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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 57 { 64HOMOMORPHISMS AND STRONG HOMOMORPHISMSOF RELATIONAL STRUCTURESMiroslav Novotn�yDedicated to the memory of Professor Otakar Bor�uvkaAbstract. In this paper, we present a construction of all homomorphismsof an n-ary relational structure into another n-ary relational structure. Thisconstruction may be used if constructing continuous transformations of atotally additive closure space into another space of the same type.In the present paper we describe, among others, a construction of all homomor-phisms of an n-ary relational structure into another structure of the same type.This construction belongs to a series of constructions of homomorphisms betweenvarious structures. Construction of all strong homomorphisms of an n + 1-aryrelational structure into another structure of the same type was reduced to theconstruction of certain homomorphisms between algebras with one operation ofarity n (see [5], [6], [7]). Construction of all homomorphisms of an algebra withone operation of arity n into an algebra of the same type may be reduced to theconstruction of certain homomorphisms of one mono-unary algebra into anotherone (cf. [8]). In the present paper we reduce the construction of all homomor-phisms of an n-ary relational structure into another structure of the same type tothe construction of all strong homomorphisms between suitable n-ary relationalstructures. Thus, the construction investigated here may be successively reducedto the construction of suitable homomorphisms of a mono-unary algebra into an-other algebra of the same type. All homomorphisms of a mono-unary algebra intoanother one were found in [2], [3] which was a solution of a problem formulatedby O. Bor�uvka about 1950.1991 Mathematics Subject Classi�cation: 08A02.Key words and phrases: n-ary relational structure, homomorphism of a relational structure,strong homomorphism of a relational structure, totally additive mapping, atom-preservingmap-ping, totally additive closure space, continuous transformation of a totally additive closure space.



58 MIROSLAV NOVOTN�YLet A be a set, n � 2 an integer. By an n-ary relation on A we mean a setr � An = A�� � ��A where A appears n times in the last Cartesian product. Theordered pair (A; r) is said to be an n-ary relational structure.Let (A; r); (A0; r0) be n-ary relational structures, h a mapping of A into A0 suchthat for any (x1; : : : ; xn) 2 An the condition (x1; : : : ; xn) 2 r implies (h(x1); : : : ;h(xn)) 2 r0. Then the mapping h is called a homomorphism of (A; r) into (A0; r0).A mapping h of A into A0 is said to be a strong homomorphism of (A; r) into(A0; r0) if it has the following property. For any x1; : : : ; xn�1 in A and any x0n inA0 the condition (h(x1); : : : ; h(xn�1); x0n) 2 r0 holds if and only if there exists anelement xn in A such that (x1; : : : ; xn�1; xn) 2 r and h(xn) = x0n.It is easy to see that any strong homomorphism is a homomorphism. Therelationship between these types of homomorphisms is described by the followingtheorem.Theorem 1. Let n � 2 be an integer, (A; r); (A0; r0) n-ary relational structures,h a mapping of A into A0. Then the following assertions are equivalent.