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STABILITY OF QUADRATIC INTERPOLATION POLYNOMIALS

IN VERTICES OF TRIANGLES WITHOUT OBTUSE ANGLES

Josef Daĺik

An explicit description of the basic Lagrange polynomials in two vari-
ables related to a six-tuple a 1, . . . , a6 of nodes is presented. Stability of the related
Lagrange interpolation is proved under the following assumption: a 1, . . . , a6 are the
vertices of triangles T1, . . . , T4 without obtuse inner angles such that T 1 has one
side common with Tj for j = 2,3,4.

1. Introduction and notations

We say that the nodes a1, . . . , a6 are regular if the following conditions (a), (b)
are satisfied.

(a) T1 = a1a3a5 is a central triangle and T2 = a1a2a3, T3 = a3a4a5, T4 =
a5a6a1 are its neighbours.

(b) α ≤ π/2 for all inner angles α of T1, . . . , T4.

We denote by h the maximal length of sides of T1, . . . , T4, by α0 the minimal inner
angle of T1, . . . , T4 and by T the (closed) convex hull of T1 ∪ · · · ∪ T4 in R2. We
adopt the convention that ai+j denotes the node ai+j−6 for any i, j ∈ {1, . . . , 6}
such that i+ j > 6.

For i = 1, . . . , 6, we denote by li a certain quadratic polynomial such that
li(aj) = 0 whenever j 6= i and describe a positive lower bound of |li(ai)| explicitly.

The fact that li(ai) 6= 0 for i = 1, . . . , 6 guaranties existence and unicity of
the solution of Lagrange interpolation problem in the nodes a1, . . . , a6 by second–
degree polynomials in two variables. In Sauer, Xu [2], such nodes are called poised
and are studied in a general setting. The value of lower estimate of |li(ai)| from our
Main Theorem assures stability of the interpolation polynomial in the following
sense: In Daĺık [1], it is derived from this estimate that interpolation errors of
values of functions as well as of their first and second partial derivatives are of
optimal order.
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We denote by x1, x2 the coordinates of any point x ∈ R2. Let a, b, c, d ∈ R2.
We define the halflines

↽

ab = {a+ t ·
→
ab; 0 ≤ t},

⇀

ab = {b+ t ·
→
ba; 0 ≤ t}

and put


ab =

↽

ab ∩
⇀

ab, ab =
↽

ab ∪
⇀

ab. We denote by |ab| the length of the segment


ab and by d(a, bc) the distance of a from the line bc. Further, we put

D(abc) =
1
2

∣∣∣∣ a1 − c1 a2 − c2
b1 − c1 b2 − c2

∣∣∣∣ , P (abc) = |D(abc)|.

Then P (abc) is the area of the triangle abc and D(abc) > 0, D(abc) < 0 whenever
the orientation of a, b, c is positive, negative respectively. We denote by P (abcd)
the area of the tetragon abcd and abbreviate P (Ti) by Pi for i = 1, . . . , 4.

2. Main theorem

Definition. We relate the polynomial

li(x) = D(xa4+ia5+i)D(xa1+ia2+i)D(a3+ia4+ia2+i)D(a3+ia5+ia1+i)

−D(xa2+ia4+i)D(xa1+ia5+i)D(a3+ia4+ia5+i)D(a3+ia1+ia2+i)

to i = 1, . . . , 6.

Lemma 1. If i, j ∈ {1, . . . , 6} then we have

li(aj) =


0 j 6= i,

(−1)i+1[D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2)

−D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3)] j = i.

Proof. See [1]. �
Notations. We denote by αi, βi, γi, δi the inner angle at ai in the triangle T1, T2,
T3, T4 respectively and put ϕ1 = α1 +β1 +δ1, ϕ2 = β2, ϕ3 = α3 +β3 +γ3, ϕ4 = γ4,
ϕ5 = α5 + γ5 + δ5, ϕ6 = δ6. See Fig.1. By definition,

l1(a1) = D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2)

−D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3).
(1)

We denote this expression more exactly by l(a1, a2, a3, a4, a5, a6) and more briefly
by l.

We find a positive lower estimate of l1(a1) in each of the four cases characterized
by the number of angles from the set {ϕ1,ϕ3,ϕ5} which are less than π separately.
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Lemma 2. Let a1, . . . , a6 be regular nodes such that ϕ1 < π, ϕ3 < π, ϕ5 < π.
Then

l1(a1) ≥ 7
8
· P1P2P3P4.

