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Dedicated to the memory of Professor Otakar Borivka

ABSTRACT. In this paper, we present a construction of all homomorphisms
of an n-ary relational structure into another n-ary relational structure. This
construction may be used if constructing continuous transformations of a
totally additive closure space into another space of the same type.

In the present paper we describe, among others, a construction of all homomor-
phisms of an n-ary relational structure into another structure of the same type.
This construction belongs to a series of constructions of homomorphisms between
various structures. Construction of all strong homomorphisms of an n + l-ary
relational structure into another structure of the same type was reduced to the
construction of certain homomorphisms between algebras with one operation of
arity n (see [5], [6], [7]). Construction of all homomorphisms of an algebra with
one operation of arity n into an algebra of the same type may be reduced to the
construction of certain homomorphisms of one mono-unary algebra into another
one (cf. [8]). In the present paper we reduce the construction of all homomor-
phisms of an n-ary relational structure into another structure of the same type to
the construction of all strong homomorphisms between suitable n-ary relational
structures. Thus, the construction investigated here may be successively reduced
to the construction of suitable homomorphisms of a mono-unary algebra into an-
other algebra of the same type. All homomorphisms of a mono-unary algebra into
another one were found in [2], [3] which was a solution of a problem formulated

by O. Boruvka about 1950.
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Let A be a set, n > 2 an integer. By an n-ary relation on A we mean a set
rC A" = Ax---x A where A appears n times in the last Cartesian product. The
ordered pair (4, r) is said to be an n-ary relational structure.

Let (A, r), (A, ") be n-ary relational structures, h a mapping of A into A’ such
that for any (z1,...,2,) € A" the condition (z1,...,2,) € v implies (h(z1), ...,
h(z,)) € ¥'. Then the mapping h is called a homomorphism of (A, r) into (A’ ').

A mapping h of A into A’ is said to be a strong homomorphism of (A, r) into
(A7, r") if it has the following property. For any x1,...,2,-1 in A and any z/, in
A’ the condition (h(z1),...,h(2n—1), %)) € r' holds if and only if there exists an
element #, in A such that (z1,...,2,_1,2,) € v and h(z,) = 2.

It is easy to see that any strong homomorphism is a homomorphism. The
relationship between these types of homomorphisms is described by the following
theorem.

Theorem 1. Let n > 2 be an integer, (A,r), (A’,r") n-ary relational structures,
h a mapping of A into A’. Then the following assertions are equivalent.
(i) h is a homomorphism of (A, r) into (A', ).
(ii) There exist an n-ary relation ¥ O r on A and an n-ary relation v’ C r' on
A’ such that h is a strong homomorphism of (A,F) into (A, 7’).

Proof. Let (i) hold. Put ' = {(h(z1),...,h(xn)) € (A" (21,...,2n) €T}, T=
{(x1,...,2n) € A% (h(®y1),... h(zn)) €1}

If (2f,...,2,) € ¢/, there exist x1,...,2, in A such that (z1,...,2,) €
and h(x;) = z} for any ¢ with 1 < ¢ < n. Tt follows that (#},...,2})
(h(x1),...,h(xy)) € ¥'. Thus, v’ Cv'.

If (#1,...,2,) € r,then (R(x1), ..., h(xy,)) € ¥ which impliesthat (z1,...,2,) €
7. Hence r C 7.

Suppose that @1,...,2,_1 € A, 2/, € A" are arbitrary.

(a) If (h(x1),...,h(xn-1),2,) € 1, there exist y1,...,yn in A such that
(Y1,---,yn) € rand h(y) = h(a:l),...,h(yn_l) = h(zn- 1) h(yn) = xl,. Since
(h(z1),..., h(2n=1), h(yn)) € ¥, we obtain (z1,...,2p_1,yn) € T.

(b) Tf there exists z,, € A such that (z1,...,2,_ 1,1‘”) ETa d h(zn) =z}, we
have (h(z1),...,h(xn_1),2)) = (h(z1),..., h(xn_l), h(zn)) €r’

Thus, h is a strong homomorphism of (4, 7) into (A4’ ) and ( i) holds.

