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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 477 { 482THE PROOF OF THE ISOMORPHISMOF THE nnn - DIMENSIONALPROJECTIVE SPACES DEFINED AXIOMATICALLYV. B�alint, P. Gre�s�ak, M. Ka�stie�l and yJ. Kate�ri�n�akAbstract. The paper gives a proof (without of using of "great" Desargues' axiom)that any two axiomatically de�ned n - dimensional projective spaces are isomorphic.1. Axioms and auxiliary theorems.The projective space Pn of dimension n � 2 is meant to be a non-empty setwith n� 1 systems of non-empty subsets (so called subspaces) ful�lling the gener-alized Hilbert's axioms of incidence J1- J5, the projective axiom P and a specialDesargues' axiom GP, on which separation relation � � Pn � Pn � Pn � Pn isde�ned so that it is ful�lling the separation axioms N1-N6 and Dedekind's axiomDN. The points (i.e. the elements) of space Pn we will note by A , B , C , B',B", and similarly, or also P0 , P00, P000, : : : as one-point sets. The subspaces ofdimension k = 1; 2; : : : ; n� 1 (i.e. the subsets of the k-th system) of the space Pnwe will note by Pk, P0k, P00k, : : : . The empty set we will note also by P�1, P0�1,P00�1, : : : .De�nition. B0; : : : ; Bk 2 Pn are independent in Pn (and we write B0 : : :Bk) ,for every Pk�1 � Pn at least one Bi 62 Pk�1.Generalized Hilbert's axioms of incidence ([4], p.69)J1 P1 � Pn ) there are independent B0; B1 2 P1 .J2 For every k = 0; 1; : : : ; n there are independent B0; : : : ; Bk 2 Pn.J3 Independent B0; : : : ; Bk 2 Pn ) there is one and only one Pk � Pn suchthat B0; : : : ; Bk 2 Pk (we write Pk = B0 : : :Bk ).J4 Pk;Pk+1 � Pn and independent B0; : : : ; Bk 2 Pk\Pk+1) Pk � Pk+1 .J5 Pk, P0k � Pk+1 � Pn and Pk \ P0k 6= ; ) there are independentB0; : : : ; Bk�1 2 Pk \P0k.1991 Mathematics Subject Classi�cation : 51A35.Key words and phrases: isomorphism, projective space.yJ. Kate�ri�n�ak dead on June 26, 1997.Received January 9, 1998.



478 V. B�ALINT, P. GRE�S�AK, M. KA�STIE�L, J. KATE�RI�N�AKProjective axiom and special Desarguesian axiomP P1, P01 � P2 � Pn ) P1 \P01 6= ; .GP Independent A;B;C 2 P2 � Pn, independent D;E; F 2 P2, AD \BE == AD\CF = BE\CF = Q 2 P1 � P2, AB\DE = X 2 P1, AC\DF == Y 2 P1 ) BC \EF = Z 2 P1 .Separation axioms and Dedekind's axiom ([3], p. 262-263 and 278;(A;B;C;D) 2 � we read: the pair A;C separates the pair B;D )N1 (A;B;C;D) 2 � ) A;B;C;D 2 P1 � Pn mutually distinct,(C;B;A;D) 2 �, (B;A;D;C) 2 �.N2 A;C 2 P1 � Pn, A 6= C ) there is (A;B;C;D) 2 �.N3 Mutually distinct A;B;C;D 2 P1 � Pn ) it holds just one of the follow-ing three relations: (A;B;C;D) 2 �, (A;C;B;D) 2 �, (A;B;D;C) 2 �.N4 A;B;C;D;E 2 P1 � Pn, A 6= C 6= B, (A;C;B;D) 62 �, (A;C;B;E) 62� ) (A;D;B;E) 62 �.N5 (A;C;B;D); (A;C;B;E) 2 � ) (A;D;B;E) 62 �.N6 A;B;C;D 2 P1 � P2 � Pn, E;F;G;H 2 P01 � P2, Q 2 P2, Q 62 P1,Q 62 P01, E 2 AQ, F 