Fig. 1

Proof. In this case we have

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2) > 0 and

D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3) > 0,

so that l is a difference of two positive values. We observe

(2)
↽

a4a5 ∩
↽

a2a1 6= ∅,
↽

a6a1 ∩
↽

a4a3 6= ∅,
↽

a2a3 ∩
↽

a6a5 6= ∅ :

It follows by ϕ3 < π, ϕ2 ≤ π
2 and ϕ4 ≤ π

2 that
↽

a4a5 ∩
↽

a2a1 6= ∅. The rest of (2)
can be justified analogically.

(3) (a2)′ ∈


a2a3 ⇒ l(a1, (a2)′, a3, a4, a5, a6) ≤ l(a1, a2, a3, a4, a5, a6)

|(a2)′a3|
|a2a3| :

With respect to (2) we put
↽

a3a2 ∩
↽

a6a1 = {ã2} and
↽

a2a3 ∩
↽

a6a4 = {ã3}; see Fig.1.
Then
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D(a1(a2)′a3) = D(a1a2a3)
|(a2)′a3|
|a2a3| , D(a4a6(a2)′) = D(a4a6a2)

|(a2)′ã3|
|a2ã3| ,

D(a4(a2)′a3) = D(a4a2a3)
|(a2)′a3|
|a2a3| , D(a1(a2)′a6) = D(a1a2a6)

|(a2)′ã2|
|a2ã2| .

These identities and the fact that |(a
2)′ã3|
|a2ã3| ≤ 1 ≤ |(a

2)′ã2|
|a2ã2| lead to

l(a1, (a2)′, a3, a4, a5, a6) =

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2)
|(a2)′a3||(a2)′ã3|
|a2a3||a2ã3| −

D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3)
|(a2)′ã2||(a2)′a3|
|a2ã2||a2a3| ≤

l(a1, a2, a3, a4, a5, a6)
|(a2)′a3||(a2)′ã3|
|a2a3||a2ã3| ≤ l(a1, a2, a3, a4, a5, a6)

|(a2)′a3|
|a2a3| .

Hence, if we choose a point (a2)′, (a4)′ and (a6)′ in the segment


a2a3,



a4a5 and



a6a1

in such a way that the triangle T ′2 = a1(a2)′a3, T ′3 = a3(a4)′a5 and T ′4 = a5(a6)′a1

has a right angle at (a2)′, (a4)′ and (a6)′ respectively then we obtain

(4) l(a1, (a2)′, a3, (a4)′, a5, (a6)′) ≤ l(a1, a2, a3, a4, a5, a6)
P ′2P

′
3P
′
4

P2P3P4
;

here P ′i denotes the area of T ′i for i = 2, 3, 4.
Obviously, we have

(5) ϕ2 = ϕ4 = ϕ6 =
π

2
⇒ ϕ1 + ϕ3 + ϕ5 =

5
2
π and

(6) ϕ2 = ϕ4 = ϕ6 =
π

2
⇒

l = P2P3P4
[
P (a4a6a2) − P (a1a3a5) sinϕ1 sinϕ3 sinϕ5

]
,

since in this case l = 1
8 |a

1a2||a2a3||a3a4||a4a5||a5a6||a6a1|
[
P (a4a6a2)−

P (a1a3a5) sinϕ1 sinϕ3 sinϕ5
]
.

(7) ϕ2 = ϕ4 = ϕ6 =
π

2
⇒ sinϕ1 sinϕ3 sinϕ5 ≤

1
8

:

According to (5), it is sufficient to find a maximum of the expression

V (ϕ1, ϕ3) = sinϕ1 sinϕ3 sin(
5
2
π − ϕ1 − ϕ3)
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on the domain

Ω = {[ϕ1, ϕ3];
π

2
< ϕ1 < π,

3π
2
− ϕ1 < ϕ3 < π}.

One can easily see that V attains its maximum 1
8 at the point [5π

6 ,
5π
6 ] from Ω.

(8) ϕ2 = ϕ4 = ϕ6 =
π

2
⇒ P (a1a3a5) ≤ P (a4a6a2) :

In the proof of (8), we denote by
_

a3a5 that half of the circle with diameter


a3a5

whose endpoints are a3, a5 which satisfies a4 ∈
_

a3a5. We assume that a3 /∈
_

a3a5

and a5 /∈
_

a3a5. In the same sense we will use the arc
_

a5a1.

