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EXACT CONTROLLABILITY OF THE WAVE EQUATION
WITH MIXED BOUNDARY CONDITION AND
TIME-DEPENDENT COEFFICIENTS

M. M. CAVALCANTI

ABSTRACT. In this paper we study the boundary exact controllability for the

equation
a a " a
Y Y .
— oa(t)— - — B)a(z)=—— =0 in 2 x (0,7),
ot ( )87,‘ dxy (t)a )81’] ' ( )

j=1

when the control action is of Dirichlet-Neumann form and £ is a bounded
domain in R™. The result is obtained by applying the HUM (Hilbert Unique-
ness Method) due to J. L. Lions.

1. INTRODUCTION

Let © be a bounded domain in R” with C'? boundary I', I'y a nonempty open set
of T and let @ be the finite cylinder 2 x (0, T') with lateral boundary ¥ = T'x (0, 7).
We consider the following system with inhomogenous boundary conditions:

(a(0) + Ay =0 in @
0

a1 %:v on Yo =Tg x (0,7)
y=0onX; =X\X
y(0) =¢° and ¥/ (0) =y* in Q,

where .
Ay=— 2 ﬁ(t)a(x)a%

We shall consider the particular case To N (T\Ig) = 0, that is, the case where
Q = Qo\ and Qp and ©; are nonempty open sets with C? boundaries I'y and
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I'1, respectively, with ©; C Q. Thus, T possesses two disjointed components
FO and Fl.

The problem of the exact controllability for the system (1.1) is formulated as
follows:

“Given T > 0 large enough, for each pair of initial data {y° y'} defined in a
suitable space, find a control v such that the solution y = y(x,t) of (1.1) satisfies
the conditions

y(T) =y (T)=0"

In this paper we shall prove that system (1.1) is exactly controllable by making
use of HUM ( Hilbert Uniqueness Method) c.f. J. L. Lions [14]. For this, we
employ the multiplier technique to obtain the inverse inequality.

When the coefficients depend on time, with suitable hypotheses on them, the
inverse inequality still remains true but since standard arguments are not appli-
cable, the regularity of the backward problem requires a new proof, which is the
main task of this work.

We note that when «(t) = §(t) = a(xz) = 1, problem (1.1) was studied by
J. L. Lions [14] using HUM and also by I.Lasiecka and R.Triggiani [13] using
the ontoness approach. Many other authors have used HUM in the study of
exact controllability of distributed systems with time-dependent or x-dependent
coefficients. Among them, we mention J.Lagnese [11], C.Bardos, G.Lebeau and
J.Rauch [2], V.Komornik [8], R. Fuentes [5], L. A. Medeiros [16], M. Milla Miranda
[17], M. Milla Miranda and L. A. Medeiros [18], J. A. Soriano [19].

The goal of this work 1s to show that HUM can be applied to the case of tume-
dependent coefficients with mixed boundary condition. In fact we shall consider
the wave equation for the following simple operators

"o d

T
j:la J

A(t) = —

However, with appropriated changes, we will obtain analogous results to the
operator given by
n
0 0
A(t) = — — alz,t)—
0== g dei
with a(z,t) > & > 0 in Q x (0, 00). But, when we have matricial operators like

"o d

i,7=1 ' J

the usual arguments cannot be applied even if i = j and a; ;(2,t) = a;(z).

Our paper is divided into sixth sections. In section 2 we give notations and
state the principal result. In section 3 we consider the homogeneous problem and
in section 4 we establish the inverse inequality. In section 5 we study the backward
problem and in the last section, section 6, we apply HUM.
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2. NOTATIONS AND MAIN REsULT

Let 2% € R", m(z) = 2 — 2" (r € R") and v(x) the unit exterior normal vector
at # € I', and

R(2°%) = max{||m(z)||; x € Q}.
We define:
M) ={zeTl; m(zx) v(z)>0},
Pa(a®) = {2 €T3 m(s) -v(z) < 0} = I\[(&"),
Fiw=TiNT(2);i=0,1.

In what follows we consider £2; ”star-shaped with respect to zy”, that is, there
exist a point xg € €2 such that I'y , =1T';.
Remark 1. We are not considering that Qg is star-shaped with respect to z° in

order that I'y . is not necessarily equal to I'g. In fact we have F(xo) UTg,« = TY.

We consider:
Y(2%) = I(z") x (0,7)
and

Yo (2) = Tu(2") x (0,T) = S\ 2(2?) .

Let us introduce some notations that will be used through this work.

We define:
V={uc H(Q);u=00onT;}
which is a Hilbert space of H*().
By (-, ) and |-| we denote the inner-product and the norm of L?(£2) respectively.

The norm in V' will be denoted by || - ||.
Let A be the operator defined by the triple {V, L?*(Q), a(u, v)} where

" Ju Ov
a(uav)—j: Qa(l‘)%%dl‘ Vu,veV
and
2 8U
D(A) ={ue H*(Q)NV; 7— =0 onTo}.
8I/A

We recall that the Spectral Theorem for self-adjointed operators guarantees the
existence of a complete orthonormal system (w,) of L?(2) given by the eigen-
functions of A. If (A\,) are the correponding eigenvalues of A, then A\, — 400 as
v — 400. Besides,

+oo
D(A) = wel’(Q);  Al(u,w)]® <+oo

v=1
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and
+oo

Au = Ay (t,wp)wy, Yu € D(A).
r=1

Considering in D(A) the norm given by the graph, that is,
lullpay = (Jul* +Aul*)7,

it turns out that (w,) is a complete system in D(A). In fact, it is known that (w,)
is also a complete system in V. Now, since A is positive, given § > 0 one has

+ oo
D(Aé) = wu€E LZ(Q); /\12,6|(u,(.al,)|2 < 400
r=1
and
+oo
Adu = /\f,(u,wl,)wl,, VuED(Aé).
r=1

In D(A%) we consider the natural topology given by the norm lullpasy =

(Ju|? +|A%u|?)2. From the Spectral Theory one notes that such operators are also
self-adjoints, that is,

(Aéu, v) = (u,Aév) Yu,v€e D(Aé) ,
D(AY?) =V and D(A") = L*(Q). We also observe that A(t) = B(t)A. Here, we

are using the same symbol for both operators to simplify the notation.
We are going to consider the following hypotheses:

(H1): a,B€W;2(0,00), o, € L*0,00),
alt) >ap>0 and F() > Gy >0, Vt>0,
and a € C*(Q) with a(z) > ag >0, Vz € Q.
(H2) : Ifn>1
Falloogm < aolRE*)
(H3): Ifn=1
30 < <1 such that ||Va||cu(ﬁ) < yao[R(z")]7t.

