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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 295 { 300INVARIANT VECTOR FIELDS OF HAMILTONIANSJacek De�beckiAbstract. A complete classi�cation of natural transformations of Hamilto-nians into vector �elds on symplectic manifolds is given herein.The aim of this paper is to give a classi�cation of natural transformations ofHamiltonians into vector �elds. By a Hamiltonian we mean an arbitrary smoothfunction on a symplectic manifold. It is well known that every Hamiltonian Hyields in a natural way a vector �eld VH on the symplectic manifold, which iscalled a Hamiltonian vector �eld. The coordinates of VH in a canonical chart(q; p) : U �! Rn � Rn (a chart (q; p) on a symplectic manifold is canonical ifdqi ^ dpi coincides with the symplectic structure) are given byT (q; p) � VH jU = �q; p;� @@pHjU ; @@qHjU�:The formula written above is invariant i.e. it is immaterial which (q; p) we chooseas long as (q; p) is canonical. This is the reason why the transformationH �! VHis natural. The theorem proved in this article says that an arbitrary naturaltransformation of Hamiltonians into vector �elds has the form H �! (� �H)VH ;where � : R �! R is a smooth function.Note that our de�nition of the natural transformation of Hamiltonians intovector �elds doesn't agree with the one used by Doupovec and Kurek in [3]. Inour paper we study the naturality with respect to all canonical embeddings f :L �!M; where (L; ) and (M;!) are arbitrary symplectic manifolds (we call theembedding f canonical if !�(T�T )f =  ). The article [3] contains a classi�cationof �rst order natural transformations of functions on the cotangent bundle intovector �elds on the cotangent bundle. Of course, the cotangent bundle may beregarded as a symplectic manifold, but in [3] the authors consider the naturalitywith respect to the family of maps T �f : T �L �! T �M; where f : L �! Mis an embedding and L; M are n-dimensional manifolds. This family is smallerthan the family of all canonical embeddings T �L �! T �M: We think that our1991 Mathematics Subject Classi�cation: 53C15, 53C57, 58F05.Key words and phrases: symplectic manifold, Hamiltonian lift, natural operator.Supported by a KBN grant No. 2 P03A 024 10.Received March 25, 1997.



296 JACEK DE�BECKIde�nition can be justi�ed, because Hamilton's canonical equations are preservedby all canonical embeddings. It is worth pointing out the di�erence betweenHamiltonian mechanics and Lagrangian mechanics. Namely, the only embeddingswhich preserve Lagrange's equations are of the form Tf : TL �! TM; (see thede�nitions of the natural transformations of Lagrangians in [1] and [2]).As a consequence, we obtain a result di�erent from the result obtained in [3].We also have to use other methods to prove our theorem. The proof is based ongenerating functions.Let (M;!) be a symplectic manifold. A smooth function H :M �! R is calleda Hamiltonian on M: We denote by H(M ) the set of all Hamiltonians on M; andby V(M ) the set of all smooth vector �elds on M:Let n be a �xed positive integer.De�nition. A family of maps �(M;!) : H(M ) �! V(M ); where (M;!) is anarbitrary 2n-dimensional symplectic manifold, is called a natural transformationof Hamiltonians into vector �elds, if for every embedding f : L �! M of a 2n-dimensional symplectic manifold (L; ) into a 2n-dimensional symplectic manifold(M;!) such that ! � (T � T )f =  and for every Hamiltonian H on M we haveTf � �(L; )(H � f) = �(M;!)(H) � f:A chart (q; p) : U �! Rn �Rn on a symplectic manifold (M;!) is said to becanonical if !j(T�T )U = dqi ^ dpi:Lemma. Let (M;!) be a 2n-dimensional symplectic manifold. If m 2 M andH is a Hamiltonian on M such that dmH 6= 0 then there exists a canonical chart(Q;P ) : U �! Rn �Rn on M such that (Q;P )(m) = 0 and Q1 = HjU �H(m):Proof. By the Darboux theorem, there exists a canonical chart (q; p) on M suchthat (q; p)(m) = 0: Put K = H � (q; p)�1�H(m): Let (x; y) denote the canonicalsystem of coordinates on Rn �Rn: Since K(0) = 0 and d0K 6= 0; we can choosea smooth solution W : 
 �! R (where 
 � Rn�Rn) of the di�erential equation@W@y1 = K ��xj
; @W@x �(1)such that d0W = 0 and(2) ����������� @2W@x1@y1 (0) : : : @2W@x1@yn (0)... ...@2W@xn@y1 (0) : : : @2W@xn@yn (0) ����������� 6= 0:Since d0W = 0 and (2), we can de�ne (Q;P ) : U �! Rn�Rn (where U � M ) to