(i) h is a homomorphism of (A; r) into (A0; r0).(ii) There exist an n-ary relation r � r on A and an n-ary relation r0 � r0 onA0 such that h is a strong homomorphism of (A; r) into (A0; r0).Proof. Let (i) hold. Put r0 = f(h(x1); : : : ; h(xn)) 2 (A0)n; (x1; : : : ; xn) 2 rg; r =f(x1; : : : ; xn) 2 An; (h(x1); : : : ; h(xn)) 2 r0g.If (x01; : : : ; x0n) 2 r0, there exist x1; : : : ; xn in A such that (x1; : : : ; xn) 2 rand h(xi) = x0i for any i with 1 � i � n. It follows that (x01; : : : ; x0n) =(h(x1); : : : ; h(xn)) 2 r0. Thus, r0 � r0.If (x1; : : : ; xn) 2 r, then (h(x1); : : : ; h(xn)) 2 r0 which implies that (x1; : : : ; xn) 2r. Hence r � r.Suppose that x1; : : : ; xn�1 2 A; x0n 2 A0 are arbitrary.(a) If (h(x1); : : : ; h(xn�1); x0n) 2 r0, there exist y1; : : : ; yn in A such that(y1; : : : ; yn) 2 r and h(y1) = h(x1); : : : ; h(yn�1) = h(xn�1); h(yn) = x0n. Since(h(x1); : : : ; h(xn�1); h(yn)) 2 r0, we obtain (x1; : : : ; xn�1; yn) 2 r.(b) If there exists xn 2 A such that (x1; : : : ; xn�1; xn) 2 r and h(xn) = x0n, wehave (h(x1); : : : ; h(xn�1); x0n) = (h(x1); : : : ; h(xn�1); h(xn)) 2 r0.Thus, h is a strong homomorphism of (A; r) into (A0; r0) and (ii) holds.Let (ii) hold. Suppose that x1; : : : ; xn in A are arbitrary. If (x1; : : : ; xn) 2 r,then (x1; : : : ; xn) 2 r. Put x0n = h(xn). Since h is a strong homomorphismof (A; r)into (A0; r0), we obtain (h(x1); : : : ; h(xn�1); h(xn)) = (h(x1); : : : ; h(xn�1); x0n) 2r0 � r0. Thus, h is a homomorphism of (A; r) into (A0; r0) and (i) holds. �As a consequence we obtainConstruction of all homomorphismsLet n � 2 be an integer, let n-ary relational structures (A; r); (A0; r0) be given.Choose an n-ary relation r � r on A and an n-ary relation r0 � r0 on A0.Construct all strong homomorphisms of (A; r) into (A0; r0) using [7].



HOMOMORPHISMS OF RELATIONAL STRUCTURES 59Any of them is a homomorphism of (A; r) into (A0; r0) and any homomorphismof (A; r) into (A0; r0) may be constructed in this way by a suitable choice of r andr0. In examples 1 and 2 we meet the construction of all strong homomorphisms ofa binary relational structure (A; t) into a structure (A0; t0) of the same type. By[5] we construct (P (A); P [t]) where P (A) is the power set of A and P [t](X) =fy 2 A; there exists x 2 X with (x; y) 2 tg for any X 2 P (A). Clearly,(P (A); P [t]) is a mono-unary algebra. Similarly, we construct the mono-unaryalgebra (P (A0); P [t0]). The construction of all strong homomorphisms of (A; t)into (A0; t0) means to construct all totally additive and atom-preserving homomor-phisms of (P (A); P [t]) into (P (A0); P [t0]).A mapping H of P (A) into P (A0) is called totally additive if H(Si2I Xi) =Si2I H(Xi) for any system of sets (Xi)i2I where Xi 2 P (A) for any i 2 I. AmappingH of P (A) into P (A0) is referred to as atom-preserving if for any x 2 Athere exists x0 2 A0 such that H(fxg) = fx0g.Thus, we construct all homomorphisms of (P (A); P [t]) into (P (A0); P [t0]) ac-cording to [2] and [3] and reject all of them that are not totally additive andatom-preserving. If H is a totally additive atom-preserving homomorphism