Now we are in a position to state our main result. Consider the following
system:

(@(t)y') + Al)y =0 in Q

ﬁ _wgon (2%
(2.1) vy vion Yg.(z°)
y=0onX;

y(0) = ¢* and ¥'(0) = y* in Q.
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Theorem 2.1. Suppose that assumptions (H1)-(H3) are satisfied. Then there
exists a time Ty > 0 such that for T'> Ty and initial data {y°, y'} € L?(Q) x V',
there exists a control

v € [HY(0,T; L*(T(2°))) and vy € L*(0,T; [H (T (z")]')

such that the ultra-weak ! solution y = y(z,t) of (2.1) satisfies

The proof of this theorem will be developed in the following sections.

3. THE HOMOGENEOUS PROBLEM

We begin this section presenting a standard result for the solutions to the fol-
lowing homogeneous problem.

(a®)6"Y + A)0 = f in Q
oo
(31) % =0 on Eo
# =0on,
0(0) = 6° and 0'(0) =6 in Q.

We have the following results.

Theorem 3.1. Suppose that assumption (H1) holds. Then given k € {0,1,2}
and

{6°,0', f} € D(A™S7) x D(A%) x L1(0,T; D(A%),

the problem (3.1) possesses a unique solution 6 : @ — R in the class
0 € C°((0, 7] D(A™) N O ([0, 7); D(A%)).

Moreover, the linear map

k+1 k41

D(A™F x D(A%) x LY(0,T; D(A%) — C°([0,T]; D(A™F)) x CH([0,T]; D(A?))
{6°.6", 1} — {6,0'}

Is continuous.

Theorem 3.1 can be proved in a standard way by applying the Faedo-Galerkin
Method and using the spectral considerations given in section 2.

I The solution of (2.1) is defined by the transposition method, see J. L. Lions and E. Magenes
[14].
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Next we consider the homogeneous problem

(a(00) + 400 =1 n Q
(32) % =0 on Eo
# =0o0nX,
6(0)=0'(0)=0 in Q,

that will be used in the study of the regularity of the solution of (2.1).

Theorem 3.2. Given f € D(0,T, D(A)), the unique solution of problem (3.2)
satisfies for all t € [0, T

[aFATO () — a T AT f(1) |20 + [A00) 2200y < Ol lL2(0.7,0(a))
and

20/ (t) — @ f(t)|r2(a) + [A20(6)| 200 < Cllfllrory) -

Proof. Since §° = ' = 0 and f’ € D(0,T, D(A)), from Theorem 3.1 the above

problem has a unique solution # such that
(3.3) 6 € C°([0, T); D(4%)) N C([0,T]; D(A)) .
Besides, such a solution satisfies the identity

¢ 1t
B (s)|A0(s)|*ds — 3, o' (s)| A0 (s)]*ds

(3.4) + Ot(A%f’(s),A%H’(s))ds.

S a0 + A0l =

From (3.3) we get A8 € C°([0,T]; D(A?)) and therefore
(o) € L®(0,T; D(A%)).
This togheter with assumption (H 1) implies that

o/(5)

a®(s)

+ a Y (s)ATf(s), as)AZE (s)

a"M(s)AZf(s), a(s) A0 (s) =— A3 f(s), a(s)AZ6 (s)

d
ds

+ a7 (s)A7f(s), AZ[(a(s)0'(5))']
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Integrating this equality and noting that f(0) = 0 we have

(AZf'(s), A0/ (s))ds = a~L(t)ATf(t), a(t)AZ0' (1)

o o' (s)a~ (s)AZ f(s), AZ0'(s) ds

0

t

- o~ (s)A3 f(s), A3[(a(s)0(s))] ds.

Replacing («6') by f' — SAf in the last integral we obtain

t(A%f’(s),A%H’(s))dsz ASf(t), AZ0'(t)

+ o' (s)a~t(s)AZ f(s), AZ6'(s) ds

(3.5) - a~(s)ATf(s), ATf'(s) ds

a7 (9AR(),B(0)ATA0(s)) ds.

Now integrating by parts and noting that f(0) =0,

t

0 a~l(s)AZ f(s), AT f'(s) ds:% a N ATf(t), AT f(t)

t

(3.6) +

N | —

0

Replacing (3.6) into (3.5) we have,

C(AN(5) AR (s))ds = A F(0), A0(1)

+  ad(s)a"(s)ATf(s), AT0(s) ds

(3.7) — o aTUHATF(), ATF(D)

N — N =
o~

o' (s)a~2(s)A7 f(s), AT f(s) ds

o' (s)a~ 2 (s) A% f(s), AT f(s) ds.

35
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From (3.4) and (3.7) it follows that

) A (s)|A0(s)|*ds

0} (AT (1) — 0T (A O + L A0 =

t

o (s)|AZ0 (s)|*ds

N | —
[N
N | —

+  d(s)a"(s)ATf(s), AT0 (s) ds
o' (s)a2(s) A% f(s), AT f(s) ds

b a7 )b f(s). A AT [A0(s) ds.

Defining o3¢’ — a = f = ¢ and replacing ¢ by a = ¢ + a~Lf in the above
expression we have

t

AR 4 LA = 5 7 (5)]A0(s) P

N | —
N | —

0
t

(3.8) - o' (s)a~ A% p(s)ds

1
2 4
t

+ oz_l(s)ﬁ(s) (Af(s), Af(s)) ds.