2 BQ, G 2 CQ, H 2 DQ, (A;B;C;D) 2 �) (E;F;G;H) 2 �.DN If A;B;C 2 P1 � Pn, A 6= B 6= C 6= A, X 2 D , (A;X;B;C) 2 �,; 6= D0 � D, ; 6= D00 � D,a) D0 [D00 = D, D0 \D00 = ;,b) Y 2 D0, (A;X; Y;C) 2 � ) X 2 D0c) Y 2 D00, (Y;X;B;C) 2 � ) X 2 D00,then there is H 2 D such thatd) (A;X;H;C) 2 � ) X 2 D0(H;X;B;C) 2 � ) X 2 D00.The a�ne space An of dimension n � 2 is meant to be non-empty set togetherwith n�1 systems of non-empty subsets (so called subspaces) ful�lling the general-ized Hilbert's axioms of incidence J1-J5, (Euklid's) parallel axiomE and a specialDesargues' axiomGE, on which the betweenness relation � � An�An�An, ful-�lling the axiomsM1-M4 and Dedekind's axiomDM, is de�ned. The subspacesof An will be denoted by Ak, A0k,A00k, : : : .The parallel axiom and the special Desarguesian axiom (see [4], p.70)E A1 � A2 � An, B 2 A2�A1 ) there is exactly one A01 � A2 such thatB 2 A01 and A1 \A01 = ;.GE Independent A;B;C 2 A2 � An, independent D;E; F 2 A2, AD\BE == AD\CF = BE\CF = ;, AB\DE = ;, AC\DF = ; ) BC\EF = ;.The axioms of betweenness relation and Dedekind's axiom (see [4], p.70, and[3], pp.44-45; (A;B;C) 2 � we read: the point B is between the points A,C)M1 (A;B;C) 2 �) A;B;C 2 A1 � An, A 6= B 6= C 6= A, (C;B;A) 2 �.M2 A;B 2 An, A 6= B ) there is (A;B;C) 2 �.M3 (A;B;C) 2 �) (B;A;C), (A;C;B) 62 �.M4 If independent A;B;C 2 A2 � An, A1 � A2, A;B;C 62 A1 and there is



THE PROOF OF THE ISOMORPHISM 479D 2 A1, (A;D;B) 2 �, then there is either E 2 A1, (A;E;C) 2 �, orF 2 A1, (B;F;C) 2 �.DM If A;B 2 An, A 6= B, X 2 D, (A;X;B) 2 �, ; 6= D0 � D, ; 6= D00 � D,a) D0 [D00 = D, D0 \D00 = ;,b) Y 2 D0, (A;X; Y ) 2 �) X 2 D0c) Y 2 D00, (Y;X;B) 2 �) X 2 D00,then there is H 2 D such thatd) (A;X;H) 2 �) X 2 D0(H;X;B) 2 �) X 2 D00.The projective space Pn is isomorphic with the projective space P0n if there isa bijective mapping f of the space Pn onto the space P0n (so called isomorphism)such that the (isomorphic) image of a subspaces Pk � Pn are the subspacesP0k � Pn and the (isomorphic) image of a separation � in Pn is a separation� 0 in P0n.Given the projective space Pn , let us choose a subspace P1n�1 � Pn and let usput An = Pn�P1n�1. For k = 1; 2; : : :; n� 1 we de�ne the subsets Ak � An anda subset � � An �An �An as following:(1) Ak = Pk �P1n�1 for Pk � Pn; Pk 6� P1n�1 ;(2) (B;D;C) 2 � , (B;D;C; Z) 2 � and Z 2 P1n�1 for the separation � inPn.Now An is the a�ne space of dimension n, Ak are its subspaces of dimension kand � is the betweenness relation in An. Axioms J1-J5 and P imply the followingstatements:(3) P1, P0k � Pk+1, P1 6� P0k, 1 � k � n� 1) P1 \P0k = B.