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GLOBAL EXISTENCE AND STABILITY OF SOME
SEMILINEAR PROBLEMS

M. KIRANE AND N.-E. TATAR

Abstract. We prove global existence and stability results for a semilinear
parabolic equation, a semilinear functional equation and a semilinear integral

equation using an inequality which may be viewed as a nonlinear singular
version of the well known Gronwall and Bihari inequalities.

1. Introduction

In this paper we shall present a work which improves a recent result of M.
Medved [11] as well as the application of the method to other problems such as
semilinear functional differential equations and semilinear integral equations. We
first report Medved’s result from [11]. The author considered the Cauchy problem{

du
dt +Au = f(t, u), u ∈ X
u(0) = u0 ∈ X

(1)

where X is an appropriate Banach space and A : X → X is a sectorial operator.
It is known (see [7]) that there is a real number c such that if
Ã := A + cI, then Re σ(Ã) > 0 where σ(Ã) is the spectrum of the operator Ã.
The fractional power Ãα of Ã is defined in the usual way as the inverse of Ã−α :=

1
Γ(α)

∫∞
0 tα−1e−Ãtdt for α > 0, where Γ(α) is the Eulerian Gamma function. If we

denote by Xα := D(Ãα) the domain of Ãα and ‖x‖α :=
∥∥∥Ãαx∥∥∥, x ∈ Xα, then

(Xα, ‖.‖α) is a Banach space. Furthermore, the operator −A is the infinitesimal
generator of an analytic semi-group

{
e−tA

}
t≥0

satisfying for Re σ(A) > b > 0∥∥e−tAx∥∥
α

:=
∥∥∥Ãαe−tAx∥∥∥ ≤ dt−αe−bt ‖x‖ , t > 0,(2)

for any x ∈ Xα, where d > 0 is a constant.
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If there is an α ∈ (0, 1) such that f : R × Xα → X, (t, u) 7→ f(t, u) is lo-
cally Hölder in t and locally Lipschitz in u, then by a solution of (1) we mean a
continuous function u : (0, T ) → Xα with u(0) = u0 ∈ Xα such that f(., u(.)) :
(0, T ) → X, t 7→ f(t, u(t)) is continuous, u(t) ∈ D(A), t ∈ (0, T ) and u satisfies
(1) on (0, T ). A solution u(t) of (1) coincides then (see [13]) with a solution of the
integral equation

u(t) = e−Atu0 +
∫ t

0

e−A(t−s)f(s, u(s))ds , 0 < t ≤ T(3)

for which u : (0, T )→ Xα is continuous and f(., u(.)) : (0, T )→ X, t 7→ f(t, u(t))
is continuous.

Let R = (−∞,∞) and R+ = [0,∞). M. Medved [11] proved the following
theorem.

Theorem 1. Let A, f, b and d be as above and

‖f(t, u)‖ ≤ tκη(t) ‖u‖mα , m > 1, κ ≥ 0

for all (t, u) ∈ R+ × Xα, where η : (0,∞) → R is a continuous, nonnegative
function. Then the following assertions hold:

(1) Let 0 < α < min
{

1
2
, κ
m

+ 1
2pm

}
for some p > 1. Let the function

t 7→ t2qα
∫ t

0

η(s)2qe2q[(1−m)b+mε]sds

be bounded on the interval (0,∞) for some 0 < ε < b, where 1
p + 1

q = 1. Let u(t)
be a solution of problem (1) satisfying u(0) = u0 ∈ Xα, with

(m − 1)22q−1 (d ‖u0‖)2q(m−1)
K(ε)qL(ε)

q
p (dtα)2q

∫ t

0

η2qe2q[(1−m)b+mε]sds < 1,

where

K(ε) =
Γ(2β − 1)
(2ε)2β−1

, L(ε) =
Γ((2γ − 2)p+ 1)

(2γ − 2)p+ 1
, β = 1− α.

Then u(t) exists on the interval (0,∞) and lim
t→∞

‖u(t)‖α = 0.