0

From the hypotheses (H1), (H2) and (3.8) there exists a constant C' > 0 inde-
pendent of f and # such that

1 2 1
SIAZe)? + 5 1A0()]

2 2

t

t t
<C 0|Ae@n%k-+§ CATe()ds - AF($)I1140(3)] + [ATe(s)ds

Applying the Gronwall’s inequality it follows that
|42 (t)| +40()] < Cllfllomiiay Yt E0,T].
In a similar way we also infer that
(O] + [A0(0)] < ClIf Loy ¥ € 0,77,

Using the definition of ¢ by its definition we get the desired inequalities. d
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4. THE INVERSE INEQUALITY

In this section we construct an special Ty time depending on n, R(2%), on the
functions a(t), 3(t), a(t), and also on the geometry of €.

Taking into account the regularity of I', we can define on I' a unit exterior
normal vector field v(z) of class C!. In the same way we can define a family of

(n—1) tangents vector field {r1(z), -, 7"~1(z)} of class C! such that the family
{v(z), ), -+, 7" (x)} defines a orthonormal basis for R", for all z € I'. If
¢ : Q — R is a regular function, we have
de _ dp " L0y .
(41) %:V‘yﬁ_y—i— Tj@? OHF,]:1,~~~,77,,
k=1

where

de d¢ k

a—V:Vg0~1/ and W:Vgﬁr .

Defining
n—1
%4

(4.2) o = Tfa?

we obtain from (4.1) and (4.2)

d¢ d¢
( ) 8l‘] 1/381/—1—0']@ on y J ’ ,
We observe that when (,?7“; =0 on I'y then g—f = 0 since
0 0
TP —ax)E2

B0 £ on Iy, and a(z) > ag >0

Then, defining Vo = (o1, -+, on¢p), we obtain from (4.3)
(4.4) Vep =V on Iy,

and consequently,
n
(4.5) IVol? = Vopl? = |ojel* on Ty
j=1
Remark 2. In this point we observe that when A is a matricial operator, that is,
when it is given by

0 0
i,5=1
then we have
oy " Oy
% = aZ](I,t)ﬁ—%VZ

i,7=1



38 M. M. CAVALCANTI

and therefore if 6673/ = 0 we don’t have necessarely that g_y = 0 and consequently
A. . v
we can not use the identity

IVyl* = [Voyl* on S

even if ¢ = j and a;;(x,t) = a;(x). As this identity is fundamental to prove the
inverse inequality, this case requires another treatment which will not be considered
in this work.

If ¢ € H?(Q) we can define in a natural way a continuous linear operator

(4.6) ol H*(Q) — HE(T)
such that
(4.7 U}QDZ(O'jQD) Ir, on T', Y€ C*Q).
In addition, we can also consider a continuous linear operator
(4.8) oi - H'(To) = L*(To)
where T'y is a nonempty open subset of I' (sometimes the hole T') such that
(4.9) 0']2»g0|p0 = (oj¢)|r, on Ty, Yo e C’Z(Q).
Thus, from (4.7) and (4.9) and by density arguments it results that
(4.10) U}u Ir, :U?(u|p0) on Ty, Yue H*Q).

Considering the above equality we are able to define the tangential gradient
Vou= ((o1t)lry, -+, (0pu)lrg) = (oyulry, - opulr,), Yu € H*(Q).

Dropping the index “2” in (4.8) to simplify the notation, we define the adjoint
operator
o% : L*(To) — (H' (o))’

(411) <0-;1/)a §0> = (1/)a UjSD)LQ(Fu) VSD € Hl(ro) )
and from (4.8) and (4.11) we define the continuous linear operator

—Ar, : HY(T'g) — (H*(Ty)Y
pr— —Ar,p = (0jo0;)p.
j:l

Hence for all p,¢ € H(['g),

(412) <_AFu§0a1/)> = VoVt dl.
1)
In particular,

(4.13) (=Ar,p,0) = |[Vop|*dl.

Lo
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Theorem 4.1. Let 6 be the weak solution of the problem (3.1), that is, {0°,0'} €
V x L*(Q). Then if f = 0,

e B(0) < E(t) < e“°E(0) Vt>0,

where
+oo
Co = max{ag "', 651} . (le' ()] + |8 (t) )t
and
(4.14) E(t) = % a(t)|9'(x,t)|2dx—|— 6(t)a(a:)|V9(x,t)|2dx

Q Q

Proof. We suppose first that {6° 01} € D(A) x V. Then, in view of Theorem
3.1, there exists a unique solution # in the class

6.€ C7(0,T]; D(A)) N CH[O, T]; V) -
Multiplying (3.1)1 by #’(¢) we obtain
1d
2 dt
Integrating this relation from 0 to ¢ and then integrating by parts we get

o (O () + alt) g I OF + 4(1) 5 Slad ()00 = 0.

1 1 1 1
5 @ OEOF + 80z (@)VOO =5 a(0)6']* + 5(0)]a? () VE"|*
1! I L
3, o’ (s)|0' (s)|*ds + 3, B (s)|az (x)VE(s)|*ds .
Taking (4.14) into account we can rewrite the above expression as follows.

1! 1! .
0< E(t) = E(0) — 3 o’ (s)|0' (s)|*ds + 3 B (s)|az (x)VE(s)|*ds,
0 0
On the other hand, differentiating F(t) we have
1 1 1
(1) = 2o (O (1) + 8 (0)]a (=) T0(0),

and therefore

|2'(t)] < max{ag’, 87} |e' ()] + 8/ (0)] 1 [a ()]0 ()2 + B(t)]a® (x)VO(1)[*],
So
IE' ()| < GE®),
where
G(t) = max{ay ™", B Yo’ (6)] + 16'(8)]]

The above inequality gives,

(4.15) —GU)E{t) < E'(t) <GU)E(?).



40 M. M. CAVALCANTI

Now, considering

it follows from (4.15) that
e~ B(0) < E(t) <e“B(0) Vt>0.