(4) Ph, P0k � Pk+1, Ph 6� P0k, 1 � h � k � n� 1) Ph \P0k = P00h�1.2.The mean statement and its proof.Theorem 1. Any two projective spaces Pn and P0n are isomorphic.Proof. Let us choose a subspace P1n�1 � Pn and a subspace P01n�1 � P0n andconstruct the a�ne spaces An = Pn�P1n�1 and A0n = P0n�P01n�1. By [4] thereis an isomorphic mapping f of space An onto the space A0n such that f(Ak) = A0kand f(�) = �0. Let us de�ne the mapping �f as follows:(5) �f (X) = f(X) = X0 2 A0n for every X 2 An.For Y 2 P1n�1 let us choose B 2 An and let us put P1 = BY , A1 = P1�P1n�1,f(A1) = A01 � P01, �f (Y ) = Y 0 = P01 \P01n�1. We are going to show that in (5) itdoes not depend on the choosing of the point B; therefore let us choose C 2 An,�P1 = CY 6= BY , �A1 = �P1 �P1n�1, f( �A1) = �A01 � �P01, �f (Y ) = �Y 0 = �P01 \P01n�1.Because the points B;C; Y are independent, there is only one P2 = BCY �P1; �P1 and therefore also only one A2 = P2�P1n�1 � A1; �A1 and it is true thatA1 \ �A1 = ; (because P1 \ �P1 = Y 2 P1n�1). For the images in the isomorphismf we have A02 = f(A2) � A01, �A01 and A01 \ �A01 = ;. For P02 � A02 we have



480 V. B�ALINT, P. GRE�S�AK, M. KA�STIE�L, J. KATE�RI�N�AKP02 � P01, �P01 and by the axiom P the point Z0 = P01 \ �P01 is unique (if P01 = �P01,then also A01 = �A01) and in consequence of A01 \ �A01 = ; it must be Z0 2 P01n�1and Y 0 = Z0 = �Y 0, too.Further we have the following statement:(6) a) Y; Z 2 Pn, Y 6= Z ) �f (Y ) 6= �f (Z),b) Y 0 2 P0n ) there is Y 2 Pn such that �f (Y ) = Y 0.Proof of a). It is true �f (Y ) = f(Y ) 6= f(Z) = �f (Z) for Y; Z 2 An; for Z 2 An,Y 2 P1n�1 we have �f(Z) = f(Z) 2 A0n and �f(Y ) 2 P01n�1 , and so �f (Z) 6= �f (Y ).Let us �P1 = BZ, �A1 = �P1 � P1n�1, f( �A1) = �A01 � �P01, �f(Z) = Z0 = �P01 \P01n�1for Y; Z 2 P1n�1; if now Y 0 = Z0, then P01 = �P01, A01 = �A01, A1 = �A1, P1 = �P1and by (3) also Y = Z, what is a contradiction.Proof of b). For Y 0 2 A0n there is Y 2 An such that �f (Y ) = f(Y ) = Y 0.Let us Y 0 2 P01n�1 ; let us choose B0 2 A0n and let us put P01 = B0Y 0, A01 == P01 � P01n�1, f(B) = B0, f(A1) = A01, P1 � A1 3 B, Y = P1 \ P1n�1; thenevidently �f (Y ) = Y 0.By (5) and (6) �f is a bijective mapping of the space Pn onto the space P0n.Now we show(7) Pk � Pn ) �f(Pk) = P0k � P0n.First of all we have �f(P1n�1) = P01n�1 for P1n�1. Let us Pk 6� P1n�1. Let us takeAk = Pk � P1n�1, f(Ak) = A0k = P0k � P01n�1, and we show that �f (Pk) = P0k.For X 2 Ak we have �f (X) = f(X) = X0 2 A0k � P0k and, the other way round,�f�1(X0) = X 2 Ak for X 0 2 A0k; for Y 2 Pk \P1n�1 there is B 2 Ak and P1 == BY � Pk, A1 = P1 � P1n�1, B0 = f(B) 2 f(A1) = A01 � P01 = B0Y 0 � P0k,Y 0 = P01 \ P01n�1 and so Y 0 2 P0k, and the other way round �f�1(Y 0) = Y 22 Pk \ P1n�1 for Y 0 2 P0k \ P01n�1. Simultaneously we have proved �f (Pk�1) == P0k�1 = P0k \P01n�1 for Pk�1 = Pk \ P1n�1 and therefore �f (Pk�1) = P0k�1 �� P01n�1 for Pk�1 � P1n�1.The statement (7) is proved.Now we show, that for the separation � in Pn and � 0 in P0n it is true thefollowing statement:(8) (B;D;C; F ) 2 � ) �f (B;D;C; F ) = (B0; D0; C0; F 0) 2 � 0.Let us (B;D;C; F ) 2 �. By N1 the mutually distinct points B;D;C; F 2 P1 �� Pn and there are two possibilities:I. P1 6� P1n�1. By (3) we have exactly one point Z = P1 \ P1n�1 and wecan suppose that B 6= Z 6= C; Z 6= D (otherwise in N1 we change either thepoints B;C and D;F or the points D and F ). Hence the mutually distinct pointsB;D;C 2 A1 = P1 � P1n�1 and by (2) we get(9) (B;D;C; Z) 2 � and (B;D;C) 2 �.By [3], x89, Thm.7, p.264, there are the subsets K1;K2 � P1�B�C such that(10) K1 [K2 = P1 � B �C, K1 \K2 = ;



THE PROOF OF THE ISOMORPHISM 481X 2K1 and Y 2K2 ) (B;X;C; Y ) 2 �X; Y 2K1 or X;Y 2K2 ) (B;X;C; Y ) 62 �and we can suppose that D 2 K1 and F;Z 2 K2 (otherwise we change theindexes of the sets K1, K2). Let us denote by B0, D0, C0, F 0, Z0 the imagesof points B, D, C, F , Z at the mapping �f , so f(B;D;C) = (B0; D0; C0) 2 �0,B0; D0; C0 2 f(A1) = A01 = P01 � P01n�1, Z0 = P01 \ P01n�1 and by (2) - which istrue also for �0 and � 0 - we have (B0; D0; C0; Z0) 2 � 0.According to [3], x89, Thm.7, p.264, there are the subsets K01,K02 � P01�B0�C0such that(11) K01 [K02 = P01 � B0 � C0, K01 \K02 = ;X 0 2K01 and Y 0 2K02 ) (B0; X0; C0; Y 0) 2 � 0X 0; Y 0 2K01 or X0; Y 0 2K02 ) (B0; X0; C0; Y 0) 62 � 0and we can supppose that D0 2 K01 and Z0 2 K02 (otherwise we change theindexes of the sets K01, K02). By (2) - which is true also for �0 and �0 - we haveX 2 K1 , (B;X;C; Z) 2 � , (B;X;C) 2 � , f(B;X;C) = (B0; X0; C0) 2 �0, (B0; X0; C0; Z0) 2 � 0 , X0 2 K01 and so �f(K1) = f(K1) = K01. Because�f (P1) = P01 by (7), we have - in accordance with (10) and (11) - also �f (K2) = K02.It is D 2K1 and F 2K2, hence for the images at �f we have D0 2K01 and F 0 2K02and by (11) we conclude (B0; D0; C0; F 0) 2 � 0.II. P1 � P1n�1. There is a point Q 2 Pn � P1n�1 and by N2 there is a point�B 2 BQ, �B 6= B, B 6= Q so that �B 62 P1n�1 (otherwise it would be Q 2 B �B �� P1n�1) and for �P1 = �BF it is true Q 62 �P1 (otherwise it would be Q 2 Q �B == B �B = �BF = BF = P1 � P1n�1). So there is a projection g from P1 onto �P1from the point Q such that g(B) = �B = �P1 \BQ, g(D) = �D = �P1 \DQ, g(C) == �C = �P1\CQ, g(F ) = �F = F = �P1\FQ, and g(B;D;C; F ) = ( �B; �D; �C; �F ) 2 �by N6. Let us Q0, B0, D0, C0, F 0, �B0, �D0, �C0, �F 0 = F 0 the images of the points Q,B, D, C, F , �B, �D, �C, �F = F at the mapping �f so that �B, �D, �C, �F 2 �P1 6� P1n�1and - according to the above proved point I - we get ( �B0; �D0; �C0; �F 0) 2 � 0. Howeverby (7) there is a projection g0�1 which is the image of the inverse projection g�1 atthe mapping �f and g0�1 is a projection from �P01 = �f ( �P1) ontoP01 = �f (P1) from thesuch point Q0 that g0�1( �B0; �D0; �C0; �F 0) = (B0; D0; C0; F 0) and (B0; D0; C0; F 0) 2 � 0according to N6.From (7) and (8) we conclude that �f is an isomorphism from Pn onto P0n.
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