(2) Let 1
2
≤ α < min{1, κ

m
+ 1

kqm
} for some k > 1, β = 1 − α = 1

1+z
, z ≥ 1,

q = z + 2. Assume that the function

t 7→ trqα
∫ t

0

η(s)rqerq[(1−m)b+mε]sds

is bounded on the interval (0,∞) for some 0 < ε < b, where 1
k

+ 1
r

= 1. Let u(t)
be a solution of problem (1) satisfying u(0) = u0, where

(m− 1)2rqm(d ‖u0‖)rq(m−1)P (ε)trqα
∫ t

0

η(s)rq[(1−m)b+mε]sds{
< 1 for rq(m − 1) even,
6= 1 for rq(m − 1) odd,
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where P (ε) is the expression (M (ε)N (ε))rq with M (ε) =
[

Γ(1−αp)
(pε)1−αp

] 1
p

and N (ε) =[
Γ(kq(γ−1)+1)
(kqε)kq(γ−1)+1

] 1
kq

. Then u(t) exists on the interval (0,∞) and lim
t→∞

‖u(t)‖α = 0.
It is our task to weaken the assumptions of this theorem. To this end we use a

crucial Lemma which may be found in [12]. This is done in section 2. In section 3
and 4 we discuss applications of this method to semilinear functional differential
equations and integral equations respectively.

2. A Semilinear Parabolic Equation

For our theorems we need the following lemmas. The first lemma was also used
by Medved and can be found in [1]. The second one is crucial to our argument and
is reported from [12] with its proof for the sake of completeness. For convenience
we shall adopt the same notation as in [11].

Lemma 2. Let a(t), b(t), k(t), ψ(t) be nonnegative, continuous functions on the
interval I = (0, T ) (0 < T ≤ ∞), ω : (0,∞)→ R be a continuous, nonnegative and
nondecreasing function, ω(0) = 0, ω(u) > 0 for u > 0 and let A(t) = max

0≤s≤t
a(s),

B(t) = max
0≤s≤t

b(s). Assume that

ψ(t) ≤ a(t) + b(t)
∫ t

0

K(s)ω(ψ(s))ds, t ∈ I .

Then

ψ(t) ≤ Ω−1

[
Ω(A(t)) + B(t)

∫ t

0

K(s)ds
]
, t ∈ (0, T1) ,

where Ω(v) =
v∫
v0

dσ
ω(σ) , v ≥ v0 > 0, Ω−1 is the inverse of Ω and T1 > 0 is such that

Ω(A(t)) +B(t)
∫ t

0
K(s)ds ∈ D(Ω−1) for all t ∈ (0, T1).

Lemma 3. If µ, ν, τ > 0 and z > 0, then

z1−ν
∫ z

0

(z − ζ)ν−1ζµ−1 exp(−τζ)dζ ≤ Cτ−µ(4)

where C is a constant independent of z.

Proof. Let I(z) denote the left-hand side of (4). Then by a change of variables

I(z) = zµ
∫ 1

0

(1− ξ)ν−1ξµ−1 exp(−τzξ)dξ .

Observing that

zµ(1− ξ)ν−1ξµ−1 exp(−τzξ) ≤
{

max(1, 21−ν)zµξµ−1 exp(−τzξ), 0 ≤ ξ ≤ 1/2
2(1− ξ)ν−1Γ(µ + 1)τ−µ, 1/2 < ξ ≤ 1 ,

it follows that, I(z) ≤ max(1, 21−ν)Γ(µ)(1 + µ/ν)τ−µ. 2

The next lemma is to be compared with lemma 3 in [11]. In fact it is the coun-
terpart of lemma 3. Note the disappearance of the terms in ε and the appearance
of new terms in B1(t) and B2(t).
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Besides the use of the previous Lemma, the idea of the proof of this Lemma
relies on Medved’s method; see Theorem 4 in [10] for the linear version of this
result.