Finally, assuming
{6°,6'} € V x L*(Q)

we obtain the desired result using density arguments. d

Theorem 4.2. Let ¢ = (qx)1<k<n be a vector field such that q € [CL(Q)]". Then
each weak solution ¢ of problem (3.1) satisfies:

% greve[a(t)]¢' (O] = B(t)a(2)|Vo|*] dEJr% arvEB(t)a(x )I |2
o P
_ / do(t) r |1 D
= a(t)¢'(t), gk e, 0 13 Qa() |6’ |2dedt
1 6% ¢ dqi, 9o
—3 Qﬁ(t)a( ) |V</>| dwdt + Qﬁ(t)a( )a%%%d wdt
1 3a(x) A
-3 Qﬁ(t)a—xk%wfwdl‘dt— Qf%%dxdt.

Proof. First we prove the identity for the strong ? solutions of (3.1) and then the
result follows by density arguments. So, let us suppose that

¢ € C°[0,T); D(A)) N CH([0,T]; V).

By multiplying equation (3.1); by qk% and integrating over @,

(4.16) ((a(t)¢/)/qk6—¢dxdt

Q 8l‘k
0 0¢ 0¢ ¢
- Qﬁ(t)ﬁxi( a(x )axl) Fer " dzdt = qu dxdt
Integrating by parts the left hand side of equality (4.16) we get
(41T) (0l g dadi
Q 39%
_ / 9o(t) 0¢'
= at)e' (1), Drn 0 — Qa(t)q 2 . dxdt .

2Tt means that the initial data {y°,y'} € D(4) x V
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On the other hand, since

o¢/ | o
Qa(t)q k® . dedt = 3 Qa(t)Qk%(qS)zdxdt
we have from (4.17) that
N 09
(4.18) Q((a(t)qb ) qx 3xk —dzdt
Oo(t 1 0
= a(t)¢'(t), 5;: g—§ Qa(t)%%(fb) dadt

We also have

1 0 "o
1 0 1
=—5 ol el drdit 5 (el uds.
2 9 o

Thus, combining (4.19) and (4.18) we obtain

"t 6_¢ _ / 6¢(t) T
(4.20) Q((a(t)(b Vi . dedt = «a(t)d' (1), Fral
1 0 1
Ty Al gl Pdedt— 5 a(t)ailoPreds.
Q o
Now, estimating the right hand side of (4.16), we have from the Green identity
d¢ . 09 9¢ dqi 09
B mt)axz( W) g W gy U = PO g i,
1 Oa 9 1 3%
(4.21) 5 B Gl Veldadt = 5 pba(e) Vo dads
Q Tk 2 q
1 1
t5  Ba()gnlVoldrdt+ 5 A)a()gen VoS
Yo P
0¢ ¢

Combining (4.16), (4.20), (4.21) and (4.5) and observing that 3¢> = ka_¢ on Y
we obtain the desired identity. a

The above mentioned Ty time is defined by
Ty =T a,B,a) =
2 max{aq?, 45 a5 e R@*)lallzoe (o, (1 = [Vallgag a5 R~ if 0> 1,
Ty =T a,B,a) =

1 a1 — da _ 1.
2max{ag", 65 a5 Y R lalli~ 0111 — | ol ooy R~ i =1,
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and uniquely depends on n, R(2%), a(t), 3(t), a(x) and the geometry of Q.
Remark 3. We note that if a(t) = 3(t) = a(z) = 1, then Ty = 2R(2"). This
optimal time was determined in J.L.Lions [14] and V.Komornik [7] for the wave
equation w’ — Au = 0.

Theorem 4.3. Suppose that hypotheses (H1), (H2) and (H3) hold and that
T > Ty is given. Then for each weak solution ¢ of (3.1) with f = 0 there exists
C' > 0 such that
(i) If n > 1 then

16°11% + |07 20

<C s mv[a(t)]¢” = B(t)a(x)| Vs () "]dS + . m - v[[6(0)]° + |(T)]*dr

(ii) If n =1 then

[6°IF + 16" 7o) < C ma()|¢'PdS+  m[[e(0)]* +|¢(T)[*dT

Yo Iy

Proof. By using the identity given in the Theorem 4.2 with ¢(z) = m(z) = x —2°,

we get after some calculations

m a6 ~ H)a(@) Vool S+ 5 m-vi(t)a(e)] 9o Pas
Yo P v
n

=(a(0)¢'(t),m- Vo) ls + 5

N | —

aft)|¢’|Pdedt
Q

(4.22) - B(t)a(x)| V| dedt + Qﬁ(t)a(x)|v¢|2dxdt

Q

B(t)Va -m|Ve|*drdt .
Q

NN NG

On the other hand,

[a()]|¢']* — B(t)a(z)|V|?] dedt

=220 [aI¢? — B0)a(x) Vol dad
Q

n
2 q

T
(4.23) +  E@)dt—  Bt)a(z)|Ve|*dzdt .
0 Q
Multiplying equation (3.1); by ¢ and integrating over () we have

T

(4.24) (a()o' (1), ¢(t)]5 = . [a(t)]6']* = B(t) |a® (x) Vol Jdt .
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Replacing (4.24) in (4.23) it follows that

[ (O18 = B0 Tf ) dede =(a ()6 (1), " o0
(4.25) + : E(t)dt — . B(t)a(z)|Vo|*dzdt .

N3

Now, substituting (4.25) in (4.22) we obtain

1 1 1 0
5, LI = SO0AIT oS4 S mevd(taa)| 5
— a(e'(t).m-vo) + Lo 1
T
(4.26) + E(t)dt—% Bt)Va -m|Ve|*drdt.
0 Q

Since R(z%) = max{||m(z)||; = € 2}, then from the hypothesis (H1) we have

T

(4.27) BO)Va - m|Ve|*dedt < ||Val| pom R(x)agt  E(t)dt.
0

1
2 q
Hence, from (4.26), (4.27) and noting that m - v < 0 on X; we have
n—1 T -1 0 ’
5 o(t) o +(1- ||va||00(ﬁ)ao R(x7)) . E(t) di

_ e - Bit)a(@) Voo s,

a(t)e'(t),m - Vo(t) +

IA
N | —

and from hypothesis (H2) and Theorem 4.1 we obtain

(a()¢' (1), m - Vot) +"226(1) T+ (1 Vel o0 RE)e 0 (0)
(4.28) <5 me[a@IP - AD)a() Voolax.