of(P (A); P [t]) into (P (A0); P [t0]), then we put h(x) = H(fxg) for any x 2 A. Themapping h is a strong homomorphism of (A; t) into (A0; t0) and any strong homo-morphism of (A; t) into (A0; t0) may be constructed in this way. For the details see[5].Example 1. Let us have two binary relational structures (A; r); (A0; r0) whereA = fa; b; cg; A0 = fa0; b0; c0g and the relations r; r0 are given by the followingtables. r a b ca 1 1 0b 0 1 0c 0 1 1 r0 a0 b0 c0a0 1 1 1b0 0 1 1c0 0 0 1We now de�ne the relations r; r0 by the following tables.r a b ca 1 1 1b 0 1 1c 0 1 1 r0 a0 b0 c0a0 1 0 1b0 0 0 0c0 0 0 1We construct the mono-unary algebras (P (A); P [r]); (P (A0); P [r0]) (see Fig.1). For the operations P [r]; P [r0] we obtain the following tables.X ; fag fbg fcg fa; bg fa; cg fb; cg fa; b; cgP [r](X) ; fa; b; cg fb; cg fb; cg fa; b; cg fa; b; cg fb; cg fa; b; cgX ; fa0g fb0g fc0g fa0; b0g fa0; c0g fb0; c0g fa0; b0; c0gP [r0](X) ; fa0; c0g ; fc0g fa0; c0g fa0; c0g fc0g fa0; c0g



60 MIROSLAV NOVOTN�YLet us choose an arbitrary totally additive atom-preserving homomorphismHof the mono-unary algebra (P (A); P [r]) into (P (A0); P [r0]). It is easy to see thatwe may take H(fa; b; cg) = fa0; c0g; H(fb; cg) = fc0g because H assigns elementsof cycles in the second algebra to elements of cycles in the �rst algebra. SinceH is atom-preserving, we obtain H(fbg) = fc0g; H(fcg) = fc0g; H(fag) = fa0g.It is easy to see that H may be extended to a totally additive atom-preservinghomomorphism of (P (A); P [r]) into (P (A0); P [r0]): Putting H(fxg) = h(x) forany x 2 A we obtain a strong homomorphism of the structure (A; r) into (A0; r0)which is a homomorphism of the structure (A; r) into (A0; r0). We have h(a) =a0; h(b) = c0 = h(c).Example 2. Let two binary relational structures (A; r); (A0; r0) be given whereA = fa; bg; A0 = fa0; b0g and the relations r; r0 are de�ned by the following tables.r a ba 0 1b 1 0 r0 a0 b0a0 1 1b0 0 1
u uu u u u u uu u u u u uu u������������������������ 6��������� 6����-
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(P (A); P [r]) ;fa0g fb0g fc0gfa0; b0g fa0; c0g fb0; c0gfa0; b0; c0g
(P (A0); P [r0])Fig. 1We put r = r; r0 = r0. Then the operations P [r]; P [r0] have the followingtables (see Fig. 2).



HOMOMORPHISMS OF RELATIONAL STRUCTURES 61X ; fag fbg fa; bgP [ r ](X) ; fbg fag fa; bgX ; fa0g fb0g fa0; b0gP [r0](X) ; fa0; b0g fb0g fa0; b0g
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(P (A0); P [r0])Fig. 2An atom-preserving homomorphism H of (P (A); P [r]) into (P (A0); P [r0]) as-signs to any atom fxg 2 P (A); x 2 A an atom fx0g 2 P (A0); x0 2 A0. Sincethe elements fag; fbg form a cycle, the elements H(fag); H(fbg) form a cy-cle, too. Clearly H(fag) = ; = H(fbg) contradicts the hypothesis that H isatom-preserving. For the same reason the case H(fag) = fa0; b0g = H(fbg) isimpossible. Thus we have H(fag) = fb0g = H(fbg); H(;) = ;; H(fa; bg) = fb0g.Then H is a totally additive atom-preserving homomorphism of (P (A); P [r]) into(P (A0); P [r0]). It follows that the mapping h de�ned by h(a) = b0 = h(b) is astrong homomorphism of (A; r) into (A0; r0), i.e., a homomorphism of (A; r) into(A0; r0).Example 3. Let A 6= ; be a set, r a ternary relation on A such that (x; y; z) 2 rimplies x = y = z. Let A0 6= ; be a set and r0 a ternary relation on A0 with