Fig. 2

We first prove (8) under the following condition:

(*) There is a sharp angle between δ1+α1, α1+β1, β3+α3, α3+γ3, γ5+α5, α5+δ5.

Let us assume that α1 + β1 <
π
2 like in Fig.2. Then, necessarily, β3 + α3 >

π
2

and we put
↽

a2a3 ∩
_

a3a5 = {a7}. It follows by α1 + β1 <
π
2 and a1a2 ‖ a5a7 that

^a7a5a1 > π
2 . Then we denote by a8 the point of intersection of

↽

a7a5 and
_

a5a1

and we see that a1a2a7a8 is a rectangle such that

P (a1a3a5) ≤ 1
2
P (a1a2a7a8).
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At the same time,
1
2
P (a1a2a7a8) = P (a1a2a5)

and, as
↽

a4a5 ∩
↽

a2a1 6= ∅ by (2), we have

P (a1a2a5) ≤ P (a1a2a4).

Similarly,
↽

a6a1 ∩
↽

a4a3 6= ∅ implies

P (a1a2a4) ≤ P (a4a6a2)

and the last four relations give us (8).

Let us now assume that (*) is not true. We put
↽

a2a3∩
_

a3a5 = {a7},
↽

a6a5∩
_

a3a5 =
{(a7)′} and prove (8) in the first of the two symmetric cases

d(a7, a6a2) ≤ d((a7)′, a6a2), d(a7, a6a2) > d((a7)′, a6a2)

only. See Fig.3. If we denote
↽

a2a1 ∩
_

a5a1 = {a8} then a2a7a5a8 is a rectangle and

P (a1a3a5) ≤ 1
2
P (a2a7a5a8) = P (a2a7a5).

Fig. 3
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As
↽

a2a3 ∩
↽

a6a5 6= ∅ by (2), we have

P (a2a7a5) ≤ P (a2a7a6)

and the condition d(a7, a6a2) ≤ d((a7)′, a6a2) leads to d(a7, a6a2) ≤ d(a4, a6a2).
Hence

P (a2a7a6) ≤ P (a2a4a6)

and the last three relations imply (8).
Now, the statement is a consequence of (6), (7), (8) and (4). �

Lemma 3. Let a1, . . . , a6 be regular nodes such that ϕ1 < π, ϕ3 < π and ϕ5 ≥ π.
Then

l1(a1) > P2(P3)2P4 or l1(a1) > P2P3(P4)2.

Proof. We have

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2) > 0 and

D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3) ≤ 0,

so that

(9) l ≥ D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2).

We can see that either d(a2, a4a6) > d(a1, a4a6) or d(a2, a4a6) > d(a3, a4a6) and,
at the same time,

(10) d(a6, a3a4) > d(a5, a3a4).

Fig. 4

Let us consider the case d(a2, a4a6) > d(a3, a4a6) from Fig.4. This relation and
(10) imply P (a4a6a2) > P (a4a5a3). This and (9) give l > P2(P3)2P4. The case
d(a2, a4a6) > d(a1, a4a6) leads to l > P2P3(P4)2. �
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Lemma 4. Let a1, . . . , a6 be regular nodes such that ϕ1 < π, ϕ3 ≥ π and ϕ5 ≥ π.
Then

l1(a1) >
2
3

sin2 α0P2(P3)2P4.

Proof. In this case

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2) > 0 and

D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3) ≥ 0,

so that l is a difference of two non-negative values. If we use the points (a3)′,
(a3)′′, (a5)′, (a5)′′ from Fig.5 then we have

Fig. 5

D(a1(a5)′a6)D(a1a2(a3)′)D(a4(a5)′(a3)′)D(a4a6a2) =

D(a1(a3)′(a5)′)D(a1a2a6)D(a4(a5)′a6)D(a4a2(a3)′),
(11)

since the value of both sides of (11) is equal to

1
16
d(a1, a6a2)2d(a4, a6a2)2|(a5)′a6||a2(a3)′||(a5)′(a3)′||a2a6|.

