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ON ASYMPTOTIC DECAYING SOLUTIONS FOR A CLASS OF
SECOND ORDER DIFFERENTIAL EQUATIONS

Serena Matucci

Abstract. The author considers the quasilinear differential equations

r(t)ϕ(x′)
′
+ q(t)f(x) = 0 , t ≥ a

and

r(t)ϕ(x′)
′
+ F (t, x) = ±g(t) , t ≥ a .

By means of topological tools there are established conditions ensuring the
existence of nonnegative asymptotic decaying solutions of these equations.

1. Introduction

The purpose of the present paper is to study the existence of asymptotic de-
caying positive solutions of the quasilinear differential equation

(r(t)ϕ(x′))′ + q(t)f(x) = 0, t ≥ a(1)

and of the more general ones

(r(t)ϕ(x′))′ + F (t, x) = ±g(t), t ≥ a(2±)

where a is a nonnegative constant, and
a1) r, q ∈ C ([a,∞), (0,∞));
a2) ϕ ∈ C (R,R), uϕ(u) > 0 for u 6= 0, ϕ increasing and ϕ(R) = R;
a3) f ∈ C (R,R), uf(u) > 0 for u 6= 0, f nondecreasing;
a3’) F ∈ C ([a,∞)× R,R), uF (t, u) > 0 for u 6= 0 and for each fixed t ≥ a, F

nondecreasing with respect to the second variable;
a4) g ∈ C ([a,∞), [0,∞)).

As customary [10, p. 322] it will be assumed throughout this paper that a solution
x = x(t) of (1) (resp. of (2+) or (2−)) is a continuously differentiable function
on [Tx,∞), Tx ≥ a, such that r(t)ϕ(x′(t)) has a continuous derivative in [Tx,∞)
satisfying (1) (resp. (2+) or (2−)) at all points t ≥ Tx. When the function r(t) is
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continuous but does not have a continuous derivative, Eqs. (1), (2+) and (2−) can
be interpreted as a first order nonlinear differential system. For instance, Eq. (1)
means the system

x′(t) = ϕ−1

(
y(t)
r(t)

)
y′(t) = −q(t)f(x(t))

for the vector (x, y) = (x, rϕ(x′)).
By a proper solution of (1) (resp. of (2±)) we mean a solution of (1) (resp. of

(2±)) such that sup{|x(t)| : t ≥ T} > 0 for any T ≥ Tx. A proper solution is
called oscillatory if it has arbitrarily large zeros, and nonoscillatory otherwise.

A prototype of Eq. (1) satisfying assumptions a1), a2), a3) is

(r(t)(x′)m∗)′ + q(t)xn∗ = 0, t ≥ a(3)

where m and n are positive constants and use is made of the notation

uα∗ = |u|α sgn u, α > 0.

A great variety of behaviors is exhibited by solutions of equations of the type (3).
Equation (3) with m = 1 is the generalized second order Emden-Fowler differ-
ential equation, which has been extensively investigated from various viewpoints,
see for instance the excellent survey by J.S.W. Wong [27], and also the papers
[5], [12]. Unlike the linear equation, obtained when n = 1 too, the generalized
Emden-Fowler equation may at the same time possess oscillatory and nonoscilla-
tory solutions. On the other hand, a striking similarity exists between equations
of the form (3) with n = m, called half-linear equations (see [7]) and the linear
equation obtained when n = m = 1. This similarity was observed by Mirzov
[19, 20] and Elbert [7, 8], who showed in particular that Sturmian theory (e.g.
separation and comparison theorems) for the linear equation can be extended in a
natural way to the half-linear case. Thus it is shown that all solutions of the half-
linear equation are either oscillatory or else nonoscillatory, so that the possibility
of coexistence of oscillatory and nonoscillatory solutions is precluded. Criteria for
oscillation and nonoscillation of the half-linear equation have been widely inves-
tigated ( [6], [7], [8], [9], [13], [14], [15], [16], [19], [20]), characterizing also the
phenomena of strong oscillation and nonoscillation of the differential equation

(r(t)(x′)m∗)′ + λq(t)xm∗ = 0

where λ > 0 is a parameter, and generalizing Nehari’s oscillation theorem [22]
stated for the linear case. The oscillatory behavior of Eq. (3) in the general case
n 6= m has been treated in [17, 18], [9], [21]. Finally in [15], [21] a re deduced
nonoscillation theorems for Eq. (3) both in case n = m and n 6= m, developing a
nonoscillation theorem which is a natural generalization of nonoscillation criteria
of Atkinson [1] and Heidel [11] for the Emden-Fowler equation.