62 MIROSLAV NOVOTN�Ythe following property: If x0 2 A0; y0 2 A0, then (x0; y0; y0) 2 r0. In particular,(x0; x0; x0) 2 r0 holds for any x0 2 A0.We put r = f(x; x; x); x 2 Ag; r0 = f(x0; x0; x0); x0 2 A0g. Then, clearly,r � r; r0 � r0. It is easy to see that a mapping h of A into A0 is a stronghomomorphism of (A; r) into (A0; r0) if and only if it is injective; for the detailssee Example 3 of [1]. It follows that any injective mapping of A into A0 is ahomomorphism of (A; r) into (A0; r0).On the other hand, it is easy to see that any mapping h of A into A0 is ahomomorphism of the structure (A; r) into (A0; r0). The corresponding ternaryrelations r and r0 are described in the proof of Theorem 1. We have r0 =f(h(x); h(x); h(x)); (x; x; x) 2 rg; r = f(x; y; z); (h(x); h(y); h(z)) 2 r0g. Clearly,h is a strong homomorphism of (A; r) into (A0; r0).Example 4. Let m � 1; n � 1 be integers such that n divides m, supposeA = fa1; : : : ; amg; A0 = fa01; : : : ; a0ng where ai 6= aj for any i; j with 1 � i < j � mand a0i 6= a0j for any i; j satisfying 1 � i < j � n. Let us have f(ai) = ai+1 for any iwith 1 � i < m; f(am) = a1; f 0(a0i) = a0i+1 for any i with 1 � i < n; f 0(a0n) = a01.Then (A; f); (A0; f 0) are mono-unary algebras that can be regarded as binaryrelational structures. If putting h(ai) = a0j where i � j (mod n) we obtaina homomorphism of the algebra (A; f) onto (A0; f 0) that may be regarded as astrong homomorphism of the binary relational structure (A; f) onto (A0; f 0). Ifchoosing an arbitrary binary relation r on A such that r � f and an arbitrarybinary relation r0 on A0 such that f 0 � r0, then h is a homomorphism of (A; r)onto (A0; r0).The presented examples are intended to demonstrate our Construction in atransparent way. For this reason the sets appearing in Example 1 and 2 havesmall cardinalities. Besides, these examples present the construction of one homo-morphism using one possible choice of r and r0; the remaining cases can be solvedin a similar way. Naturally, all homomorphisms of a relational structure (A; r)into (A0; r0) may be constructed simply by testing all mappings of A into A0 andby rejecting all that are not homomorphisms. Our Construction o�ers anotherway for solving this problem. Example 4 presents another application of Theorem1: construction of some pairs of binary relational structures with a prescribedhomomorphism.Construction of all strong homomorphisms of one n-ary relational structure intoanother one that appears as a step in our Construction is transformed in construc-tion of all homomorphisms of one mono-n � 1-ary algebra into another algebraof the same type in [5], [6], [7]. By [8] the construction of all homomorphisms ofone mono-n� 1-ary algebra into another one may be reduced to construction ofall so called decomposable homomorphisms of one mono-unary algebra of a par-ticular class into another one (cf. [2], [3], [4]). These constructions demonstratethe fundamental meaning of mono-unary algebras in some problems concerninghomomorphisms of algebraic structures.