Lemma 4. Let a(t), F (t), ψ(t), b(t) be continuous, nonnegative functions on
I = (0, T ) (0 < T ≤ ∞), β > 0, γ > 0, m > 1 and ψ(t) satisfies the inequality

ψ(t) ≤ a(t) + b(t)
∫ t

0

(t− s)β−1sγ−1F (s)ψ(s)mds, t ∈ I = (0, T ).(5)

Then the following assertions hold:
(1) If β > 1/2, γ > 1/2 and C is the constant of lemma 3, then

ψ(t) ≤ Φ(t) := A
1/2
1 (t) [1− (m − 1)Ξ1(t)]

1
2(1−m)

for all t ∈ I = (0, T ) for which the right-hand side is defined, where

Ξ1(t) = A1(t)m−1B1(t)
∫ t

0

F (s)2e2sds, A1(t) = 2 max
0≤s≤t

a(s)2 and

B1(t) = C22(1−γ) max
0≤s≤t

b(s)2s2(β−1).

(2) If β = 1
1+z for some z ≥ 1, γ > 1− 1

p and q = z + 2 then

ψ(t) ≤ Ψ(t) := A
1/q
2 (t) [1− (m − 1)Ξ2(t)]

1
q(1−m)

for all t ∈ I = (0, T ) for which the right-hand side is defined, where for the constant

C of lemma 3, Ξ2(t) = A2(t)m−1B2(t)
∫ t

0

F (s)qeqsds,

A2(t) = 2q−1 max
0≤s≤t

a(s)q and B2(t) = Cq/ppq(1−γ)− qp max
0≤s≤t

b(s)qsq(β−1)

and 1
p + 1

q = 1.

Proof. (1) Observe that by the Schwarz inequality∫ t

0

(t− s)β−1sγ−1F (s)ψ(s)mds ≤
(∫ t

0

(t − s)2(β−1)s2(γ−1)e−2sds

) 1
2

(∫ t

0

F (s)2e2sψ(s)2mds

) 1
2

and by our assumptions it is clear that 2(β − 1) > −1 and 2(γ − 1) > −1, so that
we may apply lemma 3

(6)
∫ t

0

(t − s)β−1sγ−1F (s)ψ(s)mds ≤

(
C21−2γt2(β−1)

) 1
2
(∫ t

0

F (s)2e2sψ(s)2mds

) 1
2

.

Then (5) and (6) yield

ψ(t) ≤ a(t) + b(t)
(
C21−2γt2(β−1)

) 1
2
(∫ t

0

F (s)2e2sψ(s)2mds

) 1
2

,
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this implies

ψ(t)2 ≤ 2a(t)2 + C22−2γt2(β−1)b(t)2

∫ t

0

F (s)2e2sψ(s)2mds .

Finally, the application of Lemma 2 with ω(u) = um,

Ω(v) = 1
1−m(v1−m − v1−m

0 ) and Ω−1(z) =
[
(1 −m)z + v1−m

0

] 1
1−m yields

ψ(t)2 ≤ Ω−1

[
Ω(2 max

0≤s≤t
a(s)2) + C22−2γ max

0≤s≤t
s2(β−1)b(s)2

∫ t

0

F (s)2e2sds

]
≤ 2 max

0≤s≤t
a(s)2 [1− (m − 1)Ξ1(t)]

1
1−m ,

where Ξ1(t) is as in the Lemma.
(2) For the second part we use Hölder inequality, i.e.

ψ(t) ≤ a(t) + b(t)
(∫ t

0

(t− s)(β−1)ps(γ−1)pe−psds

) 1
p
(∫ t

0

F (s)qeqsψ(s)qmds
) 1
q

.

Since from the assumptions (β − 1)p = −z(z+2)
(z+1)2 > −1 and (γ − 1)p > −1, lemma

3 implies

ψ(t) ≤ a(t) + b(t)
(
Cp(1−γ)p−1t(β−1)p

) 1
p

(∫ t

0

F (s)qeqsψ(s)qmds
) 1
q

.(7)

Applying the inequality

(a+ b)r ≤ 2r−1(ar + br), a ≥ 0, b ≥ 0, r > 1

to (7) with r = q we obtain

ψ(t)q ≤ 2q−1

{
a(t)q + C

q
p p(1−γ)q−qt(β−1)qb(t)q

∫ t

0

F (s)qeqsψ(s)qmds
}
.