Oscillatory and nonoscillatory behavior of solutions of the more general second
order quasilinear differential equation(

|x′|α−1x′
)′ + f(t, x) = 0, t ≥ 0(4)
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is investigated in [25]; in this paper it is shown that all of Wong’s results [26] can
be generalized to (4). We refer to this work also for a good review of results on
half-linear equations.

Oscillation and non-oscillation theorems for equations of type (2±) with g ≡ 0
are presented in the paper by Elbert and Kusano [9], under the assumption∫ ∞

a

∣∣∣∣ϕ−1

(
k

r(t)

)∣∣∣∣ dt =∞ for every constant k 6= 0.

Under this hypothesis any nonoscillatory solution x of (2±) with g ≡ 0 is one of
the following three types:

i) limt→∞ r(t)ϕ(x′(t)) = const 6= 0;
ii) limt→∞ r(t)ϕ(x′(t)) = 0 and limt→∞ |x(t)| =∞;

iii) limt→∞ r(t)ϕ(x′(t)) = 0 and limt→∞ x(t) = const 6= 0.
Thus in particular no nonoscillatory solution exists such that limt→∞ x(t) = 0
and eventually positive proper solutions are increasing, eventually negative proper
solutions are decreasing. We give here a proof of this assertion slightly different
from that in [9], fitting to Eq. (1) methods developped in [4].

Lemma 1.1. Let x = x(t) be a nonoscillatory proper solution of Eq. (1). Then
x′ is nonoscillatory.

Proof. Let us consider the function

Φ(t) := r(t)ϕ(x′(t))x(t)

defined in the existence interval Ix of the solution x. Owing to definition, Φ is a
C1-function in Ix, and

Φ′(t) = (r(t)ϕ(x′(t)))′ x(t) + r(t)ϕ(x′(t))x′(t)

= −q(t)f(x(t))x(t) + r(t)ϕ(x′(t))x′(t).

As x is nonoscillatory, there exists a suitable time τ such that x is different from
zero for t > τ and so f(x)x is eventually positive by assumption a3). Let t1 and t2
be consecutive zeros of the function x′, with t1, t2 > τ . Since r is always different
from zero (assumption a1)) and x is different from zero in (τ,∞), then t1, t2 are
consecutive zeros of the function Φ too. On the other hand it results

Φ′(ti) = −q(ti)f(x(ti))x(ti) < 0, i = 1, 2

and this is a contradiction, being F a continuous function. Thus the function x′

is nonoscillatory.

Theorem 1.1. Let x be a nonoscillatory solution of Eq. (1) and let us assume
that ∫ ∞

0

∣∣∣∣ϕ−1

(
k

r(t)

)∣∣∣∣ dt =∞ for every k ∈ R, k 6= 0.(5)

Then

x(t)x′(t) > 0.
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Proof. Lemma 1.1 implies that for every proper solution x of Eq. (1) it results
x(t)x′(t) 6= 0 definitively. Let x be a solution of Eq. (1) such that x(t)x′(t) < 0 for
t large. Without loss of generality we may assume x(t) > 0, x′(t) < 0 for t ≥ τ .
Since (r(t)ϕ(x′(t)))′ = −q(t)f(x(t)) < 0 for t ≥ τ , the function G given by

G(t) = r(t)ϕ(x′(t))

is negative decreasing for t ≥ τ . Thus G(t) < G(τ ) or

ϕ(x′(t)) <
G(τ )
r(t)

, t ≥ τ

which implies

x′(t) < ϕ−1

(
G(τ )
r(t)

)
, t ≥ τ.

Integrating the last inequality from τ to t, we obtain

x(t) < x(τ ) +
∫ t

τ

ϕ−1

(
G(τ )
r(s)

)
ds.

Taking into account that G(τ ) < 0, as t → ∞ x becomes negative, which is a
contradiction.

