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ON THE LIMIT CYCLE OF THE LIÉNARD EQUATION

KENZI ODANI

Abstract. In the paper, we give an existence theorem of periodic solution

for Liénard equation ẋ = y − F (x), ẏ = −g(x). As a result, we estimate the
amplitude ρ(µ) (maximal x-value) of the limit cycle of the van der Pol equation

ẋ = y−µ(x3/3−x), ẏ = −x from above by ρ(µ) < 2.3439 for every µ 6= 0. The
result is an improvement of the author’s previous estimation ρ(µ) < 2.5425.

1. Introduction

We are interested in the limit cycle of the Liénard equation:

(L) ẋ = y − F (x), ẏ = −g(x) .

The following is our result.

Theorem. Suppose that the equation (L) satisfies the following: (1) F, g are of
class C1 and odd. (2) g(x) > 0 for x ∈ (0,∞). (3) F has a zero β > 0 such
that F (x) < 0 for x ∈ (0, β) and F (x) > 0 for x ∈ (β,∞). (4) There are two C1

mappings φ, ψ : [0, β]→ [β,∞) such that

(i) φ′(x)g(φ(x))F (φ(x)) = g(x)F (x), (ii) φ(β) = β,

(iii)ψ′(x)g(ψ(x))F (ψ(x)) ≥ −g(x)F (x), (iv)ψ′(x)f(ψ(x)) ≥ f(x),

(v) ψ′(x)g(ψ(x)) ≤ g(x), where f = F ′.

Then it has a periodic orbit in the strip |x| < ψ(β).

The proof of the above theorem enables us to estimate the amplitude ρ(µ) (max-
imal x-value) of the limit cycle of the van der Pol equation:

(vdP) ẋ = y − µ(x3/3− x), ẏ = −x .

The equation (vdP) has a unique limit cycle for every µ > 0. See [7], for example.
Since the replacement (t, x, y, µ) → (−t, x,−y,−µ) preserves the form of (vdP),
it is sufficient to consider the case µ > 0. The following is an application of our
theorem.

Example. The amplitude ρ(µ) of the limit cycle of the equation (vdP) is estimated
by ρ(µ) < 2.3233 for every µ > 0.
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The upper bound 2.3233 is better than previous results, namely, 2.8025 of [1],
2.5425 of [7] and 2.3439 of [8]. The values indicate that the result is better than
those of [1], [7] and [8].

We shall prove the example by constructing the mappings φ, ψ satisfying the
condition (4) of our theorem. The construction needs the following conditions in
addition to (1), (2), (3) of our theorem:
(a) There is a constant k < G(∞)− G(β) satisfying F (G−1(G(x) + k)) + F (x)

≥ 0 for x ∈ [0, β], where G(x) :=
∫ x

0

g(u)du, and x = G−1(z) is the inverse

function of z = G(x) for x ≥ 0.
(b)P (x) := f(x)/g(x) is strictly increasing on (0,∞).
(c)Q(x) := P (x)/F (x) is strictly decreasing on (0, β) and on (β,∞).

Of course, the equation (vdP) satisfies these conditions. In Section 3, we show the
procedure of constructing the mappings. (The procedure can not be repesented as
a ‘theorem’ because its statement can not be short.)

2. Proof of Our Theorem

Since the equation (L) is symmetric with respect to the origin, we consider it only
on the region y ≥ F (x). We consider an orbit γ which starts from a point B2 on the
left half of y = F (x) and reaches to a point B1 on the right half of it. We denote
the x-coordinates of the points B1 and B2 by b1 > 0 and −b2 < 0 respectively.
Then we can regard the y-coordinate of γ as a function of x ∈ (−b2, b1). we denote
it by y = y(x). By the definition, the function y(x) is strictly increasing on (−b2, 0)
and strictly decreasing on (0, b1). In the proof of our theorem, we use the following
notation:

v1(x) = y(x) − F (x) ≥ 0, v2(x) = y(−x) − F (−x) ≥ 0 .(2.1)

To see the above notations visually, for the equation (vdP) with µ = 1, we give
below the graphs of y = F (x) and y = y(x).
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Lemma. Suppose that the equation (L) satisfies the condtion (1), (2) of the the-

orem. If the orbit γ satisfies −
∫ b

−b

g(x)F (x)
y(x) − F (x)

dx < 0 (> 0) for b = min{b1, b2},

then b1 < b2 (b1 > b2).
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Proof. We can easily confirm the following:

d

dx

( 1
2
y(x)2 + G(x)

)
= − g(x)F (x)

y(x) − F (x)
.(2.2)

If b1 ≥ b2, then y(x) is defined on [−b2, b2]. So we calculate as follows:

(2.3) −
∫ b2

−b2

g(x)F (x)
y(x) − F (x)

dx

=
1
2

(
y(b2)2 − y(−b2)2

)
=

1
2

(
y(b2)2 − F (b2)2

)
≥ 0 .

We can prove the other case in a similar way.