2o

Next, we estimate
-1
2(t) = ()8 (1), m - V(1) + —9), Vi€ [0,7].
From the hypothesis (H1) and Theorem 4.1, we have,
2] <llallzeor) max(ag’, gy ag }e* P R(2?)

n?—1 n—1

8R(x0)|¢(t)|2+ W F0m~1/|¢>(t)|2dr )




44 M. M. CAVALCANTI

and from (4.29) we obtain

n—1 T

5 ¢

(4.30) a(t)d'(t), m-Ve(t) +

2_ 1
<oy 2max(ag’, 55 ag ' fe™ R(x") - S”R(l,o) (18O +1(T)I*)

n—1 2 2
+ TRGT) m - v(|$(0)]” + |¢(T)|*)dl

o

From the above inequality we have

(1- ||Va||co(ﬁ)R($0)ao_1)e_CDT —2max{a;’, B;  ay ' e R(2")||al|L=(0,r) E(0)
nZ—1 9 9
+ WHQHLOO(O,T)HQS(OH +19(T)I7]

n— lqb T

2 0
+(1 - ||Va||co(ﬁ)R(l‘0)ao_l)e_C”E(O)T

n—1

+ WHQHLOC(O,T) m - v(|¢(0)|* + [¢(T)[*)dl

Lo

< a)'(t), m-Vo(t) +

which, together with (4.28) implies that

(1= [[Vall o B(z)a5 e T = 2max{a; ', 47 " }eCo R(a) |all = o1 E(0)

+ ﬁH@HLm(o,T)[I(;S(0)|2 + lo(T)*]

<3 movLa®OI9T — Bt)a(2) [V ol1ds

%
—1
+ mwlhw(om) m - v(|6(0)]” + |¢(T)[*)dT

Lo

where we deduce (i).

To prove (ii), we consider the identity

% [a(t)]|¢'|* — B(t)a(x)|Vo|* |dedt = % Lo ()62 + B(t)a(e) Vol [dedr
¢ Q
* 1_77 [a(®)|¢'* = B(t)a(z)|Ve|*]dwdt
Q

(4.31) +(1—17) o Bt)a(z)|Vo| dzdt .
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Then, it follows from (4.22) and (4.31) that

(a(t)g'(t), m - Vo(n)|T + [a(®)|¢']* + A(t)a(x)|Vo|* Jdudt

7
2 q
1—v

+ =2 (a0l - Blt)a(x)| Vo[ Jded
Q

+(1-7) 0 B(t)a(x)| V| drdt

alt)ym|¢’|*dy .

o

N | —

1
Bt)Va - m|Ve|*drdt = =
Q@ 2 5
From (H3) we have that 0 < v < 1 and therefore

(@40, m- Vo)l + 5 [ + B)a(w) Vol ldadt
(1.32) 7 [OWIT = pt)a(e)I Vol Jdnat
— % B(t)Va - m|Ve|*drdt < % alt)ym|¢’|*dy .
Q Xo

Then by making use of the same arguments of (4.27) and (4.28), from (4.32)
we obtain

(a(0) (1), m - V(1) + T3 SN IE + (3 — [Vl oy Bz e~ T E(0)
<3 . almlo s,

Defining
1 —
2(1) = (a(0)8' (1), m - Vo (1) + Lo (OIS
in view of hypothesis (H2) and using similar arguments to the case n > 1 we

obtain (ii). a

Theorem 4.4 (Inverse Inequality). Suppose that hypotheses (H1)-(H3) hold
and let T > Ty. Then for each strong solution ¢ of (3.1) with f = 0 there exists
C' > 0 such that

(i) Ifn>1

16°1% + 1672y < € [lo” + 1¢'[*]d% + Voo|?dE
S(x0) So,«(20)
(i) Ifn =1
16°11% + 16720y < C [l¢]* + |¢'[*]d% .

S(x0)
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Proof. We prove the case (i). Dropping the terms that contribute to negative
parts in the Theorem 4.3, one has

(4.33) [10°lIF + 16220y < C1 [lg]* + |¢'*]d

S(x0)
+ Voo ?dY + [$(0)* + |¢'(T)|*]dr
So,«(20) '(z?)
On the other hand, there exists a constant C5 > 0 such that
(4.34) [8(0)[* + |¢"(T) P]dE < C2 [lg]* + o' [PJdx
I'(z?) (%)
Indeed, since ¢ is a regular solution, then
¢ € C°([0,T]; D(A) N CH([0, T]; V)
and therefore
(435)  élv € CO[0, T H3()) and ¢'|s € CO([0,T); HE(T)).
Defining
h(t) = ¢ 12reoyy Yt €017,
we have
W (t) =2(6(t), ¢ (1)) 2oy Yt €[0,7],

and from (4.35) it follows that h,h’ € L*(0,7) and hence h € C°[0,T]. Let
tg € [0, T] a minimizer of h. Thus,

and consequently

(4.36) h(t) < h(to) + . |6(5) |72 o0y ds + . 16" () |72 (o)) ds -

But, since t; is a minimizer, we have that

and then
;T
(4.37) h(to) < — h(t)dt.
T
Thus, from (4.36) and (4.37) we obtain
T T
h(t) < ' 6()|Z2reopds + 18" ()| aqreonds Y€ [0,1],

0 0



EXACT CONTROLLABILITY OF THE WAVE EQUATION 47

which proves (4.34). Combining (4.33) and (4.34) one finishes the proof. O

5. THE BACKWARD PROBLEM

Let T" > Ty as in previous section and consider the following homogeneous
problem

(a(0)0") + A6 =0 in @
s = 0 on Xg
(5.1) g: 0 on X4

#(0) =% ¢'(0) = ¢ on Q.