([

Let (ii) hold. Suppose that x1,...,2, in A are arbitrary. If (xq,.. €

Tp) €7
then (z1,...,2,) €7. Putz), = h(xn) Since h is a strong homomorphlsm of (A, 7
x

into (A47,r’), we obtain (h(z1),...,h(zn-1),h(zn)) = (h(z1), ..., h(zp_1),2)) €
' C ¢'. Thus, h is a homomorphism of (A, r) into (A’,r') and (i ) holds. d
As a consequence we obtain

Construction of all homomorphisms

Let n > 2 be an integer, let n-ary relational structures (A, r), (A’, ') be given.
Choose an n-ary relation 7 O r on A and an n-ary relation ' C 7’ on A’
Construct all strong homomorphisms of (A4, 7) into (A, ') using [7].
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Any of them is a homomorphism of (A4, r) into (A’, 7") and any homomorphism

of (A, r) into (A’, ') may be constructed in this way by a suitable choice of ¥ and
/
r'.

In examples 1 and 2 we meet the construction of all strong homomorphisms of
a binary relational structure (A,¢) into a structure (A’,#) of the same type. By
[5] we construct (P (A), P[t]) where P(A) is the power set of A and P[t](X) =
{y € A; there exists v € X with (z,y) € t} for any X € P(A). Clearly,
(P (A), P[t]) is a mono-unary algebra. Similarly, we construct the mono-unary
algebra (P (A’), P[t']). The construction of all strong homomorphisms of (4,1)
into (A’, ') means to construct all totally additive and atom-preserving homomor-
phisms of (P (A), P[t]) into (P (A", P[t']).

A mapping H of P(A) into P(A’) is called totally additive if H(Ujer Xi) =
UZ»E[ H(X;) for any system of sets (X;);e; where X; € P(A) for any i € I. A
mapping H of P(A) into P(A’) is referred to as atom-preserving if for any € A
there exists @’ € A’ such that H({z}) = {«'}.

Thus, we construct all homomorphisms of (P (A), P[t]) into (P (4"), P[t']) ac-
cording to [2] and [3] and reject all of them that are not totally additive and
atom-preserving. If H is a totally additive atom-preserving homomorphism of
(P (A), P[t]) into (P(4’), P[t']), then we put h(z) = H({z}) for any z € A. The
mapping h is a strong homomorphism of (A,¢) into (4’,t') and any strong homo-
morphism of (A, ) into (A’,t') may be constructed in this way. For the details see

[5).

Example 1. Let us have two binary relational structures (A, r), (A’,r') where
A ={a,b,c}, A = {dV, ¢} and the relations r, 7/ are given by the following
tables.

rla b ¢ rla b
a1 1 0 a1 1 1
b0 1 0 V1o 1 1
c|0 1 1 10 0 1
We now define the relations 7, r’ by the following tables.
Fla b ¢ rla bV
all 1 1 |1 0 1
b0 1 1 10 0 0
c|0 1 1 10 0 1

We construct the mono-unary algebras (P (A), P[r]), (P(4"), P[r']) (see Fig.
1). For the operations P[F], P[r/] we obtain the following tables.

X0 fa) ) {eh {wb) {ach {bhe} f{abe)
P[F](X)|® {a,b,e} {b,e}t {b,e} {a,b,c} {a,byc} {b,c} {a,b,c}

X |0 A{a} {1} {} {d b} {a ) (¥} {a W}
PIOX) [0 {a",c} 0 {d} {a' ¢} {a'. ¢} {/} {d,c}
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Let us choose an arbitrary totally additive atom-preserving homomorphism H
of the mono-unary algebra (P (A), P[F]) into (P (A4’), P[r']). It is easy to see that
we may take H({a,b,c}) = {d', '}, H{{b,c}) = {¢'} because H assigns elements
of cycles in the second algebra to elements of cycles in the first algebra. Since
H is atom-preserving, we obtain H({b}) = {¢'}, H({c}) = {¢'}, H({a}) = {a'}.
It is easy to see that H may be extended to a totally additive atom-preserving
homomorphism of (P(A), P[F]) into (P(A"), P[]). Putting H({z}) = h(x) for
any # € A we obtain a strong homomorphism of the structure (A4,7) into (A’, 1)
which is a homomorphism of the structure (A4,r) into (A’, 7). We have h(a) =
a', h(b) = ¢ = h(e).

