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1 Introduction

This article presents some recent results obtained jointly with P. Marcellini (see
[10], [11] and [12]). We propose a new approach for existence of almost everywhere
solutions of nonlinear partial differential equations of the first and second order.
This approach does not use the notion of viscosity solution since it is mainly
intended for handling vectorial problems of non elliptic type. We also give an
example (c.f. Theorem 3 and for more general results see [3]) where our method
contrasts with the viscosity approach.

Our results establish only existence of solutions; it remains open, in general,
to find a criterion of selection among the many solutions which are provided by
our existence theorems. Of course when a Lipschitz viscosity solution exists and is
unique, then this is, in general, the best criterion.

Our original motivation to study such problems comes from the calculus of
variations and its applications to nonlinear elasticity and optimal design (see [9]).
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2 First order PDE, the scalar case

Consider the Dirichlet problem
{

F (Du (x)) = 0, a.e. x ∈ Ω

u (x) = ϕ (x) , x ∈ ∂Ω
(1)

where Ω ⊂ R
n is a bounded (or unbounded) open set, F : R

n → R and ϕ ∈
W 1,∞ (Ω). We then have

Theorem 1 (c.f. [10]). Let E = {ξ ∈ R
n : F (ξ) = 0}, if

Dϕ (x) is compactly contained in intcoE, a.e. in Ω (2)

where intcoE stands for the interior of the convex hull of E, then there exists (a
dense set of) u ∈ W 1,∞ (Ω) that satisfies (1). If in addition ϕ ∈ C1 (Ω) and if E

is closed then (2) can be replaced by

Dϕ (x) ∈ E ∪ intcoE in Ω. (3)

Remark 2. (i) One should note that no hypotheses of convexity or coercivity on F

are made. The condition is close to the necessary condition which, in some sense,
is

Dϕ (x) ∈ coE in Ω.

(ii) The condition (3) excludes, as it should do, the linear case since then
intcoE = ∅.

(iii) The above theorem can be generalized to the case where F = F (x, u, Du),
c.f. [11], c.f. also [1] and [15].

(iv) It is interesting to compare the above result with the classical hypotheses
(c.f. [17], [7], [18]) ensuring existence of Lipschitz viscosity solution to (1) i.e. F is
convex, coercive (lim F (ξ) = +∞ if |ξ| → ∞) then

E ∪ intcoE = {ξ ∈ R
n : F (ξ) ≤ 0}

and we recover the usual compatibility condition F (Dϕ) ≤ 0.

Proof. We very roughly outline the idea of the proof in the classical case i.e. when
F is convex, coercive and F (Dϕ) ≤ 0. We set

V =
{

u ∈ ϕ + W
1,∞
0

(Ω) : F (Du) ≤ 0
}

.

Then ϕ ∈ V and when endowed with the C0 metric it becomes a complete metric
space (this results from the convexity and coercivity of F ). We then define

V k =

{

u ∈ V :

∫

Ω

F (Du) > −
1

k

}

.
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Then V k is open and dense in V , the first property follows from the convexity of
F while the second one is more difficult and is some kind of relaxation theorem
used in the calculus of variations.

We then use Baire category theorem which ensures that

⋂

V k =
{

u ∈ ϕ + W
1,∞
0

(Ω) : F (Du) = 0
}

is dense (and hence non empty) in V . This achieves the outline of the proof.
The idea to use Baire theorem for Cauchy problem for ordinary differential

inclusion is due to Cellina [5], c.f. also [14]. ⊓⊔

A natural question is then to ask if under the general assumption of the theorem
one can always find among the many solutions a viscosity one (when F is convex
and coercive this is the case). The answer is in general negative unless strong
geometric restrictions are assumed. A necessary and sufficient condition is given
in [3]. We give below such a result only in a particular example which sheds some
light on the nature of these geometric restrictions. We will denote for u = u (x, y)
its partial derivatives by ux, uy.