2

We next apply lemma 2 as in part (1) to get the conclusion.
We are now ready to state our main theorems.

Theorem 5. Let the operator A, the function f , the numbers b and d be as in the
introduction and let

‖f(t, u)‖ ≤ tκη(t) ‖u‖mα , m > 1, κ ≥ 0(8)

for all (t, u) ∈ R+ × Xα, where η : (0,∞) → R is a continuous, nonnegative
function. Then the following assertions hold:

(1) If 0 < α < min
{

1
2 ,

1
m

(
κ+ 1

2

)}
and the function

t 7→
∫ t

0

exp {(2(1−m)b+ 2)s} η(s)2ds

is bounded on the interval (0,∞), then any solution u(t) of (1) such that u(0) =
u0 ∈ Xα and

(m − 1)C22(1−γ)+m−1d2m ‖u0‖2(m−1)
∫ t

0

exp {(2(1−m)b + 2)s} η(s)2ds < 1 ,
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where C is the constant of lemma 3, exists globally in time and is such that
lim
t→∞

‖u(t)‖α = 0.

(2) If 1
2 ≤ β < min

{
1, 1
m

(
κ+ 1

p

)}
, β = 1− α = 1

1+z , z ≥ 1,

q = z + 2, 1
p

+ 1
q

= 1 and the function

t→
∫ t

0

exp {((1−m)b+ 1)qs} η(s)qds

is bounded on the interval (0,∞), then any solution u(t) of (1) such that u(0) =
u0 ∈ Xα and

(m − 1)2m(q−1)dmqC
q
p p(1−γ)q− qp ‖u0‖(m−1)q

∫ t

0

exp {((1 −m)b + 1)qs} η(s)qds{
< 1 for (m− 1)q even,
6= 1 for (m− 1)q odd,

exists globally in time and lim
t→∞

‖u(t)‖α = 0.

Proof. (1) It follows from (3), (2) and (8) that

(9) ‖u(t)‖α ≤

dt−αe−bt ‖u0‖+ d

∫ t

0

(t− s)−αe−b(t−s)sκη(s) ‖u(s)‖mα ds .

Multiplying both sides of (9) by ebttα we obtain

ebttα ‖u(t)‖α ≤ d ‖u0‖+ dtα
∫ t

0

(t − s)−αebssκη(s)

Let ψ(t) = ebttα ‖u(t)‖α , then

ψ(t) ≤ d ‖u0‖+ dtα
∫ t

0

(t− s)−αeb(1−m)ssκ−mαη(s)ψ(s)mds .

It is clear from the assumptions that if β − 1 = −α and κ − mα = γ − 1 then
β > 1

2 and γ > 1
2 . Hence we may apply part (1) of lemma 4 with a(t) = d ‖u0‖,

b(t) = dtα and F (t) = eb(1−m)tη(t) we obtain ψ(t) ≤ Φ(t) i.e.

‖u(t)‖α ≤ t−αe−btΦ(t) = t−αe−btA
1
2
1 [1− (m − 1)Ξ1(t)]

1
2(1−m) ,

where A1 = 2(d ‖u0‖)2, B1 = 22−2γC max
0≤s≤t

s2(β−1)b(s)2 = 22−2γCd2 and Ξ1(t) =

Am−1
1 B1

∫ t
0
F (s)2e2sds. As Φ(t) is bounded on the interval (0,∞) the conclusion

follows.
(2) This part is proved similarly using part (2) of lemma 4. 2

Remark. Our method is also based on a generalization of Gronwall inequality,
namely the nonlinear version stated in lemma 2 and the nonlinear singular version
in lemma 4. Note however the important role played by lemma 3. It can be
considered as a trick which gets rid of the terms t2qα and trqα in the assumptions
of theorem 1 in [11].
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If the constants m and κ are such that 1
m

(
κ+ 1

2

)
< 1

2 and/or 1
m

(
κ + 1

p

)
< 1,

then the cases 1
m

(
κ+ 1

2

)
≤ α < 1

2 and /or 1
m

(
κ+ 1

p

)
≤ α < 1 are not covered

by the preceding theorem. We next treat these cases. In fact the next theorem
represents a stability (not exponentially, however) result for all 0 < α < 1. Let us
first give a lemma (see [8]) which we shall need in the proof of the theorem.