Our main objective here is to investigate the existence of positive solutions of
Eqs. (1), (2+) and (2−) asymptotically decreasing towards zero. Thus instead of
assumption (5) we consider the following one

−
∫ ∞

0

ϕ−1

(
− k

r(s)

)
ds <∞ for some constant k > 0(6)

which is the assumption complementary to (5). We remark that the presence of the
forcing term g(t) in Eqs. (2±) implies that this kind of equations do not fall within
the cases classically treated in literature. Indeed f̂ (x, t) := F (t, x)± g(t) does not
satisfy assumption a3), thus we can assert that at our knowledge the results here
proved are the first ones about Eqs. (2±). Under additional hypotheses on q, f (or
F ), ϕ (and g) we show in the following two sections that condition (6) guarantees
the existence of asymptotic decaying solutions of Eqs. (1), (2+) and (2−).

Finally we want to point out that an interest in the ordinary differential equa-
tions (1) and (2±) also arises in connection with the study of quasilinear elliptic
partial differential equations of the type

div
(
ψ(|∇u|2)∇u

)
+ n(x, u) = 0(7)

where ∇ = (∂/∂x1, · · · , ∂/∂xN) with N ≥ 1, the function ψ : (0,∞) 7→ (0,∞)
is continuous and such that ϕ(s) := ψ(s2)s is an odd increasing homeomorphism
from R onto R and the function n : R N × R 7→ R is continuous and radially
symmetric with respect to the first variable, that is n(x, ·) = n̂(|x|, ·). A classical
radial solution of (7) is a function u ∈ C1(RN) with ψ(|∇u|2)∇u ∈ C1(RN), which
is radially symmetric and satisfies the equation everywhere in RN [24]. It follows
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from [23] that u is a classical radial solution of (7) if and only if it is a solution of
the one dimensional problem(

tN−1ϕ(x′)
)′

+ tN−1n̂(t, x) = 0

and so the results for (1) and (2±) can be a source of helpful informations about
the qualitative behavior of (7).

2. Existence of asymptotic decaying nonnegative proper solutions
of Eq. (1)

Denote by B0 the subset of (bounded) proper solutions of (1) approaching zero
as t→∞:

B0 = {x proper solution of (1) : x(+∞) = 0}.
The existence of solutions of (1) in class B0 will be given by using a topological
tool. More precisely, we will use a fixed point theorem for operators defined by
Schauder’s linearization device. Such a theorem was proved in [2], and reduces
the existence of solution of a boundary value problem for differential equations in
noncompact intervals to the existence of suitable a priori bounds. We restate such
theorem ([2, Th. 1.1]) in the form that will be used in the following:

Theorem 2.1 ([2]). Consider the boundary value problem

(r(t)ϕ(x′(t)))′ = H(t, x(t)), t ∈ [a,∞)
x ∈ S,

(8)

where H : [a,∞)× R 7→ R is a continuous function, r and ϕ satisfy assumptions
a1) and a2) respectively and S is a nonempty subset of the Fréchet space C([a,∞))
of the continuous real functions defined in [a,∞). Assume that there exists a
nonempty, closed, convex and bounded subset Ω ⊂ C ([a,∞)), such that for every
u ∈ Ω the boundary value problem

(r(t)ϕ(x′(t)))′ = H(t, u(t)), t ≥ a

x ∈ S
has a unique solution x = T (u). If

(i) T (Ω) ⊂ Ω,
(ii) T (Ω) ⊂ S,

then the boundary value problem (8) has at least a solution.

We prove the existence of solutions of (1) in B0 assuming that (6) is fulfilled.

Theorem 2.2. Let assumptions a1)-a3) hold and there exists a constant k > 0
such that

I1(k) = −
∫ ∞
a

ϕ−1

(
− 2k
r(t)

)
dt <∞,

I2(k) =
∫ ∞
a

q(t)f
(
−
∫ ∞
t

ϕ−1

(
− 2k
r(s)

)
ds

)
dt <∞.

(9)
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Then Eq. (1) has at least one nonnegative solution in class B0.

Proof. In order to get the existence of a solution of (1) in B0 choose a large t0
such that

c(t0) :=
∫ ∞
t0

q(s)f
(
−
∫ ∞
s

ϕ−1

(
− 2k
r(σ)

)
dσ

)
ds ≤ k.(10)

Let C[t0,∞) be the Fréchet space of real continuous functions defined in [t0,∞),
t0 ≥ a, and let Ω and S be such that:

Ω =
{
u ∈ C[t0,∞) : 0 ≤ u(t) ≤ −

∫ ∞
t

ϕ−1

(
− 2k
r(s)

)
ds, t ∈ [t0,∞)

}
S =

{
y ∈ C1[t0,∞) : y′(t0) = ϕ−1

(
− k

r(t0)

)
, y(∞) = 0

}
.