Proof of Theorem. First, we prove that ψ(β) ≥ φ(0). Since φ′(x) < 0 for
x ∈ (0, β), the mapping φ reverses the order, that is, 0 < x1 < x2 < β implies
φ(x1) > φ(x2). By integrating (iii) and (i) on [0, β], we obtain that∫ ψ(β)

ψ(0)

g(u)F (u)du ≥ −
∫ β

0

g(u)F (u)du =
∫ φ(0)

φ(β)

g(u)F (u)du .(2.4)

By (ii) and it, we obtain that∫ ψ(β)

φ(0)

g(u)F (u)du≥
∫ ψ(0)

β

g(u)F (u)du ≥ 0 .(2.5)

Since we have g(x)F (x) > 0 for x ∈ (β,∞), we obtain that ψ(β) ≥ φ(0).
We shall show that the orbit γ with b2 = ψ(β) winds toward inside. To prove it

by a contradiction, we assume that b1 ≥ b2. For x ∈ (0, β), since we have φ′(x) < 0,
we calculate as follows:

d

dx

(
y(x) − y(φ(x))

)
= − g(x)

v1(x)
+
φ′(x)g(φ(x))
v1(φ(x))

< 0 .(2.6)

By integrating (2.6) on [x, β], we obtain that

v1(x) − v1(φ(x)) = y(x) − y(φ(x)) + F (φ(x))− F (x)
≥ y(β) − y(φ(β)) ≥ 0 .(2.7)

For x ∈ (0, β), by using (iv) and (v), we calculate as follows:

d

dx

(
v2(x)− v2(ψ(x))

)
=− g(x)

v2(x)
+
ψ′(x)g(ψ(x))
v2(ψ(x))

+ f(x) − ψ′(x)f(ψ(x))

≤ g(x)
v2(x)v2(ψ(x))

(
v2(x)− v2(ψ(x))

)
.(2.8)

By integrating it on [x, β], we obtain that

v2(x)− v2(ψ(x)) ≥ v2(β) · exp
(
−
∫ β

x

g(u)
v2(u)v2(ψ(u))

du
)
> 0 .(2.9)
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To apply the lemma, we consider the following integral:

(2.10) −
∫ ψ(β)

−ψ(β)

g(x)F (x)
y(x) − F (x)

dx

= −
∫ ψ(β)

0

g(x)F (x)
v1(x)

dx−
∫ ψ(β)

0

g(x)F (x)
v2(x)

dx .

By using (i) and (2.7), we calculate the first term of the right-hand side of (2.10)
as follows:

≤−
∫ β

0

g(x)F (x)
v1(x)

dx−
∫ φ(0)

φ(β)

g(x)F (x)
v1(x)

dx

=−
∫ β

0

g(x)F (x)
v1(x)

dx+
∫ β

0

φ′(x)g(φ(x))F (φ(x))
v1(φ(x))

dx < 0 .(2.11)

By using (iii) and (2.9), we calculate the second term of the right-hand side of
(2.10) as follows:

≤−
∫ β

0

g(x)F (x)
v2(x)

dx−
∫ ψ(β)

ψ(0)

g(x)F (x)
v2(x)

dx

=−
∫ β

0

g(x)F (x)
v2(x)

dx−
∫ β

0

ψ′(x)g(ψ(x))F (ψ(x))
v2(ψ(x))

dx < 0 .(2.12)

By the lemma, we obtain that b1 < b2. It is a contradiction. So we conclude that
b1 < b2. Thus the orbit γ winds toward inside. On the other hand, since we have
g(x)F (x) < 0 near the origin, we obtain from the lemma that every orbit near the
origin winds toward outside. Hence the equation has a periodic orbit in the strip
|x| < ψ(β).

3. Construction of the Mappings

When the equation (L) satisfies the conditions (1), (2), (3) of our theorem and
(a), (b), (c) of Section 1, we can construct the mappings φ, ψ satisfying the condition
(4) of our theorem.

Procedure of Construction. We define φ(x) as the implicit function of∫ φ

x

g(u)F (u)du = 0 .(3.13)

Of course, φ(β) = β. By differentiating (3.13), we obtain that

φ′(x)g(φ(x))F (φ(x))− g(x)F (x) = 0 .(3.14)

Hence the mapping φ satisfies (i) and (ii) of our theorem.
We take the smallest constant k < G(∞)−G(β) satisfying

F (G−1(G(x) + k)) + F (x) ≥ 0(3.15)

for x ∈ [0, β]. Then at least one value of x ∈ [0, β) satisfies the equality of (3.15).
We denote by θ ∈ [0, β) the maximal x satisfying the equality of (3.15). We shall
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construct the mappingψ separately on three intervals [0, θ], (θ, η] and (η,
√

3], where
η will be determined later.