HOMOMORPHISMS OF RELATIONAL STRUCTURES 63We now present an application of homomorphisms between relational struc-tures.Let A be a set. A mappingR of P (A) into P (A) is said to be a closure on A ifit is extensive, monotone, and idempotent. An ordered pair (P (A); R) is referredto as a closure space if R is a closure on A. This closure space is called totallyadditive if so is R. By Lemma 4, Theorem 3 and Theorem 4 of [5], R is a totallyadditive closure on A if and only if R = P [r] holds for some preordering r on A.This preordering r may be obtained from R by means of an operator Q that isde�ned as follows.Let A be a set, R a mapping of P (A) into itself. We put Q[R] = f(x; y) 2A � A; y 2 R(fxg)g. By Theorem 3 of [5], Q[R] is a preordering for any closurespace (A;R). By Lemma 4 of [5], R = P [Q[R]] holds if and only if R is totallyadditive.Let (P (A); R); (P (A0); R0) be totally additive closure spaces. A mapping hof A into A0 is called a continuous transformation of (P (A); R) into (P (A0); R0)if P [h](R(X)) � R0(P [h](X)) holds for any X 2 P (A). A mapping h of A intoA0 is referred to as a continuous and closed transformation of (P (A); R) into(P (A0); R0) if P [h](R(X)) = R0(P [h](X)) is satis�ed for any X 2 P (A). ByTheorem 6 of [5] a mapping h of A into A0 is a continuous and closed transforma-tion of (P (A); R) into (P (A0); R0) if and only if it is a strong homomorphism of(A;Q[R]) into (A0; Q[R0]).Theorem 2. Let (P (A); R); (P (A0); R0) be totally additive closure spaces, h amapping of A into A0. Then the following assertions are equivalent.(i) h is a continuous transformation of (P (A); R) into (P (A0); R0).(ii) h is a homomorphism of (A;Q[R]) into (A0; Q[R0]).Proof. Put r = Q[R]; r0 = Q[R0].Let (i) hold and suppose that (x; y) 2 r. Then y 2 P [r](fxg) which implies thath(y) 2 P [h](P [r](fxg)) = P [h](P [Q[R]](fxg)) = P [h](R(fxg)) � R0(P [h](fxg)) =P [Q[R0]](P [h](fxg)) = P [r0](fh(x)g) and, therefore, (h(x); h(y)) 2 r0. Hence (ii)holds.Let (ii) hold and suppose that y0 2 P [h](R(X)) where X 2 P (A) is arbitrary.Since R = P [r], there exists y 2 P [r](X) such that h(y) = y0. Thus there existsx 2 X such that (x; y) 2 r which implies (h(x); h(y)) 2 r0. Since h(x) 2 P [h](X),we obtain y0 = h(y) 2 P [r0](P [h](X)). Thus, P [h](R(X)) = P [h](P [r](X)) �P [r0](P [h](X)) = R0(P [h](X)) holds for any X 2 P (A) and (i) is satis�ed. �It follows that constructions of continuous transformations of (P (A); R) into(P (A0); R0) may be reduced to constructions of homomorphisms of (A;Q[R]) into(A0; Q[R0]) where Q[R]; Q[R0] are preorderings.



64 MIROSLAV NOVOTN�YReferences[1] Chronowski, A. - Novotný, M., Ternary semigroups of morphisms of objects in categories,Archivum Mathematicum (Brno) 31 (1995), 147{153.[2] Novotný, M., O jednom problému z teorie zobrazení (Sur un probl�eme de la th�eorie desapplications), Publ. Fac. Sci. Univ. Masaryk Brno, No. 344 (1953), 53{64.[3] Novotný, M., �Uber Abbildungen von Mengen, Pac. J. Math. 13 (1963), 1359{1369.[4] Novotný, M.,Mono-unary algebras in the work of Czechoslovak mathematicians, ArchivumMathematicum (Brno) 26 (1990), 155{164.[5] Novotný, M., Construction of all strong homomorphisms of binary structures, CzechoslovakMath. J. 41(116) (1991), 300{311.[6] Novotný, M., Ternary relations and groupoids, Czechoslovak Math. J. 41 (116) (1991),90{98.[7] Novotný, M., On some correspondences between relational structures and algebras,Czechoslovak Math. J. 43 (118) (1993), 643{647.[8] Novotný, M.,Construction of all homomorphisms of mono-n-ary algebras, CzechoslovakMath. J. 46 (121) (1996), 331{333.Faculty of Computer ScienceMasaryk UniversityBotanická 68a602 00 Brno, CZECH REPUBLIC


		webmaster@dml.cz
	2012-05-10T11:58:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