Theorem 3 ([3]). Let Ω ⊂ R
2 be convex. Then

{

F (Du) =
(

u2

x − 1
)2

+
(

u2

y − 1
)2

= 0, a.e. in Ω

u = 0, on ∂Ω
(4)

has a W 1,∞ viscosity solution if and only if Ω is a rectangle whose faces are
orthogonal to the vectors (1, 1) and (1,−1).

Remark 4. Note that by Theorem 1 the problem (4) has a W 1,∞ solution since

0 ∈ intcoE =
{

ξ ∈ R
2 : |ξ1| , |ξ2| < 1

}

.

3 First order PDE, the vectorial case

We now want to discuss the analogue of Theorem 1 in the vectorial case. The
problem is then

{

F1 (Du) = · · · = FN (Du) = 0, a.e. in Ω

u = ϕ, on ∂Ω
(5)

where u : Ω ⊂ R
n → R

m, n, m > 1, and Fi : R
m×n → R, i = 1, ..., N.

We then let

E =
{

ξ ∈ R
m×n : Fi (ξ) = 0, i = 1, ..., N

}

.

A natural conjecture (c.f. [11]) is then
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Conjecture 5. The system (5) has a W 1,∞solution provided ϕ ∈ C1
(

Ω; Rm
)

is
such that

Dϕ (x) ∈ E ∪ intQcoE, in Ω

where QcoE denotes the quasiconvex (in the sense of Morrey) hull of E.

This conjecture is a theorem under some extra technical conditions which are
discussed in [11]. In the scalar case the notions of convexity and quasiconvexity
are equivalent, therefore QcoE = coE. As in the scalar case the conjecture is close
to the necessary condition which is, in some sense,

Dϕ (x) ∈ QcoE, in Ω.

These types of problems are important in the calculus of variations (see [9])
and in nonlinear elasticity (phase transitions, problem of potential wells, c.f. also
in this case [20]) or in optimal design.

We now give one typical case that can be handled by our method (c.f. [11] and
[13], c.f. also [4]).

Let ξ ∈ R
n×n and denote by 0 ≤ λ1 (ξ) ≤ ... ≤ λn (ξ) the singular values of

the matrix ξ (i.e. the eigenvalues of (ξtξ)
1/2

). This implies in particular that

|ξ|2 =

n
∑

i,j=1

ξ2

ij =

n
∑

i=1

(λi (ξ))
2
, |det ξ| =

n
∏

i=1

λi (ξ) .

Theorem 6. Let Ω ⊂ R
n be an open set, ai : Ω × R

n → R, i = 1, ..., n be
continuous functions satisfying

0 < c ≤ a1 (x, s) ≤ ... ≤ an (x, s)

for some constant c and for every (x, s) ∈ Ω × R
n. Let ϕ ∈ C1

(

Ω; Rn
)

satisfy

n
∏

i=ν

λi (Dϕ (x)) <

n
∏

i=ν

ai (x, ϕ (x)) , x ∈ Ω, ν = 1, ..., n (6)

(in particular ϕ ≡ 0), then there exists (a dense set of) u ∈ W 1,∞ (Ω; Rn) such
that

{

λi (Du (x)) = ai (x, u (x)) , a.e. x ∈ Ω, i = 1, ..., n

u (x) = ϕ (x) , x ∈ ∂Ω.
(7)

Remark 7. If ai ≡ 1, for every i = 1, ..., n, then (6) becomes

λn (Dϕ (x)) < 1, x ∈ Ω.

The problem (7) can then equivalently be rewritten as

Du (x) ∈ O (n) , a.e. in Ω.

The case n = 3, ai ≡ 1 and ϕ ≡ 0 has also been studied in [6].
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4 Second order case

Since second order equations can be rewritten as first order systems, this section
seems to fall in the preceding one; however some of the equations are then linear
and hence this corresponds to the case where

intQcoE = ∅.

We here present two types of results of more general ones, see [12].
The first one deals with one single equation. For this purpose we introduce the

following notations and terminology

R
n×n
s =

{

ξ ∈ R
n×n : ξ = ξt

}

.