Lemma 6. If 0 ≤ α < 1 and τ, µ, σ > 0, then∫ t

0

q(t− τ )−αe−τ(t−s)(σs + 1)−µds ≤ C(α, τ, µ, σ)(σt+ 1)−µ

where C(α, τ, µ, σ) is a constant and q(t) = min{1, t}.

Theorem 7. Assume that the hypothesis of theorem 5 hold and let u(t) be a
solution of (1) with u(0) = u0 ∈ Xα. Then the following assertions hold:

(1) Let 0 < α < 1
2

and the function

t 7−→ (t + 1)2(α+εκ)

∫ t

0

s2(1−ε)κ−2αmη(s)2ds(10)

be bounded on (0,∞) for some 0 < ε < 1. If

(m− 1)(2d2)mC ‖u0‖2(m−1) (t+ 1)2(α+εκ)

∫ t

0

s2(1−ε)κ−2αmη(s)2ds < 1 ,

(11)

where C is the constant of lemma 6, then u(t) exists on the interval (0,∞) and
lim
t→∞

‖u(t)‖α = 0.

(2) Let 1
2
≤ α < 1, α = z

z+1
, z ≥ 1, q = z + 2 and the function

t 7−→ (t+ 1)q(α+εκ)

∫ t

0

sq(1−ε)κ−2αmη(s)qds

is bounded on (0,∞) for some 0 < ε < 1. If

(m − 1)2m(q−1)dmqC
q
p ‖u0‖(m−1)q (t+ 1)(α+εκ)q

∫ t

0

s[(1−ε)κ−αm]η(s)qds

{
< 1 for (m − 1)q even,
6= 1 for (m − 1)q odd,

then u(t) exists on the interval (0,∞) and lim
t→∞

‖u(t)‖α = 0.

Proof. (1) It is clear that for 0 < ε < 1

(12) ‖u(t)‖α ≤

dt−αe−bt ‖u0‖+ d

∫ t

0

(t − s)−αe−b(t−s)(s + 1)εκs(1−ε)κη(s) ‖u(s)‖mα ds .
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Multiplying both sides of (12) by tα(t + 1)δ for some δ > 0 (to be chosen later)
and denoting by ψ(t) the expression tα(t+ 1)δ ‖u(t)‖α, we obtain

ψ(t) ≤ d(t+ 1)δe−bt ‖u0‖+

dtα(t+ 1)δ
∫ t

0

(t− s)−αe−b(t−s)(s + 1)εκ−δms(1−ε)κ−αmη(s)ψ(s)mds ,

and by Schwarz inequality

ψ(t) ≤ d(t+ 1)δ ‖u0‖

+dtα(t + 1)δ
(∫ t

0

(t− s)−2αe−2b(t−s)(s + 1)2(εκ−δm)ds

) 1
2

(∫ t
0
s2[(1−ε)κ−αm]η(s)2ψ(s)2mds

) 1
2
.

For a fixed ε > 0 satisfying the hypothesis (10) and (11), if δ is chosen so that
εκ− δm < 0 then we may apply lemma 6 obtaining

ψ(t) ≤ d(t+ 1)δ ‖u0‖+ dtα(t + 1)δ
(
C(t+ 1)2(εκ−δm)

) 1
2(∫ t

0

s2[(1−ε)κ−αm]η(s)2ψ(s)2mds

) 1
2

.

Hence

ψ(t)2 ≤ 2d2(t + 1)2δ ‖u0‖2 + 2d2Ct2α(t+ 1)2δ(t + 1)2(εκ−δm)(∫ t

0

s2[(1−ε)κ−αm]η(s)2ψ(s)2mds

) 1
2

.