INVARIANT VECTOR FIELDS OF HAMILTONIANS 297be the solution of the equationsQ = @W@y � (qjU ; P );(3) pjU = @W@x � (qjU ; P );(4)which satis�es the condition (Q;P )(m) = 0: From (2) it follows that (Q;P ) is achart in a neighbourhood of m; which can be easily checked. We may assume that(Q;P ) is a chart in the neighbourhood U: It is a canonical one, because (3) and(4) are equivalent to QidPi + pidqijTU = d�W � (qjU ; P )�: According to (3), (1),(4), we haveQ1 = @W@y1 � (qjU ; P ) = K � �qjU ; @W@x � (qjU ; P )� = K � (q; p)jU = HjU �H(m):This proves the lemma. �Let H be an arbitrary Hamiltonian on a symplectic manifold (M;!): We willdenote by VH the unique vector �eld on M such that ! � (V; VH ) = dH � V forevery V 2 V(M ): VH is called the Hamiltonian vector �eld corresponding to H: Ofcourse, if (L; ) is another symplectic manifold, dimL = dimM; and f : L �!Mis an embedding such that ! � (T � T )f =  ; then Tf � VH�f = VH � f:Theorem. If � is a natural transformation of Hamiltonians into vector �elds, thenthere is one and only one smooth function � : R �! R such that �(M;!)(H) = (��H)VH for every 2n-dimensional symplectic manifold (M;!) and every HamiltonianH on M:Proof. We �rst observe that if (M;!) is a 2n-dimensional symplectic manifold andU is an open subset ofM then for every H 2 H(M ) we have �(U;!j(T�T )U )(HjU) =�(M;!)(H)jU : To see this, it su�ces to replace an embedding in the de�nition ofthe natural transformation by the inclusion U �!M:From now on, W denotes an arbitrary smooth function Rn � Rn �! R suchthat d0W = 0 and (2). For every W we can de�ne (Q;P ) : 
 �! Rn�Rn (where
 � Rn �Rn) to be the solution of the equationsQ = @W@y � (xj
; P );yj
 = @W@x � (xj
; P );which satis�es the condition (Q;P )(0) = 0: We may assume that (Q;P ) is anembedding, so (Q;P ) is a canonical chart on (Rn �Rn; dxi ^ dyi): A trivial com-putation shows that@(Q;P )@(x; y) (0) = � B� �CB�1A CB�1�B�1A B�1 � ;(5)



298 JACEK DE�BECKIwhere A = 266664 @2W@x1@x1 (0) : : : @2W@x1@xn (0)... ...@2W@xn@x1 (0) : : : @2W@xn@xn (0) 377775 ;B = 2666664 @2W@x1@y1 (0) : : : @2W@x1@yn (0)... ...@2W@xn@y1 (0) : : : @2W@xn@yn (0) 3777775 ;C = 2666664 @2W@y1@y1 (0) : : : @2W@y1@yn (0)... ...@2W@yn@y1 (0) : : : @2W@yn@yn (0) 3777775 :Conversely, if A; B; C are arbitrary (n� n)-matrices such that A� = A; C� = C;and B is non-singular, then it is evident that there is W which gives (Q;P ) suchthat (5).Suppose @W@y1 = x1:(6)Then the �rst column of B is e1 (we write e1; : : : ; en for the canonical basis of thevector space Rn), and the �rst column and �rst row of C are 0: Conversely, if Band C satisfy these conditions, then it is evident that there is W which satis�es(6) and gives (Q;P ) such that (5). In this case (x1 + h) � (Q;P ) = x1j
 + h forevery h 2 R: ThusT (Q;P )��(Rn�Rn;dxi^dyi)(x1 + h)(0)�= �T (Q;P ) � �(
;dxi^dyi j(T�T )
)(x1j
 + h)�(0)= �T (Q;P ) � �(
;dxi^dyi j(T�T )
)�(x1 + h) � (Q;P )��(0)= ��(Rn�Rn ;dxi^dyi)(x1 + h) � (Q;P )�(0)= �(Rn�Rn ;dxi^dyi)(x1 + h)(0):Treating �(Rn�Rn;dxi^dyi)(x1 + h)(0) as a matrix with one column and 2n rowswe have@(Q;P )@(x; y) (0) � �(Rn�Rn;dxi^dyi)(x1 + h)(0) = �(Rn�Rn;dxi^dyi)(x1 + h)(0):(7)Let �(Rn�Rn;dxi^dyi)(x1 + h)(0) = � XY � ;