For x ∈ [0, θ], we define ψ(x) by

ψ(x) = G−1(G(x) + k) .(3.16)

By differentiating it, we obtain that

ψ′(x)g(ψ(x)) − g(x) = 0 .(3.17)

By combining (3.13) and it, we obtain that

ψ′(x)g(ψ(x))F (ψ(x)) + g(x)F (x) ≥ 0 .(3.18)

By substituting ψ′(x) from (3.17), we obtain that

ψ′(x)f(ψ(x)) − f(x) = g(x)
(
P (ψ(x)) − P (x)

)
≥ 0 .(3.19)

For x ∈ (θ, η], we define ψ(x) by the implicit function of∫ ψ

ψ(θ)

g(u)F (u)du+
∫ x

θ

g(u)F (u)du = 0 .(3.20)

Since the function R(x) := Q(ψ(x))+Q(x) is strictly decreasing on (θ, β), and since

R(θ) = − 1
F (θ)

(
P (ψ(θ)) − P (θ)

)
> 0 , R(β − 0) = −∞ ,(3.21)

it has the unique zero η in (θ, β). By differentiating (3.20), we obtain that

ψ′(x)g(ψ(x))F (ψ(x)) + g(x)F (x) = 0 .(3.22)

By substituting ψ′(x) from (3.22), we obtain that

ψ′(x)f(ψ(x)) − f(x) = −g(x)F (x)
(
Q(ψ(x)) + Q(x)

)
≥ 0 .(3.23)

By integrating it on [θ, x], we obtain that

F (ψ(x)) + F (x) ≥ F (ψ(θ)) + F (θ) = 0 .(3.24)

By substituting ψ′(x) from (3.22), we obtain that

g(x)− ψ′(x)g(ψ(x)) =
g(x)

F (ψ(x))

(
F (ψ(x)) + F (x)

)
≥ 0 .(3.25)

For x ∈ (η, β], we define ψ(x) by the implicit function of∫ ψ

ψ(η)

f(u)du−
∫ x

η

f(u)du = 0 .(3.26)

By differentiating it, we obtain that

ψ′(x)f(ψ(x)) − f(x) = 0 .(3.27)

By substituting ψ′(x) from (3.27), we obtain that

ψ′(x)g(ψ(x))F (ψ(x)) + g(x)F (x)

=
g(x)F (x)
Q(ψ(x))

(
Q(ψ(x)) +Q(x)

)
≥ 0 .(3.28)
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By substituting ψ′(x) from (3.27), we obtain that

g(x)− ψ′(x)g(ψ(x)) =
g(x)

P (ψ(x))

(
P (ψ(x))− P (x)

)
≥ 0 .(3.29)

Hence the mapping ψ satisfies (iii), (iv), (v) of our theorem.

The equation (vdP) satisfies the conditions (1), (2), (3) of our theorem and (a),
(b), (c) of Section 1. So we can immediately apply the above construction to it.

Proof of Example. For the equation (vdP), we can calculate as follows:

F (G−1(G(x) +
√

3))2 − F (x)2 =
2
3

√
3µ2
(
x2 − (2−

√
3)
)
≥ 0 .(3.30)

So we obtain that k =
√

3, θ =
√

2−
√

3 and ψ(θ) =
√

2 +
√

3. By the definition
of η, we obtain that

R(η) =
ψ(η)2 − 1

ψ(η)4 − 3ψ(η)2
+

η2 − 1
η4 − 3η2

= 0 .(3.31)

By putting x = η to (3.20), we obtain that

ψ(η)5 − 5ψ(η)3 + η5 − 5η3 − 6
√

3 + 4
√

6 = 0.(3.32)

By solving the simultaneous equations (3.31), (3.32) by computer, we obtain that
η ≈ 1.3784 and ψ(η) ≈ 2.2006. By putting x =

√
3 to (3.26), we obtain that

ψ(
√

3)3 − 3ψ(
√

3)− ψ(η)3 + 3ψ(η) + η3 − 3η = 0 .(3.33)

By solving (3.33) by computer, we obtain that ψ(
√

3) ≈ 2.3233. Hence the equation
has a periodic orbit in the strip |x| < 2.3233.

4. A Conjecture

Since the limit cycle of the van der Pol equation is unique, its amplitude ρ(µ)
is a continuous function of the parameter µ 6= 0. We already know that ρ(µ) → 2
as µ → 0 and that ρ(µ) → 2 as µ → ∞. See [5], for example. More precisely, we
found in [4] that ρ(µ) = 2 + (7/96)µ2 + O(µ3) for sufficiently small µ > 0, and in
[2] that ρ(µ) = 2 + (0.7793 · · ·)µ−4/3 + o(µ−4/3) for sufficiently large µ > 0.

By a computer experiment, we have the following table:

µ ↓ 0 0.1 1.0 2.0 3.0 3.2
ρ ↓ 2 2.00010 2.00862 2.01989 2.02330 2.02341
µ 3.3 3.4 4.0 5.0 10 ↑ ∞
ρ 2.02342 2.02341 2.02296 2.02151 2.01429 ↓ 2

We calculate the amplitude ρ of the above table by using the Runge-Kutta method
with a step size 2−20. By the above table, we realize that the example is not sharp.
So we want to pose the following:

Conjecture. The amplitude ρ(µ) of the limit cycle of the van der Pol equation is
estimated by 2 < ρ(µ) < 2.0235 for every µ > 0.
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However, to estimate the amplitude is a very difficult problem. An attempt to
estimate the amplitude is done by Giacomini and Neukirch [3].
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Yamato for reading the manuscript, and to the referee for his/her detailed correc-
tions and useful comments.
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