According to the inverse inequality (Theorem 4.4), the expression

[SIC

{¢%, 6"} = [lg]* + |6']”]d% + Voo|?dy

S(x0) So,«(20)
defines a norm in D(A) x V. We define the Hilbert space
(5.3) F=DA)xv "
equipped with the topology
(5.4) 1%, 61 e = lim (65, 6L}

where ({#2,6L}) ven is any Cauchy sequence in (D(A) x V, || -||«) defined by the
equivalence relation

{60, 60} ~ (¥l i} & lim ({6 — v0, 8}, vl = 0.
For every ¥ {6°,6'} € D(A) x V we have:
{6, &'}l < Cull{6°, " Hip(a)xv
and

1{6%, " Hlv xr2() < Call{8”, 6" H]~ -

Now, since D(A) x V is dense in I, we have
(5.5) D(A) x Ve F sV x L*(Q),

where the inclusions are continuous and denses.
It should be noted that by the construction of F,

{¢° 0"} eF & o [e|” + |¢'|"]dS + NAZKORE

z0) o, (@

that means if {¢°, ¢!} € F then
(5.6)  dls@o), ¢'lnee € LF(2(2”) and Voolg, . (@0) € (L7 (Zox(2")))",

as well,

(5.7) Ol5o..(w0) € L2(0, T; H (o . (27))) .
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The proof of the above regularities are given in the appendix.
We then consider the backward problem

(()y') + Aty =0 in Q

09 _ Bl -0+ 57(¢)] on X(x)
ova B~ AF (z0) ¢ on Xy *(l,O)

=0 on X,
(0) =¢° ¢'(0) = ¢! on Q.
Y(T)=¢'(T) =0 in Q,

where ¢ is the unique solution of problem (5.1) with initial data {¢° ¢} € F.
We observe that the operator = 18 well defined on E( %) taking into account
(5.6) and considering the follovvmg meanning: Vw € H'(0,T; L*(T'(2°))),

T
(5.9) g(fb’), w =— ¢'w'dldt .
¢ [H1(0,T;L2(I' (%)) H (0,T:L3(I'(x°))) 0 T(x9)

It is important to note that this operator is not taken in the distributional sense.
On the other hand, from (5.7) we obtain

(510) AFD)*(xU)¢ S Lz(oa Ta [Hl(zo,*(xo))]/) .

The solution ¢ of (5.8) is defined by the transposition method, that will be
precised later. Let {¢° ¢'} € F and f € L*(0,T, H*(Q)), and let 6 : Q — R the

unique solution of

(2(O) + 410 = [ in Q

=0 on X
61/
(5-11) 6 =0; on Xy

9(0):90 0'(0) =0 on Q.

Multiplying (5.11) by ¢ and integrating by parts, we obtain formally

Jodedt == a(0)60(0)4(0)dx

Q Q
(5.12) + Q@(O)H(O)W(O)dl‘—l- Eﬁ()ﬁw

fd¥, .

Replacing 2 o by its value in (5.8) we get from (4.13) and (5.9)

s = = (604 ¢'0)dx Voo Vo0ds.
S Ova S(20) So.u (@)

Observing this expression we define the functional

(5.13) L(6°,0, f) = — (60 + ¢'0")d% — Voo Vo0dY.
S(x0) So,«(20)
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Thus, from (5.12) and (5.13) we obtain formally that

(5.14) wadxdt—i— Qa(O)H’(O)w(O)dx— Qa(O)e(O)w’(O)dx:L(ao,al,f).

Considering Theorem 3.1 and the construction of F', we have that the functional
given by (5.13) is continuous, that is,

LeF x[LY0,T; V).

Indeed, first of all we note that the solution # of (5.11) verifies 8 = ) + 05,
where 6, and 8, are, respectively, the solutions of the following problems:

(a(®)8])+ At)01 =01in Q
% =0 on X
91 =0on 21

6,(0) = 6% 0,(0) = 6" in Q.

and

(a(t)0%) + A(1)0: = f in @
gﬁz =0 on X

92 =0on 21
62(0) = 64(0) = 0 in Q.

Besides, from (5.13) we can write for all {¢°, ¢!} € D(A) x V and i =1,2:

2

(5.16)  L(6°,0", f) = (#0; + ¢'0;) dX + Vo Vo l;d%
=1 S o, (2?)

and therefore from (5.2) and (5.16) we obtain:
(5.17) |L(6°,6", f)]

2 1/2
< C1)l{e°% ¢"Y|F ) |60;° + |¢'6; 17 dX + VoV ob;]*dE

=1 E(x ) EU,*(xD)
From (5.17) and Theorem 3.1 we have:

1/2
(5.18) 126", 6%, 1) < Co [{" 6 I + 12020

By density arguments we conclude that inequality (5.18) is vality for all {¢°, ¢!},
{6°,0*} € F which proves (5.15).
It follows that there exists a unique triple {p°, p!, ¥} such that

{a(0)p', —a(0)p"} € F and o € L=(0,T;V"),
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T

(519) o <1/)(t)a f(t)>V’,V + <{—Oz(0)p1, Oz(O)pO}, {90’ 01}>F',F

—_ (60 + ¢'0')dS + Vo(4) - Vo(0)dy
S(z0) So,«(20)

Definition. The unique function ¢ that satisfies (5.19) in named solution by
transposition of the problem (5.8).

Now we state our main result of this Section, which is a consequence of Theorem

3.2

Theorem 5.1 The unique solution by transposition v of problem (5.8) has the
following regularity.

Y e L0, T; V) n Whe (0, T; [D(A)])),
{2/(0), ¥(0)} € F'.

In addition, the linear map

{6°,0'} € F = {a(0)4'(0), —a(0)1(0)} € F'

Is continuous.