(12) l > P2(P3)2P4(1− P (a1a3a5)|(a3)′(a3)′′||(a5)′(a5)′′|
P (a1(a3)′(a5)′)|a3(a3)′′||a5(a5)′′| ) :
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If we insert

D(a1a5a6)
|(a5)′(a5)′′|
|a5(a5)′′| , D(a1a2a3)

|(a3)′(a3)′′|
|a3(a3)′′| , D(a4a5a3)

|(a3)′a4||(a5)′a4|
|a3a4||a5a4| ,

D(a4a5a6)
|a4(a5)′|
|a4a5| , D(a4a2a3)

|a4(a3)′|
|a4a3|

instead ofD(a1(a5)′a6),D(a1a2(a3)′),D(a4(a5)′(a3)′), D(a4(a5)′a6), D(a4a2(a3)′)
respectively into (11) then we get

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2)
|(a3)′(a3)′′||(a5)′(a5)′′|
|a3(a3)′′||a5(a5)′′| =

D(a1(a3)′(a5)′)D(a1a2a6)D(a4a5a6)D(a4a2a3).

Now, we multiply this equality by P (a1a3a5)/P (a1(a3)′(a5)′) and write the result-
ing left-hand side instead of D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3) into l. We
arrive at l =

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2)(1− P (a1a3a5)|(a3)′(a3)′′||(a5)′(a5)′′|
P (a1(a3)′(a5)′)|a3(a3)′′||a5(a5)′′| ).

This and the fact that P (a4a6a2) > P (a4a5a3) give (12).
Let us denote by ω the angle between the lines a3a5, (a3)′(a5)′ and put

V = d(a1, a3a5), v =
d(a1, (a3)′(a5)′)

cosω
.

See Fig.5. We can easily see that |a3a5| < |(a3)′(a5)′| cosω. By means of this
fact, we verify

(13)
P (a1a3a5)

P (a1(a3)′(a5)′)
<
V

v
:

P (a1a3a5) =
1
2
V |a3a5| < 1

2
V |(a3)′(a5)′| cosω =

1
2
v cosω|(a3)′(a5)′|V

v
= P (a1(a3)′(a5)′)

V

v
.

It follows by (13) that

(14) 1− P (a1a3a5)|(a3)′(a3)′′||(a5)′(a5)′′|
P (a1(a3)′(a5)′)|a3(a3)′′||a5(a5)′′| > 1− V |(a3)′(a3)′′||(a5)′(a5)′′|

v|a3(a3)′′||a5(a5)′′| .

Because V
v <

|a3(a3)′′|
|(a3)′(a3)′′| and V

v <
|a5(a5)′′|
|(a5)′(a5)′′| hold obviously, we obtain

(15) 1− V |(a3)′(a3)′′||(a5)′(a5)′′|
v|a3(a3)′′||a5(a5)′′| > max

{ |a3(a3)′|
|a3(a3)′′| ,

|a5(a5)′|
|a5(a5)′′|

}
.
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We put

s ≡ s(a1, a2, a3, a4, a5, a6) ≡ max
{ |a3(a3)′|
|a3(a3)′′| ,

|a5(a5)′|
|a5(a5)′′|

}
.

Since the following implications

b ∈
↽

a1a6, |a1b| > |a1a6| ⇒
s(a1, a2, a3, a4, a5, b) < s(a1, a2, a3, a4, a5, a6),(16)

(17) a3a4a5 ⊂ a3ba5 ⇒ s(a1, a2, a3, b, a5, a6) < s(a1, a2, a3, a4, a5, a6)

are true obviously, we will find the lower bound of s under the assumptions

(18) β3 =
π

2
= δ5, γ4 = α0.

Fig. 6

Then we have

(19)
↽

a5a4 ∩
↽

a1a2 = ∅,
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weil γ4 = α0 ≤ β1 ≤ ^a2(a3)′′a3. By means of the symbols from Fig.6, we verify
the assertion

(20) ã6 ∈


a5a6 ⇒ s(a1, a2, a3, a4, a5, ã6) ≤ s(a1, a2, a3, a4, a5, a6) :