For every u ∈ Ω consider the differential equation:

(r(t)ϕ(y′(t)))′ = −q(t)f(u(t)).(11)

As ∫ ∞
t0

q(s)f(u(s)) ds <∞,

−
∫ ∞
t0

ϕ−1

(
− k

r(s)
− 1
r(s)

∫ s

t0

q(σ)f(u(σ)) dσ
)
ds <∞,

it is immediate to prove that for every u ∈ Ω there exists a unique solution yu of
(11) such that yu ∈ S. Therefore we may define an operator T that associates to
every u ∈ Ω the unique solution yu = T (u) of (11) in S:

T : Ω 7→ C[t0,∞),

(Tu)(t) = −
∫ ∞
t

ϕ−1

(
− k

r(s)
− 1
r(s)

∫ s

t0

q(σ)f(u(σ)) dσ
)
ds.

Let us prove that T has at least a fixed point in Ω; a fixed point of the operator T
will be a solution of (1) in S. From Theorem 2.1 it suffices to show that conditions
(i) and (ii) are satisfied.

To prove claim (i) it suffices to show that T (u) ∈ Ω for every u ∈ Ω.
As k > 0, property a2) of the function ϕ implies that T (u(t)) > 0, for every t ≥ t0.
As ϕ is an increasing function (and so ϕ−1), we get

(Tu)(t) ≤ −
∫ ∞
t

ϕ−1

(
− k

r(s)
− 1
r(s)

∫ ∞
t0

q(σ)f(u(σ)) dσ
)
ds
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and the monotonicity property a3) of the function f implies

(Tu)(t) ≤

≤ −
∫ ∞
t

ϕ−1

(
− k

r(s)
− 1
r(s)

∫ ∞
t0

q(σ)f
(
−
∫ ∞
t0

ϕ−1

(
− 2k
r(τ )

)
dτ

)
dσ

)
ds

= −
∫ ∞
t

ϕ−1

(
− k

r(s)
− c(t0)
r(s)

)
ds ≤ −

∫ ∞
t

ϕ−1

(
− 2k
r(s)

)
ds

having made use of assumption (6) on t0.
Claim (ii) follows immediately from the definition of the sets Ω and S and of

the operator T .

Remark 2.1. In Theorem 2.2 we have showed that, for any k > 0 satisfying (9),
it is possible to determine a time t0 such that problem (1) admits a nonnegative
proper solution defined in [t0,∞) which is decreasing to zero when t → ∞. The
constant k is strictly related to the value of the derivative of the solution at time
t0, as the definition of the set S shows; the relation between k and x′(t0) is 1-1.
When such constant k and consequently t0 are fixed, the initial value x(t0) of the
solution is uniquely determined by the expression

x(t0) = −
∫ ∞
t0

ϕ−1

(
− k

r(s)
− 1
r(s)

∫ s

t0

q(σ)f(x(σ)) dσ
)
ds.

This relation shows that the bigger is k the bigger is x(t0); this corresponds to the
intuitive physical idea that when the initial velocity of an object is big, a lot of
space is needed in order to let it decelerate and stop after a finite length (indeed,
after an infinite interval of time).

Remark 2.2. Assumptions (9) in Theorem 2.2 are the natural extension of classi-
cal ones. Indeed it is known (see for instance [3]) that for the semi-linear equation

(r(t)x′(t))′ + q(t)f(x(t)) = 0, t ≥ a

the assumptions∫ ∞
a

1
r(t)

dt <∞,
∫ +∞

a

q(s)f
(∫ s

a

1
r(σ)

dσ

)
ds <∞

assure the existence of proper solutions asymptotically decreasing towards zero.

3. Existence of asymptotic decaying nonnegative proper solutions
of Eqs. (2±)

We are now able to prove an analogous of Th. 2.2 for nonlinear differential
equations in general form (2±). Denote with B±0 the subset of (bounded) proper
solution of Eq. (2±) approaching zero as t→∞, and

G(t, t0) =
∫ t

t0

g(s) ds

where t0 ≥ a is a real constant.
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Throughout the present section we make the following assumption without fur-
ther mentioning

a5) sup
t∈[a,∞)

G(t, a) =
∫ ∞
a

g(s) ds <∞

Theorem 3.1. Let assumptions a1), a2), a3’), a4) and a5) be fulfilled and there
exists a constant k > 0 such that

I1(k) = −
∫ ∞
a

ϕ−1

(
− 2k
r(t)

)
dt <∞,

I3(k) =
∫ ∞
a

F

(
t,−

∫ ∞
t

ϕ−1

(
− 2k
r(s)

)
ds

)
dt <∞

(12)

Then Eqs. (2+) and (2−) have at least one nonnegative solution in class B+
0 and

B−0 respectively.