Let us choose δ such that α + δ + εκ − δm = 0 i.e δ = α+εκ
m−1 . Observe then that

the previous condition εκ− δm < 0 is satisfied. Next, applying lemma 4 we get

ψ(t) ≤
√

2d(t+ 1)δ ‖u0‖{1− (m− 1)Ξ1(t)}
1

2(m−1) ,

with

Ξ1(t) = (2d2)mC ‖u0‖2(m−1) (t+ 1)2(α+εκ)

∫ t

0

s2(1−ε)κ−2αmη(s)2ds .

We deduce the estimate ‖u(t)‖α ≤
√

2d‖u0‖
tα

M, where M is a bound for the expres-

sion {1− (m− 1)Ξ1(t)}
1

2(m−1) .

(2) This part follows similarly using Hölder inequality as in theorem 5 and
lemma 4. 2

3. A Semilinear Functional Differential Equation

Let A,X,Xα be as in the introduction and r a positive real number. We denote
by C the Banach space C([−r, 0];X) of all continuous functions from [−r, 0] into
X. If z is a continuous function defined on [−r, b], then for any t ∈ [0, b], zt will
denote the function in C defined by zt(θ) = z(t + θ) for θ ∈ [−r, 0].
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We consider the (nonautonomous) semilinear partial functional differential prob-
lem {

du
dt + Au = f(t, ut), t > 0
u0 = φ ∈ C .(13)

This problem has been investigated by many authors. Local existence, global
existence, asymptotic behavior and regularity results may be found, for instance,
in Travis and Webb [16,17], Fitzgibbon [3], Rankin [14], and Redlinger [15].

If Cα = C([−r, 0];Xα) and ‖ψ‖Cα = sup
−r≤θ≤0

‖ψ(θ)‖α, then clearly (Cα, ‖.‖Cα) is

a Banach space. The integral version of (13) is the following integral problem u(t) = e−Atφ(0) +
∫ t

0

e−A(t−s)f(s, us)ds, t > 0

u0 = φ ∈ Cα

where f(., .) ∈ C([0,∞)×Cα;X). Similar results to those in section 2 hold for this
problem under the same hypothesis on the nonlinearity

‖f(t, v)‖ ≤ tκη(t) ‖v‖mα , for t ≥ 0, v ∈ Cα, m > 1, κ ≥ 0 .

Indeed, it suffices to note that for any solution u in C([−r, T ];Xα), T > 0

‖u(t+ θ)‖α ≤ d(t+ θ)−αe−b(t+θ) ‖φ(0)‖

+d
∫ t+θ

0

(t + θ − s)−αe−b(t+θ−s) ‖f(s, us)‖ ds ,

(14)

for t+ θ ≥ 0, −r ≤ θ ≤ 0, t ≤ T. Multiplying both sides of (14) by (t+ θ)αeb(t+θ)

we obtain for t+ θ ≥ 0

(t + θ)αeb(t+θ) ‖u(t+ θ)‖α ≤ d ‖φ(0)‖+

d(t+ θ)α
∫ t+θ

0

(t+ θ − s)−αebssκη(s) ‖us‖mCα ds

or

(t+ θ)αeb(t+θ) ‖u(t+ θ)‖α ≤ d ‖φ(0)‖+

d(t+ θ)α
∫ t+θ

0

(t+ θ − s)−αe−b(m−1)ssκ−mαsmαebmsη(s) ‖us‖mCα ds .

For the analogue to part (1) of theorem 5 for instance we use first Schwarz in-
equality

(t + θ)αeb(t+θ) ‖u(t+ θ)‖α ≤ d ‖φ(0)‖+ d(t+ θ)α(∫ t+θ

0

(t + θ − s)−2αe−2b(m−1)ss2(κ−mα)ds

) 1
2

(∫ t

0

s2mαe2bmsη2(s) ‖us‖2mCα ds
) 1

2

.
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Lemma 3 now implies

(15) (t+ θ)αeb(t+θ) ‖u(t+ θ)‖α ≤

d ‖φ(0)‖+ d
(
C[2b(m− 1)]2(mα−κ)−1

) 1
2
(∫ t

0

s2mαe2bmsη2(s) ‖us‖2mCα ds
) 1

2

.