We prove that |a
3(ã3)′|
|a3(ã3)′′| ≤

|a3(a3)′|
|a3(a3)′′| and |a5(ã5)′|

|a5(ã5)′′| ≤
|a5(a5)′|
|a5(a5)′′| . Clearly, it is sufficient

to verify the second inequality. Under the assumption |(a5)′′(ã5)′′| ≤ |(a5)′′(a5)′|,
we can see that

|a5(ã5)′|
|a5(ã5)′′| ≤

|a5(a5)′|
|a5(a5)′′| ⇔ |(a5)′(a5)′′|

|a5(a5)′′| ≤
|(ã5)′(ã5)′′|
|a5(ã5)′′| ⇔

|(a5)′′(ã5)′′|+ |(ã5)′′(a5)′|
|(a5)′′(ã5)′′|+ |(ã5)′′(a5)′|+ |(a5)′a5| ≤

|(ã5)′(a5)′|+ |(a5)′(ã5)′′|
|a5(a5)′|+ |(a5)′(ã5)′′| ⇔

|a5(a5)′|
|(ã5)′(a5)′| ≤

|a5(a5)′′|
|(ã5)′′(a5)′′| ⇔ |a5a6||a2ã6|

|ã6a6||a2(ã5)′| ≤
|a5a6||a1ã6|
|ã6a6||a1(ã5)′′| ⇔

|a2ã6|
|a2(ã5)′| ≤

|a1ã6|
|a1(ã5)′′|

and the last inequality is true by (19). The case |(a5)′′(ã5)′′| > |(a5)′′(a5)′| leads
to the same conclusion.

Because of (20), we can extend the assumptions (18) by

(21) β1 = α0 = δ1.

The lengths u and U from Fig.6 satisfy

(22) s >
u

U
,

because it holds either u
U
< |a3(a3)′|
|a3(a3)′′| or u

U
< |a5(a5)′|
|a5(a5)′′| . Finally, under the assump-

tions (18), (21) we prove that

(23)
u

U
>

2
3

sin2 α0 :

Let us put a = |a1a6|, b = |a1a2| and choose the cartesian coordinate system in
such a way that

a1 = [0, 0], a6 = [0, a], a2 = [b sin(α1 + 2α0), b cos(α1 + 2α0)].
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Fig. 7

See Fig.7. One can easily compute that

a7 =
[cosα0

sinα1
(b cosα0 − a cos(α1 + α0)), a− sinα0

sinα1
(b cosα0 − a cos(α1 + α0))

]
and, further, by means of the parametrization

x1 = t
cos α0

sinα1
(b cosα0 − a cos(α1 + α0)),

x2 = t
[
a− sinα0

sinα1
(b cosα0 − a cos(α1 + α0))

]
,

t ∈ < 0, 1 >, of the segment


a1a7, one can see that the value of the parameter t

in the cross point


a1a7 ∩



a6a2 is

t(Q) =
Q sinα1 sin(α1 + 2α0)

cosα0[2Q cosα0 − (1 + Q2) cos(α1 + α0)]
.

Here Q = a
b

and the fact that Q ∈ < a
b1
, a
b0
> = < cos α1,

1
cosα1

> is apparent
from Fig.7. Because of t(Q) = 1 − u

U
, an optimal lower bound of u

U
corresponds

to

max{t(Q); cosα1 ≤ Q ≤ 1
cos α1

}.
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We can find this maximum by a standard procedure. Then we conclude that

u

U
≥ sinα0 sinα1 sin(α1 + α0)

cosα0[cosα1 sin(α1 + α0) + sinα0]
.

As the expression on the right-hand side attains its minimum for α1 = α0, we find

u

U
≥ sin2 α0 sin 2α0

cosα0(cos α0 sin 2α0 + sinα0)
=

2 sin2 α0

1 + 2 cos2 α0
>

2
3

sin2 α0.

The statement is a consequence of (12), (14), (15), (22) and (23). �
Lemma 5. Let a1, . . . , a6 be regular nodes such that ϕ1 ≥ π, ϕ3 ≥ π and ϕ5 ≥ π.
Then

l1(a1) > P1P2P3P4.

Proof. We have

D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2) > 0 and

D(a1a3a5)D(a1a2a6)D(a4a5a6)D(a4a2a3) ≤ 0.

Since, at the same time, a4a6a2 ⊃ a1a3a5, we conclude

l ≥ D(a1a5a6)D(a1a2a3)D(a4a5a3)D(a4a6a2) > P1P2P3P4 . �

Main Theorem. Let the nodes a1, . . . , a6 be regular. Then there exist an index
k ∈ {1, 2, 3, 4} and a positive constant C independent of h such that

|li(ai)| ≥ C · PkP2P3P4 for i = 1, . . . , 6.

Proof. This statement is a consequence of the lemmas 1, 2, 3, 4, 5. �
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