Let Ω ⊂ R
n be an open set, F : Ω×R×R

n×R
n×n
s → R, F = F (x, s, p, ξ), we say

that F is coercive with respect to the last variable ξ in the rank one direction λ,

if λ ∈ R
n×n
s with rank {λ} = 1, and for every bounded set of Ω ×R ×R

n ×R
n×n
s

there exist constants m, q > 0, such that

F (x, s, p, ξ + tλ) ≥ m |t| − q

for every t ∈ R and every (x, s, p, ξ) that vary in the bounded set of Ω ×R×R
n ×

R
n×n
s . Examples of such functions are

F (ξ) = |ξ|2 − 1 =

n
∑

i,j=1

(

ξ2

ij

)

− 1 or F (ξ) = |trace ξ| − 1.

Theorem 8. Let Ω ⊂ R
n be an open set, F : Ω × R × R

n × R
n×n
s → R be a

continuous function, convex with respect to the last variable and coercive in a rank
one direction λ. Let ϕ ∈ C2 (Rn) satisfy

F
(

x, ϕ (x) , Dϕ (x) , D2ϕ (x)
)

≤ 0, x ∈ Ω. (8)

Then there exists (a dense set of) u ∈ W 2,∞ (Ω) such that
{

F
(

x, u (x) , Du (x) , D2u (x)
)

= 0, a.e. x ∈ Ω

u (x) = ϕ (x) , Du (x) = Dϕ (x) , x ∈ ∂Ω.

Remark 9. (i) The theorem remains valid if convexity is replaced by quasiconvexity
in the sense of Morrey (for this notion see [19] or [8]).

(ii) The coercivity condition in a rank one direction excludes from our analysis
linear equations as well as the so called fully non linear elliptic equations (in the
sense of [2], [7], [16] or [21]).

(iii) Note that if u and ϕ are smooth functions and ∂Ω is smooth, then to
write u = ϕ, Du = Dϕ, on ∂Ω is equivalent as simultaneously prescribing the
normal and tangential derivatives. Therefore the boundary conditions are at the
same time of Dirichlet and Neumann type.
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Examples of applications of this result are

Example 10. (i) The following Dirichlet-Neumann problem admits a W 2,∞ solu-
tion

{

|∆u| = a (x, u (x) , Du (x)) , a.e. in Ω

u = ϕ, Du = Dϕ, on ∂Ω

provided the compatibility condition is satisfied, namely

|∆ϕ| ≤ a (x, ϕ (x) , Dϕ (x)) .

(ii) Similarly the problem

{∣

∣D2u
∣

∣ = a (x, u (x) , Du (x)) , a.e. in Ω

u = ϕ, Du = Dϕ, on ∂Ω

has a W 2,∞ solution provided

∣

∣D2ϕ
∣

∣ ≤ a (x, ϕ (x) , Dϕ (x)) .

Similar results can be established for systems of equations (c.f. [12]). We only
quote here the following second order version of Theorem 6 that we get by our
method.

Theorem 11. Let Ω ⊂ R
n be an open set, let ϕ ∈ C2 (Rn) satisfy

λn

(

D2ϕ (x)
)

< 1, x ∈ Ω (9)

(in particular ϕ ≡ 0), then there exists (a dense set of) u ∈ W 2,∞ (Ω) such that

{

λi

(

D2u (x)
)

= 1, a.e. x ∈ Ω, i = 1, ..., n

u (x) = ϕ (x) , Du (x) = Dϕ (x) , x ∈ ∂Ω.
(10)

Remark 12. (i) Observe that since in this theorem the matrices are symmetric
then the singular values are the absolute values of the eigenvalues of the matrices.

(ii) Note that as a consequence of the above theorem we have that if (9) holds,
then the following Dirichlet-Neumann problem admits a solution







∣

∣detD2u
∣

∣ =
n
∏

i=1

λi

(

D2u
)

= 1, a.e. in Ω

u = ϕ, Du = Dϕ, on ∂Ω.

Observe that because of the Dirichlet-Neumann boundary data the above problem
cannot be handled as a corollary of the results on Monge-Ampère equation.
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