Proof. For f € D(0,T; D(A)) we have

L(0,0, /') = — (¢80 + ¢'0")dT — Vo(¢) - Vo (6)dX,
S(x0) So,«(20)

where

(a®)0") + A®)0=f" in Q
(5.20) G, 0 om o

=0 on X,

¢(0) = ¢'(0) =0 in Q
and

(a(®)0") + A1) =0 in Q
(5.21) G, 0 om Ho

=0 on X,

0(0) = ¢° ¢'(0) = ¢! in Q.
By definition of F, from Theorem 3.1 and taking into account the definition of
F (cf. Lions [14]) it follows that

(5.22) 120, 0, ) < CUON L1070y + 10l 07v) -

Indeed, it is sufficient to prove (5.22) when the initial data {¢°, ¢'} € D(A)x V
because by density arguments we conclude the same when {¢° ¢1} € F.



EXACT CONTROLLABILITY OF THE WAVE EQUATION 51

We have by Schwarz inequality and Theorem 3.1:

|L(0,0, f)| <
T 1/2
<Cy |6|2dT + |¢'7dl + |Voé|*dl
0 I'(z°) I'(z°) To,«(x?)
1/2
|0]2dT + |0')2dT + |V, 0]%dT <
(=) (=) To,«(2°)

<|{¢", " Hipayxv 10|20, 0ay) + 10|20,y ]

which concludes (5.22).
On the other hand, from Theorem 3.2 we get

(5.23) 1€l (0,7:0(a)) + ||9/||L1(0,T;V) < O fllero,mspa)) -

which is the crucial point for control problems involving time-dependent coeffi-
cients.

In fact, before we prove (5.23) we observe that in the right side of equation
(5.20) we have f’ while in the right side of (5.23) we have f. Besides, we note that
when the coefficients do not depend on time, (see for example the most simple
case for the wave equation) it is not difficult to obtain the above inequality using
Theorem 3.1 and the following standard argument:

If w is a solution to problem

W' —Aw=7Ffin Q

with f € D(0,T, D(A)), then # = ' is the solution of
0" —A0=f in Q

0o
3_1/:0 on Xg
# =0 on X,

0(0)=0 ¢'(0)=0 in Q.

But in our case, where we have time-dependent coefficients, this argument fails
completely and we need to solve it in other way. From Theorem 3.2 we obtain:

WOl (0, 7;22(0)) < kil fllLr0,7;0(4))

A0z 0,7;22(0)) < k2l fllLr (0,750 (4))

which implies

(5.24) WOl|z2 (07D (a)) < ksl fllzr(o,mD(a))
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In addition
16" || L2(0,7522(0)) < kallFllLr (0,70 (a))

||A1/29/||L1(0,T;L2(Q)) < ks|fllzro,7.0(a))

and therefore
(5.25) 101l o,7v) < kellfllLro,mpay) -

From (5.24) and (5.25) we get (5.23). Combining (5.22) and (5.23) we obtain

12(0,0, f) < Cllfllzsor,payy ¥ fEDO,T;D(A)).

which is sufficient to prove the desired regularity, that is,
(5.26) Y e L=(0,T;[D(A)]).

In fact, let us define

S(f) = —L(0,0,f) YfeD(0,T;D(A).

Since D(0,T; D(A)) is dense in L'(0,T; D(A)), we can consider the unique
linear continuous extension S of S, that is defined by

(5.27) S(f) = S(f) = —L(0,0,) ¥ f €D(0,T; D(A)),
and, consequently, it follows that
(5.28) S € (LY0,T; D(A))) = L=(0,T;[D(A)]).

Now, given f = 0 with ¢ € D(A) and § € D(0,T), according to (5.13), (5.19),
(5.27) and considering the fact that §° = §' = 0 we obtain,

<§a 300> = <Sa 300> = _L(anaf/)

== (W (t), [/ ()dt = — ) (¥(t), )b (t)dt
So, by (5.28) it follows that
) (S(t),)0(t)dt = — ) (W(t), )b (t)dt
which implies that
T?(t)e(t)dt,go = - : Y0 (t)dt,e Yo € D(A).

Therefore S = v in D'(0, T;[D(A)]'), and (5.26) is then proved.
One observes that if in (5.19), we consider f = w(an’) + SA(¢n); 6 = ¢n with
© € D(A%?),n € D(0,T) and ¢° = ¢' = 0, we have

(') + A(t) =0 in L=(0,T; [D(AF)]),
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Since a(t) > ag > 0, it follows that
(5.29) W e L0, T; [D(A2)])) .
Then, from (5.19), (5.26) and (5.29) we obtain
W€ Co(0,T,V)n C([0,T], [D(A)])
and
W' € C(0, T, [D(A)]) 0 C([0, T], [D(AZ)])

(see for example J.L.Lions and E.Magenes [15], V.1, Lemma 8.1) which makes ¢/(0)
and ¢’(0) meaningful.

Using the regularity of ¢, considering f = ¢ (an’) + 8A(¢n) and 6 = pn where
¢ € D(A?) 5 € C*(0,T)3, we obtain from (5.19) with ¢° = ¢! =0,

$(0) = p and ¢'(0) = p'.
Finally, by considering f = 0 in (5.19) we conclude that
[{a(0)¢'(0), = (0)¢(0)}|r < CI{6° 6'}Ip V{6’ ¢'} € F.
This ends the proof. O

6. HUM AND ExacT CONTROLLABILITY
Let us define the linear operator A : F' — F’ by
(6.1) A{g%, 6"} = {a(0)2'(0), —(0)(0)}

that 1s continuous in view of Theorem 5.1.

Considering f = 0,0° = ¢° and 6! = ¢! in (5.13) and (5.14), we have
(A{°, 6"} {e", o' N r =({a(0)¢'(0), —a(0)%(0)}, {4", ¢'})
= (191> + 1¢'[*)dE + Vo (9)|2dE
S(x0) So,«(20)
that is,
(A% 0"}, (0% 0 prr = {0, 0" I[7 -
This implies immediatly that A is injective and self-adjoint. Then A is a isomor-

phism from F' to F’. Therefore, given {y', —y°} € F’ then {a(0)y*, —(0)y°} € F’
and consequently there exists a unique {¢° ¢} € F such that

(6.2) A" ¢} = {a(0)y', —a(0)y°} .
From (6.1), and (6.2) we have
(6.3) W(0)=y" and ¥(0)=y".

