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Abstract. This article is concerned with the nonlinear singular perturba-
tion problem due to small diffusivity in nonlinear evolution equations of
Chaffee-Infante type. The boundary layer appearing at the boundary of the
domain is fully described by a corrector which is “explicitly” constructed.
This corrector allows us to obtain convergence in Sobolev spaces up to the
boundary.
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1 Introduction

In this article we will study the asymptotic behavior of the solutions of certain
reaction diffusion equations with small diffusivity. We will focus on the Chaffee-
Infante equation:

∂uε

∂t
− ε∆uε + (uε)3 − uε = f in Ω, (1)
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where Ω is a two dimensional channel

Ω = (0, 2π) × (0, 1), (2)

but the methods apply to more general polynomial nonlinearities and to higher
space dimensions.

The initial and boundary conditions associated with (1) and (2) are

uε = u0 at t = 0, (3)

and










uε = 0 at y = 0 and 1,

and periodicity (2π) for all functions

in the horizontal (x) direction.

(4)

The corresponding “inviscid” equation is the reaction equation:

∂u0

∂t
+ (u0)3 − u0 = f in Ω, (5)

with the initial condition

u0 = u0 at t = 0. (6)

We will assume that u0 satisfies the boundary conditions (4) while f need not
vanish at the wall. Thus there is a boundary layer near the wall (at y = 0 and
y = 1) which is the main object under investigation in this article.

We will assume enough smoothness on u0 and f so that all the calculations
hereafter are justified. We will also consider the time T fixed and let the diffusivity
ε approaches zero. This is the case since the solutions of the reaction equation (5)
may develop internal layers as time approaches infinity. This would prevent us from
obtaining a simple boundary layer expansion for the reaction-diffusion equation
(1). The long time asymptotics will be considered elsewhere.

The difficulty of the problem lies in the disparity of the boundary conditions of
(1) and (5) which makes this a singular perturbation problem. The approach that
we take are the ones suggested by Lions [8], Vishik and Lyusternik [17] (see also
Temam and Wang [14,15,16]), i.e. the construction and utilization of a corrector.
The advantage of this approach, in terms of the common matched asymptotic
expansion, is that once we have found the right corrector, the outer expansion for
the corrector equation would be trivial (zero) and thus no matching is necessary
at all. The other tools that we need here are maximum principle, energy estimates
and anisotropic Sobolev imbeddings.

Our method can be carried over to more general reaction-diffusion type equa-
tions where the reaction term is a polynomial of odd degree and the leading co-
efficient positive (see for instance Temam [13]). Note however that the geometry
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that we consider is flat, our objectives and the type of problems we are interested
in are not the same as those occuring with curved boundaries in relation in partic-
ular with the Ginzburg Landau equation (see e.g. [11], [12] and the bibliography
therein).

Our main results are the following:

Theorem 1. There exist constants Kj depending on T, u0 and f only such that

∥

∥

∥

∥

u
ε(t;x, y) − u

0(t; x, y) − M

(

t, x,
y√
ε

)

− N

(

t; x,
1 − y√

ε

)∥

∥

∥

∥

L∞((0,T )×Ω)

≤ K1ε
1/2

, (7)

∥

∥

∥

∥

u
ε(t;x, y) − u

0(t; x, y) − M

(

t, x,
y√
ε

)

− N

(

t; x,
1 − y√

ε

)
∥

∥

∥

∥

L∞(0,T ;L2(Ω))

≤ K2ε
3/4
1 , (8)

∥

∥

∥

∥

u
ε(t;x, y) − u

0(t; x, y) − M

(

t, x,
y√
ε

)

− N

(

t; x,
1 − y√

ε

)∥

∥

∥

∥

L∞(0,T ;H1(Ω))

≤ K3ε
1/4

, (9)

where M and N are solutions of

∂M

∂t
− ∂2M

∂y2
+ M3 − M + 3g0M

2 + 3g2
0M = 0 in y > 0, (10)

M = 0 at t = 0, (11)

and

M = −g0 at y = 0, M → 0 as y → +∞, (12)

∂N

∂t
− ∂2N

∂y2
+ N3 − N + 3g1N

2 + 3g2
1N = 0 in y > 0, (13)

N = 0 at t = 0, (14)

and

N = −g1 at y = 0, N → 0 as y → +∞, (15)

where

g0(t; x) = u0|y=0, g1(t; x) = u0|y=1. (16)