Example 2. Let two binary relational structures (A,r), (A’,7') be given where
A={a,b}, A = {d,b'} and the relations r, ©’ are defined by the following tables.

> Q|3
— O
O | o~

a,b,c} {a/ab/ac/}
{a,b} ﬁ{bc} {d’,b'}
o) 0 e (o'}

(P(4), P[7]) (P (A), PIr])

{v', ¢}

{v'} {¢'}

Fig. 1

We put 7 = 7, ' = r’. Then the operations P[F], P[r] have the following
tables (see Fig. 2).
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X |0 {a} {b} {ab}
P[FIX) [0 {b} {a} {ab}

X0 e} {7} {dV}
PYX) [0 {0} {0} {d, 0}

Q{a, b} {a', '}

{a} {0} {d'} Q {v'}

@) @)
(P(4), P[] (P (A), Pl

Fig. 2

An atom-preserving homomorphism H of (P(A), P[F]) into (P(A"), P[r']) as-
signs to any atom {z} € P(A4),z € A an atom {2’} € P(4’), ' € A’. Since
the elements {a}, {b} form a cycle, the elements H({a}), H({b}) form a cy-
cle, too. Clearly H({a}) = 0 = H({b}) contradicts the hypothesis that H is
atom-preserving. For the same reason the case H({a}) = {a’,b'} = H({b}) is
impossible. Thus we have H({a}) = {¥'} = H({b}), H(®) =0, H({a,b}) = {V'}.
Then H is a totally additive atom-preserving homomorphism of (P (A), P[F]) into
(P (A", P[r]). Tt follows that the mapping h defined by h(a) = o' = h(b) is a
strong homomorphism of (A4,7) into (A’, '), i.e., a homomorphism of (A, r) into

(A1),

Example 3. Let A # ) be a set, r a ternary relation on A such that (z,y,2) € r
implies * — y = z. Let A’ # 0 be a set and 7’ a ternary relation on A’ with
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the following property: If ' € A') v € A’ then (2/,¢',y') € #'. In particular,
(z', ', 2") € v holds for any 2’ € A’

We put 7 = {(z,2,2); v € A}, v = {(&',2',2"); «' € A’}. Then, clearly,
r C 7 r C 7. Itis easy to see that a mapping h of A into A’ is a strong
homomorphism of (A,7) into (A’,r’) if and only if it is injective; for the details
see Example 3 of [1]. Tt follows that any injective mapping of A into A’ is a
homomorphism of (A, r) into (A', ).

On the other hand, it is easy to see that any mapping h of A into A’ is a

homomorphism of the structure (4,r) into (A’,r"). The corresponding ternary
relations 7 and r’ are described in the proof of Theorem 1. We have 1’ =
{(h(z), h(z), h(z)); (z,z,2) € r}, F={(z,y,2); (h(x),h(y),h(z)) € r'}. Clearly,
h is a strong homomorphism of (A4,7) into (A, 7).
Example 4. Let m > 1, n > 1 be integers such that n divides m, suppose
A=A{ar,...,an}, A’ ={d}, ..., a,} wherea; # a; forany i, jwithl <i< j<m
and a; # af for any i, jsatisfying 1 <i < j < n. Let us have f(a;) = a;41 for any i
with 1 <i<m, flam) = a1, f'(a}) = aj,, for any i with 1 <i < n, f'(ay,) = a).
Then (A, f), (A, f) are mono-unary algebras that can be regarded as binary
relational structures. If putting h(a;) = a} where i = j (mod n) we obtain
a homomorphism of the algebra (A, f) onto (A’, f') that may be regarded as a
strong homomorphism of the binary relational structure (A4, f) onto (A4', f'). If
choosing an arbitrary binary relation » on A such that » C f and an arbitrary
binary relation ' on A’ such that f/ C r/, then h is a homomorphism of (A,r)
onto (A’ r").