SFirst we get, for instance, n(t) = (T — )%t and secondly we can consider n(t) = (T — t)°.
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Now we are going to finish the proof of Theorem 2.1. Since {y, —y°} € L*(Q) x
V', then taking into account the chain

D(A) x Ve F sV x L*(Q) — L*(Q) x L*(Q)
S VI x L} Q) = F' < D(A) x V',

we obtain {y!, —y"} € F' and therefore in this case we conclude (6.3).
Defining in (2.1) the controls

0
vw=08" —¢+ a(qj)/) on %(z)
and
v1 =B Ary 0@ on g (x?),
from (6.3), the uniqueness of the problems (2.1) and

(a(O)') + Aty =0 in Q

by _ Vo on B (20)
dva Ty on Y. (2°)
=0 on X

v(0)=y" ¥'(0)=y' in Q
(1) =¢'(T) =0 in 2,

we finally conclude that
Thus Theorem 2.1 1s proved. a

7. APPENDIX

Since D(A) x V is dense in F, there exists {¢°, ¢} € D(A) x V such that

(7.1) lim {¢y, ¢,} = {¢°,¢'} in F/
V—00
and therefore, considering the inverse inequality,
(7.2) lim {2, 0.1 = {¢°,¢'} in V x L?(Q).
V—00

According to Theorem 3.1, for each v € N there exists ¢, € C°[0,T]; D(A)) N
C1([0,77; V) which is the solution of (3.1) with initial data {¢%, ¢L} € D(A) x V
and f € L'(0,7;V). Thus, from the linearity of (3.1) we have,

60 = dullcoqo,rivy + 1oL — dulleoqo,rize ) <

< C o) = dull + ¢y — o]
which implies that the unique solution ¢ : @ — R of (3.1) satisfies

(7.3) VILIEO ¢, = ¢ in C°([0,7T]; V) and Vli_}rrgo ¢!, = ¢ in C°([0, T); L*(Q)) .
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On the other hand, from (5.2) we obtain,

(7.4) o0 — % oL -0l =

= |¢V_¢u|2+ |¢L_¢L|2 dx + |vo¢u_vo¢u|2d2
S(z0) So,«(20)

From the convergence in (7.1) we conclude that the right hand side of (7.4)
converges to zero when p and v goes to infinity. So, (¢,),(¢),) and (V,¢,) are,
respectively, sequences of Cauchy in L?((z°)), L%(2(2°)) and L*(Xo «(z°)), which
proves (5.6).

To prove (5.7) we need the following result.

Lemma. VR > 0,3C > 0 such that
[{6°, 6 I < Cll{6°, 6"} V{e®, 6"} € D(A) x V
satistying || {4, ¢'}||. > R.

Proof. Consider ¢" ¢! € D(A)x V such that  ¢% ¢! , > I So 1%, ¢} is
different from {0, 0} and, consequently, it is sufficient to prove that: YR > 0,3C >
0 such that

(75) & < IH" o) L¥(6%,61) € D(A) x v

with [[{¢°,¢'}|p(ayxv = 1 and [[{¢°,¢'}|l« > R.
Let us suppose it does not happen, that is, there exists Ry > 0 such that

Ve >0 3{og, oct € D(A) x V with [[{¢¢, 6¢ HIpayxv = 1, [[{¢&, 6&HI« > Ro
and [|{6¢, 6} < -

In the particular case when C' = R— it follows that Ry < [[{é%, , ¢k}« < Ro
which is a contradiction. So, (7.5) is proved and consequently the lemma.

Let us consider initially {qbo,qbl} € D(A) x V and suppose ¢ is the strong
solution of (5.1). Then, ¢ € C°([0,77; D(A)) N C*([0,77]; V) and therefore,

¢ls € CO([0, T} H¥*(I)) € C°(0, T]; HA(T)).
Thus, from Theorem 3.1 we obtain:

(7.6) 16550, (20 || L2(0, 7,82 (T . (20))) < KIH{8", 0" HID(a)

Consider, now, {¢° ¢!} € F and ¢ the weak solution of (5.1). If {¢° ¢t} =
{0,0} then ¢ = 0 and the regularity in (5.7) follows imediately. Let us consider
{9, ¢1} different from {0,0}. Since D(A) x V is dense in F' there exists {¢%, L} C
D(A) x V such that
(7.7) h_}m {2 61} = {6, ¢'}in F.

Defining Ry = $/|¢°, ¢'}||r, there exist {¢%, ¢} subsequence of {¢J, ¢} such
that ||{¢2a ﬁbt} —{¢% ¢'}H|F < Ro;Vp € N. Therefore,

(7.8) {6l = ({1« > Ro.
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Thus, from (7.8) and the above Lema 3C' = C' |[{¢°, ¢*}||r > 0 such that

9) {63 6.3 Ipayxv < ClH{6), dp ;¥ € N
Let {¢,} be the sequence of strong solutions of (5.1) with initial data {(/)2, qbt}

Then, from (7.6) and (7.9) there exists C; = Cy ||[{¢% ¢'}||r > 0 such that

(7.

(7.

10) uls . o) |L2(0,7:8 (To u@0))) < Crl{@%, 6} s -
But, from (7.7) we obtain,
11) ¢, 6,3 1F = 1{op, ¢}« < L;Vp e N.

So, from (7.10) and (7.11) we conclude that

||f/’u|20,*(x0)||L2(0,T;H1(FD,*(xo))) < M;VpeN.

Then, there exists a subsequence that we will denote by the same notation {¢,}
such that,

(7.

(7.

12) bulsy (@) = x in L*(0,7; H'(T'g «(2°))) when p goes to infinity.
On the other hand, from (7.3) we have,
13)lm s, o) = 6ls,. o) in L2075 (Lo (a"))

and from (7.12) and (7.13) results ¢ = x which proves (5.7).
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