Here the spaces are defined as

H1
p (Ω) =

{

v ∈ H1(Ω), v is periodic in x with period 2π
}

; (17)

H1
0p(Ω) =

{

v ∈ H1
p (Ω), v = 0 at y = 0 and y = 1

}

. (18)

The rest of the article is organized as follows. In the next section we introduce
a preliminary form of the corrector and derive some useful estimates; then, in the
last section, we derive the correctors (M and N) and prove the main result.
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2 The Preliminary Form of the Corrector

It is obvious that uε cannot converge to u0 as ε approaches zero uniformly in Ω.
However it is plausible to think that the convergence is true in the interior of Ω
since the diffusive coefficient is small. If this is true, uε − u0 can be approximated
by a boundary layer type function θε called corrector (see Lions [8]). Considering
(1) and (5) we propose that θε be the solution of the following evolution equation

∂θε

∂t
− ε∆θε + (θε)3 − θε + 3u0(θε)2 + 3(u0)2θε = 0 in Ω, (19)

θε = 0 at t = 0, (20)

θε = −u0 at y = 0 and y = 1. (21)

We are led to estimate wε = uε − u0 − θε which satisfies the equation

∂wε

∂t
− ε∆wε + (wε)3 − wε + 3uε(u0 + θε)wε = ε∆u0 in Ω, (22)

wε = 0 at t = 0, (23)

wε = 0 at y = 0 and y = 1. (24)

Denoting K a generic constant which may depend on T, u0 and f but is inde-
pendent of ε, and which may change from place to place, we obtain:

‖∇ku0‖L∞((0,T )×Ω) ≤ K for k = 0, 1, . . . (25)

and by the usual maximum principle

‖uε‖L∞((0,T )×Ω) ≤ K, (26)

‖θε‖L∞((0,T )×Ω) ≤ K, (27)

‖M‖L∞((0,T )×{y>0}) + ‖N‖L∞((0,T )×{y>0}) ≤ K. (28)

The maximum principle applies to wε (equation (22)) as well. Indeed let K1

be a constant independent of ε and larger than 3‖uε(u0 + θε)‖L∞((0,T )×Ω), and
consider

w̃ε = e−(K1+2)twε;

we have

∂w̃ε

∂t
− ε∆w̃ε + e2(K1+2)t(w̃ε)3 + (K1 + 2 + 3uε(u0 + θε))w̃ε = εe−(K1+1)t∆u0,

It is now easy to observe that

w̃ε(t; x, y) ≤ ε‖∆u0‖L∞((0,T )×Ω) for (t; x, y) ∈ (0, T )× Ω.

We can derive a corresponding lower bound and thus we conclude that

‖wε‖L∞((0,T )×Ω) ≤ Kε. (29)
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This indicates that θε is a good preliminary corrector. Furthermore, standard
energy estimates for (22) yield

‖wε‖L∞(0,T ;L2(Ω)) ≤ Kε, (30)

‖wε‖L2(0,T ;H1(Ω)) ≤ Kε1/2. (31)

This again confirms the choice of θε.
To derive L∞(H1) estimates on wε we multiply (22) by −∆wε and integrate

over Ω. We have, after rewriting u0 + θε as uε − wε,

1

2

d

dt
|∇wε|2L2(Ω) + ε|∆wε|2L2(Ω) +

∫

Ω

3(wε)2|∇wε|2

+ 3

∫

Ω

(uε)2|∇wε|2 + 6

∫

Ω

uεwε∇uε · ∇wε

− 6

∫

Ω

uεwε|∇wε|2 − 3

∫

Ω

(wε)2∇uε · ∇wε

≤ ε

2
|∆wε|2L2(Ω) + K|∇wε|2L2(Ω) + Kε3/2.

(32)

For the right-hand side of (32) we have used the following inequality, with f and
u replaced by ε∆u0 and wε :

−
∫

Ω

f∆u =

∫

Ω

∇f∇u −
∫

y=1

f
∂u

∂y
+

∫

y=0

f
∂u

∂y
,

and hence
∣

∣

∣

∣

∫

Ω

f∆u

∣

∣

∣

∣

≤ |∇f |L2(Ω)|∇u|L2(Ω) + |f |L2(Γ )

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

L2(Γ )

≤ |∇f |L2(Ω)|∇u|L2(Ω) + K|f |L2(Γ )|∇u|1/2
L2(Ω)|∆u|1/2

L2(Ω)

≤ |∇f |L2(Ω)|∇u|L2(Ω) +
ε

2
|∆u|2L2(Ω) + |∇u|2L2(Ω) + Kε−1/2|f |2L2(Γ ).