At this stage we pass to the sup over −r ≤ θ ≤ 0 in the left-hand side of (15), this
yields

ψ(t) ≤ d ‖φ(0)‖+ d
(
C[2b(m− 1)]2(mα−κ)−1

) 1
2
(∫ t

0

η2(s)ψ(s)2mds
) 1

2

.

The rest is exactly as in the proof of theorem 5.

4. A Semilinear Integrodifferential Equation

In this section we shall consider the semilinear integrodifferential problem{
du
dt

=
∫ t

0
a(t − s)Au(s)ds + f(t, u), t > 0

u(0) = u0 ∈ X ,
(16)

where X is a Banach space with norm ‖.‖ . The autonomous case f(t, u) = f(u)
was studied by Hattori and Lightbourne in [6]. A global result was established for
small and smooth initial data and a nonlinearity satisfying

‖f(u)‖ ≤ C ‖u‖mα , m > 1 .

The problem  du
dt =

∫ t

0

a(t− s)Au(s)ds, t > 0

u(0) = u0

(17)

has been investigated by DaPrato and Iannelli [2] (see also references in [2]). In
the case a(t) = 1

Γ(α) t
−η , η ∈ (0, 1) and A = −4, where 4 is the Laplacian on

Ω ⊂ R, problem (17) corresponds to the fractional evolution problem{
Dβu(x, t) = 4u(x, t), x ∈ Ω , t > 0,
u(x, 0) = u0(x), x ∈ Ω ,

(18)

where β = 2 − η, 1 < β < 2. Dβ is the inverse of the Riemann-Liouville integral
of order β

Iβg(t) =
1

Γ(β)

∫ t

0

(t− s)β−1g(s)ds .

Problem (18) is an interpolation of the heat equation and the wave equation.
For the unbounded domain Ω = R, Fujita [5] proved an existence and uniqueness

result and gave an explicit representation of the solution by means of a probability
density. The authors in [9] proved a stability and blow up result for the same
specific linear problem with Ω = R and a forcing term f(x, t).

We claim that the method developped in section 2 apply to problem (16). To
see this it is enough to recall a result from [6]:
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Let A : D(A) ⊂ X → X be a closed linear operator, densely defined on X
such that (a) the resolvent set of A satisfies ρ(A) ⊃ {λ ∈ C : |argλ| < φ}

⋃
V

where π
2
< φ < π and V is a neighborhood of zero, (b) there exists M > 0

such that, for λ ∈ ρ(A), the resolvent of A, R(λ;A) = (λI − A)−1, satisfies
‖R(λ;A)‖ ≤ M/(1 + |λ|) and the kernel a(t) is such that (c) there exists φ̃ ∈
(π2 , π) for which â(λ), the Laplace transform of a, is analytic and bounded in∑

(φ̃), â(λ) 6= 0 for λ ∈
∑

(φ̃) and λ(â(λ))−1 ∈ ρ(A) for λ ∈
∑

(φ̃), where∑
(φ̃) = {λ ∈ C : |argλ| < φ̃}. Then, if |â(λ)| ≤ L |λ|r , for λ ∈

∑
(φ̃), there exist

positive constants M and δ such that

‖(−A)αT (t)‖ ≤Mt−α(1+r)e−δt, t > 0(19)

with

T (t) =
∫
γ(η,ε)

eλt(λ − â(λ)A)−1dλ

where η ∈ (π2 , φ̃), ε > 0 and γ(η, ε) = {λ = ρe±iη , ρ ≥ ε}
⋃
{λ = εeiτ : τ ∈

(−η, η)}.
The problem is then approached, using the estimate (19), via the variation of

parameters equation

u(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, u(s))ds .
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