INVARIANT VECTOR FIELDS OF HAMILTONIANS 299where X;Y 2 Rn: For A = �I; B = I; C = 0 the formulas (7) and (5) yield� XX + Y � = � I 0I I � � XY � = � XY � :Hence X = 0: For A = 0 and C = 0 the formulas (7) and (5) yield� 0B�1 Y � = � B� 00 B�1 � � 0Y � = � 0Y � :Since B is an arbitrary non-singular matrix such that Be1 = e1; from BY = Y wededuce that the vectors e1 and Y are not linearly independent. Finally, for everyh 2 R there exists �(h) 2 R such that�(Rn�Rn;dxi^dyi)(x1 + h)(0) = �(h) @@y1 (0) = �(h) � Vx1+h(0):Fix a 2n-dimensional symplectic manifold (M;!); m 2 M; and H 2 H(M ): IfdmH 6= 0 then let (Q;P ) : U �! Rn �Rn be the chart from the lemma. Since(Q;P ) is canonical, dxi ^ dyi � (T � T )(Q;P ) = !j(T�T )U and we have�(M;!)(H)(m)= T (Q;P )�1��((Q;P )(U);dxi^dyij(T�T )(Q;P )(U))�H � (Q;P )�1�(0)�= T (Q;P )�1��(Rn�Rn;dxi^dyi)�x1 +H(m)�(0)�= T (Q;P )�1���H(m)� � Vx1+H(m)(0)�= ��H(m)� � T (Q;P )�1�VH�(Q;P )�1 (0)�= ��H(m)� � VH (m);and so �(M;!)(H)(m) = ��H(m)� � VH (m):(8)By (8), for every t 2 R�(Rn�Rn ;dxi^dyi)(x1)(te1; 0) = �(t) @@y1 (te1; 0):(9)Therefore � is a smooth function, since �(Rn�Rn ;dxi^dyi)(x1) is a smooth vector�eld.If dmH = 0; then (8) also holds. In order to prove this, we take an open U � M;mi 2 M (i 2 N;) and H 0 2 H(M ) such that m 2 U; limi�!1mi = m; H 0jU = HjU ;and dmiH0 6= 0 for i 2N: We have�(M;!)(H)jU = �(U;!j(T�T )U )(HjU ) = �(U;!j(T�T )U )(H0jU ) = �(M;!)(H0)jU ;



300 JACEK DE�BECKIwhich gives �(M;!)(H)(m) = �(M;!)(H0)(m) by the continuity of �(M;!)(H) and�(M;!)(H0): Moreover, �(M;!)(H0)(m)= limi�!1�(M;!)(H0)(mi)= limi�!1��H0(mi)� � VH0 (mi)= ��H0(m)� � VH0 (m):By the continuity of H0; VH0 ; H; and VH ; ��H 0(m)� �VH0(m) = ��H(m)� �VH(m):Combining these we obtain (8).The uniqueness of � is clear from (9), and the proof has been completed. �References[1] D�ebecki, J., Gancarzewicz, J., de Le�on, M., Mikulski, W., Invariants of Lagrangians andtheir calssi�cations, J. Math. Phys., Vol. 35, No. 9, 1994, pp. 4568{4593.[2] D�ebecki, J., Natural transformations of Lagrangians into p-forms on the tangent bundle;Quantization, Coherent States, and Complex Structures, Plenum Publishing Corp., NewYork, 1995, pp. 141{146.[3] Doupovec, M., Kurek, J., Natural operations of Hamiltonian type on the cotangentbundle, Suppl. Rend. Circ. Mat. Palermo, Serie II 34 (1995).[4] Kol�a�r, I., Michor, P. W., Slov�ak, J., Natural Operations in Di�erential Geometry,Springer-Verlag, Berlin, 1993.[5] de Le�on, M., Rodrigues, P. R., Methods of Di�erential Geometry in Analytical Mechan-ics, North-Holland Math. Ser., Vol. 152, Amsterdam, 1989.Uniwersytet Jagiello�nskiInstytut Matematykiul. Reymonta 430-059 Krak�ow, POLANDE-mail: debecki@im.uj.edu.pl
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