(33)

The treatment of inequality (32) then necessitates estimates on ∇uε which can be
derived by multiplying (1) by −∆uε integrating over Ω and applying the Uniform
Gronwall inequality (see e.g. [13]). We also apply (33) with u replaced by uε. We
find:

‖uε‖L∞(0,∞;H1(Ω)) ≤ Kε−1/4. (34)

Combining (26), (27), (29), (32) and (34) we deduce

d

dt
|∇wε|2L2(Ω) + ε|∆wε|2L2(Ω) ≤ K|∇wε|2L2(Ω) + Kε3/2 + Kε2|∇uε|2L2(Ω),

which implies

‖wε‖L∞(0,T ;H1(Ω)) ≤ Kε3/4, ‖wε‖L2(0,T ;H2(Ω)) ≤ Kε1/4. (35)
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By differentiating the equations in x and repeating the above procedures, we see
that the above estimates remain valid for ∂kwε/∂xk. This confirms our intuition
that tangential derivatives are small even though the normal ones might be large.

3 The Explicit Corrector and the Proof of the Theorem

Since the tangential derivatives are small we tend to neglect them in equation (19).
We also expect that θε be a boundary layer type function, i.e. it decays fast in
the interior of the domain, thus in terms of matched asymptotic expansions, the
outer expansion should be trivial (which is easy to see) and the inner expansion
matches the outer one automatically. This leads us to propose M and N defined
by (10)–(16) as the inner expansions at y = 0 and y = 1 respectively. We will
check that these expressions are suitable.

We first prove the decay property of M, N, and θε. It is enough to prove this
for θε. Let η ∈ C∞

0 ([0, 1]) be a cut-off function, η ≥ 0.
Standard energy estimates yield

1

2

d

dt

∫

Ω

η(θε)2 + ε

∫

Ω

η|∇θε|2 +

∫

Ω

(

η(θε)4 − η(θε)2 + 3u0η(θε)3 + 3(u0)2η(θε)2
)

= −ε

∫

Ω

η′ ∂θε

∂y
θε =

ε

2

∫

Ω

η′′(θε)2. (36)

Using a function of the form

ϕε(t; x, y) = −g0(t; x)ρ

(

y√
ε

)

− g1(t, x)ρ

(

1 − y√
ε

)

, (37)

with ρ ∈ C∞([0, 1]), ρ(0) = 1, supp ρ ⊂ [0, 1
2 ], and considering θε −ϕε, we deduce

‖θε‖L∞(0,T ;L2(Ω)) ≤ Kε1/4, (38)

‖θε‖L2(0,T ;H1(Ω)) ≤ Kε−1/4. (39)

This together with (36), implies for δ ∈ (0, 1
2 ),

‖θε‖L∞(0,T ;L2(Ωδ)) ≤ Kδε
3/4,

‖θε‖L2(0,T ;H(Ωδ)) ≤ Kδε
1/4,

where

Ωδ = (0, 2π) × (δ, 1 − δ), (40)

and Kδ is a constant depending on δ, T, f, u0, but independent of ε.
By reiteration, we deduce

‖θε‖L∞(0,T ;L2(Ωδ)) ≤ Kδε
5/4, (41)

‖θε‖L2(0,T ;H1(Ωδ)) ≤ Kδε
3/4. (42)
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We could reiterate again but our aim now is to obtain estimates on higher
order derivatives of θε. For that purpose we multiply (19) by −∇(η(y)∇θε) and
integrate over Ω.

Notice that

ε

∫

Ω

∆θεη′ ∂θε

∂y
=

ε

2

∫

Ω

η′′|∇θε|2 − ε

∫

Ω

η′′
(

∂θε

∂y

)2

,

∣

∣

∣

∣

∫

Ω

η∇θε∇((θε)3 + 3u0(θε)2 + 3(u0)2θε)

∣

∣

∣

∣

≤ K

∫

Ω

η|∇θε|2 + Kε5/2,

(Thanks to (27), (41) and (42));

hence we have

‖θε‖L∞(0,T ;Hk(Ωδ)) ≤ Kδε
5/4, (43)

‖θε‖L2(0,T ;Hk+1(Ωδ)) ≤ kδε
3/4, for k = 0, 1. (44)

