SURFACES 51A;B : M2
! P 1(CI) are meromorphic functions on the Riemann surface M2, andthe holomorphic map F :M2

! H�
� H� = Z(0) can be written in the formF = [A�4 : B�4 : �3 : �4] = [1 : BA : 1A� : 1A ]:F is horizontal if and only ifcd�BA�+ 4��

1Ad��A�+ �Ad� 1A�� = 0:The equation is equivalent to c4A2d�BA� = d�and, �nally, we obtainTheorem 7. A conformal superminimal immersion f : M2
! H4(c) (c � 0) isgiven by three meromorphic functions A;B;� :M2

! P 1(CI) such thata.) c4A2d�BA� = d�b.) j Aj

2 + j B j

2 < �

4c �1 + j �j

2�.It is easy to derive the formula for the immersion f :M2
! H4(c) depending onA;B;�: f = 11 + j �j

2 ��

�B�+ A; �B + A��� :Example. Denote by �2 � 0; 630415 the unique root of the polynomial x3 � 9x2 �9x+ 9 in the interval [0; 1]. On the unit disk M2 = f z 2 CI : j z j < 1g we considerthe functions A(z) = �2z2 ; B(z) = �z ; �(z) = 13�3z3:Then � A2d �BA� = d� as well as j Aj

2 + j B j

2 < 1 + j �(z)j

2 hold for all j z j < 1.The map F : M2
! P 1(CI) is given by F (z) = [�2z : �z : 13�3z3 : 1]. The metricf�(ds2�4) induced by the corresponding immersion f : M2

! H4(� 4) coincideswith F �(g�4) = 1b2�4(F; F ) f b�4(F; F )b�4(dF; dF ) � j b�4(dF; F )j

2
g :A calculation of F �(g�4) yields the following result: f�(ds2�4) = G(j z j

2) jdzj2(1�jzj2)2 ,where limjzj!1G(j z j

2) = const 6= 0. Since the hyperbolic metric jdzj2(1�jzj2)2 is a com-plete Riemannian metric on M2 = f z 2 CI : j z j < 1g , the metric f�(ds2�4) iscomplete, too.The formula for the superminimal immersion



52 THOMAS FRIEDRICHf : f z 2 CI : j z j < 1g ! H4(� 4) � CI 2is f(z) = 1�6 j z j

6 + 9 �3�2z2(3 � �2 j z j

2); 3��z(3 + �4 j z j

4)�and f is a complete and superminimal embedding of the unit disk intoH4(� 4). Weproject f(M2) � H4(� 4) onto the 3-dimensional Euclidean space R3 = CI � R �CI 2. Then we obtain the following picture of this projected surface in the unit ballof R3:ParametricPlot3D[{3(0.793987)^2r^2Cos[2t](3-(0.793987)^2r^2)/((0.793987)^6r^6+9), 3(0.793987)^2r^2Sin[2t](3-(0.793987)^2r^2)/((0.793987)^6r^6+9),3(0.793987)r Cos[t](3+(0.793987)^4r^4)/((0.793987)^6r^6+9)},{r,0,1},{t,0,2Pi}]
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In particular, we obtainTheorem 8. There are embedded, complete, simply-connected and superminimalsurfaces M2
� H4 that are not totally geodesic. �



ON SUPERMINIMAL SURFACES 53Remark. The constructed surface is holomorphic to the unit disk. A surface ofthis type that is holomorphic to CI (or to S2) cannot exist since the curvature Kof a superminimal surface is K = � 4 � 2�2 � � 4. On the manifold CI � R2, thereare no complete Riemannian metrics such that K � � 4 (Sattinger 1972).The example explained above is a special case of a more general family of completesuperminimal immersions. Let Q(z) be a holomorphic function. We putB(z) = z; A(z) = 2zQ(z) + z2Q0(z); �(z) = z3Q0(z):Then we have a solution of the di�erential equation � A2d �BA � = d�. Supposenow that the connected component 
Q of the domain de�ned by (z) := 1 + j z j

6
j Q0(z)j

2
� j z j

2
� j z j

2
j 2Q(z) + zQ0(z)j

2 > 0is a bounded domain with a smooth boundary and denote by KQ(z; z) its Bergmankernel. Then KQ(z; z) has the form (see [BFG])K(z; z) = '(z) 2(z) + ~'(z) log (z);where ' and ~' are smooth functions on �
Q, and '(z) 6= 0 on @
Q. The immersionf : 
Q ! H4 is given by its lift F : 
Q ! Z(� 4) � P 3(CI),F (z) = [2zQ(z) + z2Q0(z) : z : z3Q0(z) : 1]and we obtain the following formula for the induced metric : f�(ds2�4) =
� G(z)j dz j

2, whereG(z) = 1 2(z) f  (z)b�4(dF; dF ) � j b�4(dF; F )j

2
g :If z ! z0 2 @
Q, we havelimz!z0 G(z)K(z; z) = limz!z0  (z)b�4(dF; dF )(z) � j b�4(dF; F )j

2(z)'(z) +  2(z) ~'(z) log (z) = �

j b�4(dF; F )j

2(z0)'(z0) :The Bergman metric K(z; z)j dz j

2 is a complete metric on 
Q. Consequently, incase j b�4(dF; F )j

2
6= 0 on @
Q, the metric f�(ds2�4) is a complete metric, too.This construction provides a whole family of complete superminimal immersionsof the unit disk into the hyperbolic four-space H4. The example explained abovecorresponds to the case Q(z) = 13 . In case we consider Q(z) = z or Q(z) = ezfor example, we obtain a superminimal surface in H4 whose projection onto the3-dimensional Euclidean space looks as follows:
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The hyperbolic space H4 does not contain compact minimal surfaces. On the otherhand, the Riemann surface M2 = H2=� is a totally geodesic (compact) submani-fold in X4(c) = H4=�. It seems to be an open question whether or not there existconformal, superminimal and non-totally geodesic immersions f : M2
! X4(c)of a compact Riemann surface into a (non-simply connected) space form X4(c).Compact surfaces of this type do not exist, we will return to this problem occa-sionally. References[B1] Bor�uvka, O., Sur une classe de surfaces minima plone'es dans un espace �a quatre di-mensions a courbure constante, C.R. Acad. Sci 187 (1928), 334-336.[B2] Bor�uvka, O., Sur une classe de surfaces minima plouge'es un espace �a cinq dimension �acourbure constante, C.R. Acad. Sci. 187 (1928), 1271-1273.[BFG] Beals, M., Fe�erman, C., and Grossman, R., Strictly pseudoconvex domains in CIn, Bull.Amer. Math. Soc., vol. 8 (1983), 125-326.[Br] Bryant, R. L., Conformal and minimal immersions of compact surfaces into the 4-sphere,Journ. Di�. Geom. 17 (1982), 455-473.[E] Eisenhart, L. P., Minimal surfaces in Euclidean four-spaces, Amer. Journ. of Math. 34(1912), 215-236.
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