The presented examples are intended to demonstrate our Construction in a
transparent way. For this reason the sets appearing in Example 1 and 2 have
small cardinalities. Besides, these examples present the construction of one homo-
morphism using one possible choice of 7 and r’; the remaining cases can be solved
in a similar way. Naturally, all homomorphisms of a relational structure (A,r)
into (A’,7") may be constructed simply by testing all mappings of A into A’ and
by rejecting all that are not homomorphisms. Our Construction offers another
way for solving this problem. Example 4 presents another application of Theorem
1: construction of some pairs of binary relational structures with a prescribed
homomorphism.

Construction of all strong homomorphisms of one n-ary relational structure into
another one that appears as a step in our Construction is transformed in construc-
tion of all homomorphisms of one mono-n — 1l-ary algebra into another algebra
of the same type in [5], [6], [7]. By [8] the construction of all homomorphisms of
one mono-n — l-ary algebra into another one may be reduced to construction of
all so called decomposable homomorphisms of one mono-unary algebra of a par-
ticular class into another one (cf. [2], [3], [4]). These constructions demonstrate
the fundamental meaning of mono-unary algebras in some problems concerning
homomorphisms of algebraic structures.
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We now present an application of homomorphisms between relational struc-
tures.

Let A be aset. A mapping R of P(A) into P(A) is said to be a closure on A if
it is extensive, monotone, and idempotent. An ordered pair (P(A), R) is referred
to as a closure space if R is a closure on A. This closure space is called totally
additive if so is R. By Lemma 4, Theorem 3 and Theorem 4 of [5], R is a totally
additive closure on A if and only if R = P[r] holds for some preordering r on A.
This preordering r may be obtained from R by means of an operator ¢ that is
defined as follows.

Let A be a set, R a mapping of P(A) into itself. We put Q[R] = {(z,y) €
A x A; y € R({z})}. By Theorem 3 of [5], Q[R] is a preordering for any closure
space (A, R). By Lemma 4 of [5], R = P[Q[R]] holds if and only if R is totally
additive.

Let (P(A), R), (P(A"), R') be totally additive closure spaces. A mapping h
of A into A’ is called a continuous transformation of (P(A), R) into (P(A"), R")
if P[A](R(X)) C R/(P[h](X)) holds for any X € P(A). A mapping h of A into
A’ is referred to as a continuous and closed transformation of (P(A), R) into
(P (A, Ry if P[A(R(X)) = R'(P[R](X)) is satisfied for any X € P(A). By
Theorem 6 of [5] a mapping h of A into A’ is a continuous and closed transforma-
tion of (P(A), R) into (P(A’), R') if and only if it is a strong homomorphism of
(4, QIR]) into (4", QIR).

Theorem 2. Let (P(A), R), (P(A’), R') be totally additive closure spaces, h a

mapping of A into A’. Then the following assertions are equivalent.

(i) h is a continuous transformation of (P(A), R) into (P (A"), R').
(ii) h is a homomorphism of (A, Q[R]) into (A’, Q[R]).

Proof. Put r = Q[R], v = Q[R/].
Let (i) hold and suppose that (x,y) € r. Then y € P[r]({x}) which implies that
[ T

) 1({=

h(y) € PlR](P[r]({x})) = P[AI(PIQ[R]]({z})) = P[h](R({z})) C R'(P[h]({z})) =
f[g[R’]](P[h]({x})) = P[']({h(x)}) and, therefore, (h(z),h(y)) € r'. Hence (ii)

Let (ii) hold and suppose that y € P[h](R(X)) where X € P(A) is arbitrary.
Since R = P[r], there exists y € P[r](X) such that h(y) = y'. Thus there exists
z € X such that (x,y) € r which implies (h(x), h(y)) € ¥'. Since h(x) € P[h](X),
we obtain ¢ = h(y) € P[](P[R](X)). Thus, P[h](R(X)) = P[h](P[r](X)) C
P[(P[h](X)) = R'(P[R](X)) holds for any X € P(A) and (i) is satisfied. O

It follows that constructions of continuous transformations of (P (A), R) into
(P (A"), R") may be reduced to constructions of homomorphisms of (A, Q[R]) into
(A", Q[R']) where Q[R], Q[R'] are preorderings.
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