The procedure can be repeated for k = 2, 3, and with ∂kθε/∂xk replacing θε.
Similar estimates hold for M ε(t, x, y) = M(t, x, y√

ε
) and also for Nε(t, x, y) =

N(t; x, 1−y√
ε

). In particular we will have for

Cε
M (t; x, y) = −yM

(

t; x,
1√
ε

)

, (45)

‖∇kCε
M‖L∞((0,T )×Ω) ≤ Kε5/4, for k = 0, 1, 2, . . . (46)

∥

∥

∥

∥

∂Cε
M

∂t

∥

∥

∥

∥

L∞((0,T )×Ω)

≤ Kε5/4. (47)

We then consider the quantity

qε = θε − M ε − Nε − Cε,

where Cε = Cε
M + Cε

N , Cε
N = −(1 − y)N

(

t, x, 1√
ε

)

.

For the sake of simplicity, we now assume that f ≡ 0 on y = 1 and hence
g1 ≡ 0, which further implies N ≡ 0. Hence qε reduces to

qε = θε − M ε − Cε
M . (48)

It satisfies the equation

∂qε

∂t
− ε∆qε + (θε)3 + 3u0(θε)2 + 3(u0)2θε

− (M ε)3 − 3g0(M
ε)2 − 3g2

0M
ε − qε

= −∂Cε
M

∂t
+ ε∆Cε

M + ε
∂2M ε

∂x2
+ Cε

M in Ω,

(49)
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with initial and boundary conditions (thanks to N ≡ 0):

qε = 0 at t = 0, (50)

qε = 0 on y = 0 and y = 1. (51)

Notice that

(θε)3 − (M ε)3 = qε((θε)2 + θεM ε + (M ε)2) + Cε
M ((θε)2 + θεM ε + (M ε)2),

3u0(θε)2 − 3g0(M
ε)2 = 3u0(θε + M ε)qε + 3u0(θε + M ε)Cε

M + 3(u0 − g0)(M
ε)2,

3(u0)2θε − 3g2
0M

ε = 3(u0)2qε + 3(u0)2Cε
M + 3(u0 + g0)(u

0 − g0)M
ε;

hence we may rewrite (49) as

∂qε

∂t
− ε∆qε + ((θε)2 + θεM ε + (M ε)2)qε

+ 3u0(θε + M ε)qε + 3(u0)2qε − qε = f̃ in Ω, (49’)

where

f̃ = − ∂Cε
M

∂t
+ ε∆Cε

M + ε
∂2M ε

∂x2
+ Cε

M

−
(

(θε)2 + θεM ε + (M ε)2 + 3u0(θε − M ε) + 3(u0)2
)

Cε
M

− 3(u0 − g0)(M
ε)2 − 3(u0 + g0)(u

0 − g0)M
ε.

(52)

By the choice of g0,
u0−g0

y remains bounded on (0, T ) × Ω. In order to obtain

an L∞ estimate on f̃ (sharp in terms of dependence on ε), we need to obtain an
L∞ bound on yM. Consider (1 + y)M which satisfies the equation

∂((1 + y)M)

∂t
− ∂2

∂y2
((1 + y)M) +

1

(1 + y)2
((1 + y)M)3 +

3g0

1 + y
((1 + y)M)2

+ 3g2
0(1 + y)M − (1 + y)M = −2

∂M

∂y
, (53)

and

∂

∂t

(

∂M

∂y

)

− ∂2

∂y2

(

∂M

∂y

)

+ 3M2 ∂M

∂y
+ 6g0M

∂M

∂y
+ 3g2

0

∂M

∂y
− ∂M

∂y
= 0. (54)

We see that ∂M
∂y satisfies a maximum principle and hence (1 + y)M too.

This combined with (27), (28), (46) and (47) yields

‖f̃‖L∞((0,T )×Ω) ≤ Kε1/2. (55)

This further implies, via a maximum principle type argument as that for wε,

‖qε‖L∞((0,T )×Ω) ≤ Kε1/2. (56)
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It is also easy to check, thanks to (46), (47) and the boundedness of u0−g0

y ,
that

‖f̃‖L2(0,T ;L2(Ω)) ≤ Kε3/4. (57)

Thus standard energy estimates yield

‖qε‖L∞(0,T ;L2(Ω)) ≤ Kε3/4, (58)

‖qε‖L∞(0,T ;H1(Ω)) ≤ Kε1/4. (59)

The theorem then follows from (29), (30), (35), (46), (56), (58) and (59).
This completes the proof.
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