Proof. In order to get the existence of a solution of (2+) ((2−)) in B+
0 (B−0 ) let

us make the following positions

c(τ ) :=
∫ ∞
τ

F

(
s,−

∫ ∞
s

ϕ−1

(
− 2k
r(σ)

)
dσ

)
ds

L(τ ) := sup
t∈[τ,∞)

G(t, τ ) =
∫ ∞
τ

g(s) ds

where τ ≥ a is a real constant. They are well defined for every τ ≥ a because of
assumptions done and they are nonincreasing with respect to τ .

To prove the existence of at least one nonnegative solution of Eq. (2+) in B+
0 ,

choose a large t+0 such that

L(t+0 ) ≤ k

c(t+0 ) ≤ k
(13)

and let Ω+ and S+ be the analogous of Ω and S defined in the proof of Th. 2.2,
with t+0 instead of t0. For every u ∈ Ω+ there exists a unique solution y+u of the
differential equation

(r(t)ϕ(y′))′ = −F (t, u(t)) + g(t)(14)

such that y+
u ∈ S+. Therefore we may define an operator T+ which associates to

every u ∈ Ω+ the unique solution y+
u = T+(u) of (14) in S+:

T+ : Ω+ 7→ C([t+0 ,∞))

(T+u)(t) = −
∫ ∞
t

ϕ−1

(
−k −G(s, t+0 )

r(s)
− 1
r(s)

∫ s

t+0

F (σ, u(σ)) dσ

)
ds.

Assumptions (13) assure that T+u ∈ Ω+ for every u ∈ Ω+, and T+(Ω+) ⊂ S+

follows immediately from the definition of the sets Ω+ and S+ and of the operator
T+.
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In the same way, to prove the existence of at least one nonnegative solution of
Eq. (2−) in B−0 , choose a large t−0 such that

L(t−0 ) + c(t−0 ) ≤ k(15)

and let Ω− and S− be the analogous of Ω and S defined in the proof of Th. 2.2,
with t−0 instead of t0. For every u ∈ Ω− there exists a unique solution y−u of the
differential equation

(r(t)ϕ(y′))′ = −F (t, u(t))− g(t)(16)

such that y−u ∈ S−. Therefore we may define an operator T− which associates to
every u ∈ Ω− the unique solution y−u = T−(u) of (16) in S−:

T− : Ω− 7→ C([t−0 ,∞))

(T−u)(t) = −
∫ ∞
t

ϕ−1

(
−k + G(s, t−0 )

r(s)
− 1
r(s)

∫ s

t−0

F (σ, u(σ)) dσ

)
ds.

Assumption (15) assures that T−u ∈ Ω− for every u ∈ Ω−, and T−(Ω−) ⊂ S−
follows immediately from the definition of the sets Ω− and S− and of the operator
T−.

Remark 3.1. If g ≡ 0, Th. 3.1 can be regarded as an extension of Th. 2.2 to the
case in which t and x are not separable in the source term, see also [25], [9]. It is
noteworthy to remark that conditions (13) and (15) both reduce to c(t0) ≤ k in
this case, which is exactly the analogous of condition (10) of Th. 2.2.

Remark 3.2. The forcing term g in (2+) and (2−) can be viewed as a given ac-
celeration field, depending on the time, whose action is to make the speed increase
in the first case, decrease in the second one. So it is natural from a physical point
of view that in case of Eq. (2+) we need a condition assuring that solutions of (14)
remains nonnegative (the first condition in (13)), in addition to condition assuring
that solutions do not increase too much (the second condition in (13)), while in
case of Eq. (2−) only condition (15) is needed in order to assure that solutions of
(16) do not increase too much, exactly as in the case of absence of forcing term.
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[9] Elbert, Á. and Kusano, T., Oscillation and non-oscillation theorems for a class of second
order quasilinear differential equations , Acta Math. Hung. 56 (1990), 325–336.

[10] Hartman, P., Ordinary Differential Equations , Birkhäuser, Boston, 2nd edition, 1982.
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